当前位置:文档之家› 太阳能在照明灯具上的应用

太阳能在照明灯具上的应用

太阳能在照明灯具上的应用
太阳能在照明灯具上的应用

太阳能在照明灯具上的应用

概述

太阳能电池作为一种新能源,在民用方面首先应用在照明灯具上。目前,在西部光明工程,非主干道太阳能路灯,太阳能庭院灯和太阳能草坪灯,太阳能装饰灯等方面的应用已经逐渐形成规模。在太阳能照明灯具的设计中,涉及光源、太阳能电池系统、蓄电池充放电控制许多因素,其中任何一个环节出现问题都会造成产品缺陷。那就让我们先了解一下太阳能灯具组成吧!

1、太阳能电池板

2、充放电控制器

3、蓄电池

4、负载

5、灯具外壳

太阳能电池

太阳能电池主要功能在将光能转换成电能,这个现象称之为光伏效应。在众多太阳光电池中较普遍且较实用的有单晶硅太阳能电池、多晶硅太阳能电池及非晶硅太阳能电池等三种,在太阳光充足日照好的东西部地区,采用多晶硅太阳能电池为好,因多晶硅太阳能电池生产工艺相对简单,价格比单晶低。转换效率在近几年不断提高。在阴雨天比较多阳光相对不是很充足的南方地区,采用单晶硅太阳能电池为好,因单晶硅太阳能电池电性能参数比较稳定。当然非晶硅太阳能电池在室内阳光很弱的情况下比较好,因为非晶硅太阳能电池对太阳光照条件要求比较低。

首先,任何一款太阳能灯具产品我们必须先了解太阳能电池,太阳能电池有五大电性能参数:

1、Isc是短路电流

2、Im是峰值电流

3、V oc是开路电压

4、Vm是峰值电压

5、Pm是峰值功率

Pm是峰值功率= Im是峰值电流×Vm是峰值电压

注:以上计算跟据太阳能电池的外特性

对于单片太阳能电池来说,它是一个PN结,除了当太阳光照射在上面时,它能够产生电能外,它还具有PN结的一切特性。在标准光照条件下,它的额定输出电压为0.48V。在太阳能照明灯具使用中的太阳能电池组件都是由多片太阳能电池连接构成的。

用户可以先看太阳能电池来知道价格,性能及太阳能灯具照明的稳定性,下面我会根据和负载,蓄电池之间作介绍。

充放电控制器

无论太阳能灯具大小,一个性能良好的充放电控制电路是必不可少的。为了延长蓄电池的使用寿命,必须对它的充放电条件加以限制,防止蓄电池过充电及深度放电,.另外,由于太阳能光伏发电系统的输入能量极不稳定,光伏发电系统中对蓄电池充电的控制要比普通蓄电池充电的控制要复杂些。对于太阳能灯具的设计来说,成功与失败往往就取决于充放电控制电路的成功与失败。

没有一个性能良好的充放电控制电路,就不可能有一个性能良好的太阳能灯具。充放电控制器必须要到以下几个特点:

1、防反充电控制

2、防过充电控制

3、防过放电控制

4、温度补偿

蓄电池

由于太阳能光伏发电系统的输入能量极不稳定,所以一般需要配置蓄电池系统才能工作,太阳能灯具也不例外,必须配置蓄电池才能工作。一般有铅酸蓄电池、Ni-Cd蓄电池、Ni-H 蓄电池,它们的容量选择直接影响系统的可靠性以及系统价格。蓄电池容量的选择一般要遵循以下原则:首先在能够满足夜晚照明的前提下,把白天太阳能电池组件的能量尽量存储下来,同时还要能够存储满足连续阴雨天夜晚照明需要的电能。蓄电池容量过小不能够满足夜晚照明的需要,蓄电池容量过大,一方面蓄电池始终处在亏电状态,影响蓄电池寿命,同时造成浪费。

蓄电池的选择也是要看太阳能电池,负载来确定的,下面我们在系统设计中作介绍。

负载

太阳能灯具产品以节能环保为优势,当然负载要节能,寿命长。我们一般采用LED灯与12V 直流节能灯及低压钠灯等。

目前多数草坪灯选用LED作为光源,LED寿命长,可以达100000小时以上,工作电压低,非常适合应用在太阳能草坪灯上。

庭园灯一般采用12V直流节能灯,直流节能灯电压为直流,无需逆变,方便安全。

路灯一般采用12V直流节能灯与低压钠灯,低压钠灯光效高(可达200LM/W)。但由于低压钠灯价格比较昂贵,采用较少。

灯具外壳

我们收集了许多国外太阳能灯资料,在美观和节能两者之间,大多数都选择节能。灯具外观要求不要很高,相对实用就行。目前有很多厂家外观很漂亮,选用不锈钢外壳。但性能到底怎样呢?这又让我们深思!

系统设计

一款好的太阳能灯具产品,关键在于系统设计,怎样才是合理的系统设计呢?那就让我们先了解一下影响系统的几个重要因素吧!

纬度

太阳能方阵面上的年总辐射量

最长无日照天数

日耗电量

平均每日峰值日照时数

让我们试想一下:如果太阳能电池充电量不足每天放电量会怎样呢?如果连续几年阴雨天系统还能照明吗?这些问题都要我们设计人员的精心设计。下面我又给大家介绍一种简单判断太阳能灯具系统性能的方法:我们必须知道系统负载功率,

1:太阳能电池功率必须比负载功率高出4倍以上系统才能正常工作。

2:蓄电池容量必须比负载日耗电量高出3倍以上(西部地区),南方地区要高出5倍以上为好。

接下来就太阳能电池的外特性、蓄电池充放电控制、太阳能照明灯具经常使LED与三基色高效节能灯进行比较,分析各自优点与缺点以及使用场合。同时针对目前市场上太阳能灯电路设计中存在的问题提出改进方法。由于太阳能灯其有独特的优点,近年来得到迅速的发展。草坪灯功率小,主要以装饰为目的,对可移动性要求高,另外,电路铺设困难,防水要求高,上述要求使得由太阳能电池能供电的草坪灯显示出许多前所未有的优势。尤其是国外市场对太阳能草坪灯比其它产品需求十分巨大。2002年,仅广东和深圳用于制造出口太阳能草坪灯消耗的太阳能电池就达到2MW,相当于当年国内太阳能电池产量的1/3,今年仍然保持

强劲的发展势头,这是人们没有预料到的。太阳能庭院灯在公园,生活小区以及非主要交通道路上得到广泛应用。同时,由于发展太快,有些产品技术上不够成熟,在光源的选择以及电路设计中存在许多缺陷,降低了产品的经济性和可靠性,浪费了许多资源。本文针对上述存在的问题,提出自己的看法,供生产太阳能灯具的工厂参考。

1太阳能电池的外特性

从应用的角度论述,大家主要关心的是太阳能电池的外特性。首先,对于单片太阳能电池来说,它是一个PN结,除了当太阳光照射在上面时,它能够产生电能外,它还具有PN 结的一切特性。在标准光照条件下,它的额定输出电压为0.48V。在太阳能照明灯具使用中的太阳能电池组件都是由多片太阳能电池连接构成的。它具有负的温度系数,温度每上升一度,对于多片太阳能电池组成的太阳能电池组件,这是一个不可忽视的问题。它的输出特性曲线如图1。

图1中,Isc是短路电流,Im是峰值电流,V oc是开路电压。Vm是峰值电压,Pm是峰值功率。

在使用中,太阳能电池开路或者短路都不会造成损坏,实际上我们也正是利用它的这个特性对系统蓄电池充放电进行控制的。

2太阳能电池在使用中必须注意的问题

2.1太阳能电池功率的选择

我们所说的太阳能电池输出功率Wp是标准太阳光照条件下,即:欧洲委员会定义的101标准,辐射强度1000W/m2,大气质量AM1.5,电池温度25℃条件下,太阳能电池的输出功率。这个条件大约和平时晴天中午前后的太阳光照条件差不多,(在长江下游地区只能接近这个数值)这并不象有些人想象的那样,只要有阳光就会有额定输出功率,甚至认为太阳能电池在夜晚日光灯下也可以正常使用。这就是说,太阳能电池的输出功率是随机的,在不同的时间,不同的地点,同样一块太阳能电池的输出功率是不同的。

表1是我国不同地区太阳光照条件。

为了更加直观地了解各地每天太阳能辐射的平均分布,表2给出年总辐射量与日平均峰值日照时数(太阳能电池每天可以接受到1000W/m2辐照度的等效时间)对应关系。

表2年总辐射量与日平均峰值日照时数对应表

通过上面资料可以看出,太阳能灯具的设计和灯具的使用地区有关。太阳能电池组件额定输出功率和灯具输入功率之间关系在华东地区大约是2~4:1,具体比例要根据灯具每天工作时间以及对连续阴雨天照明要求决定。另外太阳能电池的输出功率大约120W/m2。

2.2蓄电池容量的选择

由于太阳能光伏发电系统的输入能量极不稳定,所以一般需要配置蓄电池系统才能工作,太阳能灯具也不例外,必须配置蓄电池才能工作。一般有铅酸蓄电池、Ni-Cd蓄电池、Ni-H蓄电池,它们的容量选择直接影响系统的可靠性以及系统价格。蓄电池容量的选择一般要遵循以下原则:首先在能够满足夜晚照明的前提下,把白天太阳能电池组件的能量尽量存储下来,同时还要能够存储满足连续阴雨天夜晚照明需要的电能。蓄电池容量过小不能够满足夜晚照明的需要,蓄电池容量过大,一方面蓄电池始终处在亏电状态,影响蓄电池寿命,同时造成浪费。

2.3太阳能电池封装形式的选择

目前太阳能电池的封装形式主要有2种,层压和滴胶,层压工艺可以保证太阳能电池工作寿命25年以上,滴胶虽然当时美观,但是太阳能电池工作寿命仅仅1~2年。因此,1W 以下的小功率太阳能草坪灯,在没有过高寿命要求的情况下,可以使用滴胶封装形式,对于使用年限有规定的太阳能灯,建议使用层压的封装形式。另外,有一种硅凝胶用于滴胶封装太阳能电池,据说工作寿命可以达到10年。

2.4太阳能电池安装倾斜角度的选择和装饰性外罩

为了美观,许多的太阳能灯具的工厂将太阳能电池水平放置,在这种情况下,太阳能电池的输出功率将减少15%~20%,如果再在太阳能电池上面增加一个装饰性外罩,太阳能电池的输出功率又将减少5%左右,太阳能电池价格昂贵,我们收集了许多国外太阳能灯资料,在美观和节能两者之间,大多数都选择节能。在长江下游太阳能电池的最理想倾斜角度是40度左右,方向为正南方。

2.5热岛效应

单片太阳能电池一般是不能使用的,实际应用的是太阳能电池组件。太阳能电池组件是由多片太阳能电池组合而成,用以达到期望的电压值。太阳能电池组件在使用过程中,如果有一片太阳能电池单独被遮挡,例如树叶鸟粪等,单独被遮挡的太阳能电池在强烈阳太阳光照射下就会发热损坏,于是整个太阳能电池组件损坏。这就是所谓热岛效应。为了防止热岛效应,一般是将太阳能电池倾斜放置,使树叶等不能附着,同时在太阳能电池组件上安装防鸟针。

3太阳能灯具中蓄电池的充放电控制

无论太阳能灯具大小,一个性能良好的充放电控制电路是必不可少的。为了延长蓄电池的使用寿命,必须对它的充放电条件加以限制,防止蓄电池过充电及深度放电,.另外,由于太阳能光伏发电系统的输入能量极不稳定,光伏发电系统中对蓄电池充电的控制要比普通蓄电池充电的控制要复杂些。对于太阳能灯具的设计来说,成功与失败往往就取决于充放电控制电路的成功与失败。.没有一个性能良好的充放电控制电路,就不可能有一个性能良好的太阳能灯具。

3.1防反充电控制

防止反充电功能,一般来说,就是在太阳能电池回路中串联一个二极管,二极管防止反充电,这个二极管应该是肖特基二极管,肖特基二极管的压降比普通二极管低。另外,还可以用场效应晶体管控制防止反充电功能,它的管压降比肖特基二极管更低,只是控制电路要比前面复杂一些。

3.2防过充电控制

防止过充电功能,可以在输入回路中串联或者并联一个泄放晶体管,电压鉴别电路控制晶体管的开关,将多余的太阳能电池能量通过晶体管泄放,保证没有过高的电压给蓄电池充电。关键是防止过充电压的选择,单节铅酸蓄电池为2.2V。

3.3防过放电控制

除了Ni-Cd电池外,其它蓄电池一般都要具有防止蓄电池过放电功能,因为会造成蓄电池过放电永久性损坏。需要注意的是,太阳能电池系统一般相对蓄电池是小倍率放电,所以放电截止电压不宜过低。

3.4温度补偿

温度补偿,蓄电池电压控制点是随着环境温度而变化的,所以太阳能灯系统应该有一个受温度控制的基准电压。对于单节铅酸蓄电池是-3~-7mV/℃,我们通常选用-4mV/℃。

4太阳能灯具光源的选择

目前多数草坪灯选用LED作为光源,LED寿命长,可以达到100000小时以上,工作电压低,非常适合应用在太阳能草坪灯上。特别是LED技术已经实现了其关键性突破,并且其特性在过去5年中有很大地提高。同时性能价格比也有较大地提高。另外,LED由低压直流供电,其光源控制成本低,调节明暗,频繁开关都是可能的,并且不会对LED的性能产生不良影响。控制颜色,改变光的分布,产生动态幻景都是可能的,所以它特别适合在太阳能草坪灯上应用。有许多其固有的特性,使用时如果不注意就会造成不良后果。但是LED目前在市场上销售LED的发光效率仅能达到15Lm/W,只能达到三色基色高效节能灯1/3,三色基色高效节能灯的发光效率可以达到50Lm/W~60Lm/W。从价格上看,目前生产每Lm的成本:三色基色高效节能灯(含电子镇流器)0.022元,2002年f5mm白光LED价格为1.9~3.0元,目前生产每Lm的成本高,价格相差悬殊。从使用寿命上看,三色基色高效节能灯(含电子镇流器)的寿命可以达到6000小时,LED可以达到100000小时以上,从表面上看,LED寿命是三色基色高效节能灯(含电子镇流器)的几十倍,但是事实并非如此。目前太阳能草坪灯大多数采用超高亮白光LED,它在20mA下超高亮白光LED光通维持率达到初始强度50%的时间(寿命)不到10000小时,复旦大学电光源所曾经证明了上述论点。这就是说,目前在许多情况下LED并非是最好的太阳能草坪灯光源,除非它是低档,使用年限仅1~2年的太阳能草坪灯,或者是1w以下的太阳能草坪灯。对于1W以上的太阳能草坪灯,最好使用三色基色高效节能灯。目前有一些太阳能草坪灯用30~40只超高亮白光LED,输入功率2W以上,在这种情况下,如果使如果用三色基色高效节能灯,价格只是LED的1/10,光通量为原来的4倍,现在已经研制成功2~10W的低压直流三色基色高效节能灯,寿命可以达到6000小时。根据上述分析,我们认为有调节明暗、频繁开关功能的1W以下的小功率太阳能草坪灯,一般应该使用LED作为光源。但是在使用超高亮白光LED时特别要注意光通维持率问题,否则容易引发事故。对于功率较大的太阳能草坪灯,目前使用三色基色高效节能灯比较合理。这里要强调的是,以上结论仅仅是目前地分析,当LED技术水平提高以后,价格下降,以上结论需要改变。

对于太阳能庭院灯,从可靠性、性能价格比、色温,和发光效率几个方面综合考虑,我们认为理想的光源目前应该是三色基色高效节能灯。

5LED使用注意事项

1)LED的特性接近稳二极管,工作电压变化0.1V,工作电流可能变化20mA左右。为了安全,普通情况下使用串联限流电阻,极大的能量损失显然不适合太阳能草坪灯,并且LED亮度随工作电压变化。采用升压电路是一个好办法,也可以用简单的恒流电路,总之一定要自动限流,否则将损坏LED。

2)一般LED的峰值电流50~100mA,反向电压6V左右,注意不要超过这个极限,尤其在太阳能电池反接或者蓄电池空载,升压电路峰值电压过高时,很可能超过这个极限,损坏LED。

3)LED温度特性不好,温度上升5℃,光通量下降3%,夏季使用要注意。

4)工作电压离散性大,同一型号,同一批次的LED工作电压都有一定差别,不宜并联使用。一定要并联使用,应该考虑均流。

5)超高亮白光LED色温为6400k~30000k。目前,低色温的超高亮白光LED尚没有进入市场,因此用超高亮白光LED制造的太阳能草坪灯光穿透能力比较差,所以在光学设计上要注意。

6)静电对超高亮白光LED影响很大,在安装时要有防静电设施,工人要佩带防静电手腕。受静电伤害的超高亮白光LED当时可能凭眼睛看不出来,但是使用寿命将变短。

6系统组合中的几个问题

1)光敏传感器,太阳能灯需要光控开关,有的设计者往往会用光敏电阻来自动开关灯,实际上太阳能电池本身就是一个极好的光敏传感器,用它做光敏开关,特性比光敏电阻好。对于太阳能庭院灯问题不大,但是对于仅仅使用一只1.2VNi-Cd电池的太阳能草坪灯来说,太阳能电池组件由4片太阳能电池串联组成,电压低,弱光下电压更低,以至于天还没有黑电压已经低于0.7V,造成光控开关失灵。在这种情况下,只要加一只晶体管直接耦合放大,即可解决问题。

2)按蓄电池电压高低控制负载大小,对太阳能灯在连续阴雨天时可维持的时间要求很高,这就增加系统成本。我们在连续阴雨天蓄电池电压降低时减少LED或者减少太阳灯接入个数,或者减少太阳能灯每天的发光时间,这就降低了系统成本。

3)闪烁变光,渐亮渐暗是节能的好办法,它一方面可以增加太阳能草坪灯照射效果,另一方面可以通过改变闪烁占空比控制蓄电池平均输出电流,延长系统工作时间,或者在同等条件下,可降低成本。

4)三色基色高效节能灯的开关速度。这个问题非常重要,它甚至决定了太阳能草坪灯的使用寿命,三色基色高效节能灯启动时有高达10~20倍的启动电流,系统在承受这样大的电流情况下,可能电压有大幅度下降,太阳能草坪灯无法启动或者反复启动,直至损坏。

5)目前太阳能电池还不能够使用在主干道照明上。公路主干道的照明有法定的照度要求,就目前太阳能电池的转换效率和价格讲,还不能够满足这个要求。但在不久的将来随着各方面的技术水平的提高,太阳能电池一定会应用在公路主干道的照明上。

6)关于储能电容,太阳能电池的使用寿命在25年以上,普通蓄电池的使用寿命在2~3年,所以蓄电池是太阳能电力系统中最薄弱的环节。储能电容可以在一定程度上解决这个问题。储能电容的使用寿命可以达到10年以上,而且控制电路简单,但是昂贵的价格限制了它的应用,目前仅仅应用在部分交通信号灯和装饰灯上。随着技术水平的提高,产品价格的下降,它将是一种最有希望成为和太阳能电池配套的理想储能元件。

7有关太阳能电池在照明灯具上应用的技术及产品专利

7.1用于草坪灯高效率升压电路

小功率太阳能草坪灯一般都有升压电路,目前各厂家采用振荡电路,电感升压。电感采用标准色码电感器,标准色码电感器中使用开放磁路,磁通损失大,所以电路效率低。如果采用闭合磁路制造电感升压,如磁环,升压电路效率将有很大提高。曾经用f10磁环制造电

感,在同等条件下进行对比实验,采用闭合磁路制造电感要比采用标准色码电感器效率提高20%~40%。

7.2厚膜太阳能灯控制电路

7.2.1简介

PV控制器厚膜电路是在PV控制器(太阳能充放电控制器)和厚膜混合集成电路的基础上研制开发出来的高科技产品。它集PV控制器特点与厚膜电路优点于一身,是理想的充放电控制电路。其具体优点主要表现在以下4个方面:

7.2.1.1小型化

厚膜混合集成电路是以陶瓷作为线路的基板,将导体网络及电阻组件利用网版印制技术,印于基板表面;利用特定的工艺技术,把其它主(被)动器件(如集成块,二极管,三极管,22电容等)贴装于陶瓷基板上;再连接输出引脚,及封装作业,而形成一个功能完整,保密性高的应用IC。PV控制器厚膜电路就是利用厚膜混合集成电路技术,将电阻印于陶瓷基板上,并且采用贴片技术,体积大大减小,在同等功率的条件下,体积是普通PV控制器的1/3。对于小型系统直接可以放置在太阳电池的背面,使用十分方便。

7.2.1.2模块化设计

PV控制器厚膜电路采用模快化设计,PV控制器厚膜电路为中心模块,围绕中心模块有功率模块、定时模块、过载、短路保护功能模块等。客户根据自己的需要,选用不同的模块,采用搭积木的形式组装适合自己的充放电控制器。由于采用模块化设计,大大缩短太阳能应用产品的开发周期,对于小功率充放电的要求,可以单独使用本模块,如果需要增大功率,可以通过扩展功率模块。同时还可以扩展其它的模块,如定时模块、过载、短路保护功能模块。

7.2.1.3功能齐全

PV控制器厚膜电路具有以下功能:

1)蓄电池过放电保护;

2)自动恢复放电功能;

3)蓄电池过充电保护;

4)防反充(蓄电池向太阳电池充电);

5)温度补偿功能;

6)自动开关灯功能(晚上负载接通,白天负载切断);

7)涓流充电(蓄电池达到过充保护点时,采用定电压,小电流充电)。

当外接其它器件或功能模块时,可以实现以下功能:

1)定时开启和关闭负载;

2)蓄电池反接保护;

3)太阳能电池反接保护;

4)过载和短路保护;

.2.1.4可靠性高

厚膜混合集成电路现在已广泛应用于航空、航天、医疗、通讯等领域,电阻精度可高达0.05%,电阻温度系数100ppm以下,表面经过三防处理,可适用于不同地域的恶劣环境。PV控制器厚膜电路采用厚膜混合集成电路技术,工作温度范围宽(-55~125℃),控制精度高。PV控制器厚膜电路采用自动化焊接技术,焊接质量有保证。在焊接的美观方面和可靠性方面,比现有的控制器手工焊接有了显著提高。

表3是传统PCB和厚膜混合集成电路的比较(1代表最差,5代表最佳)。

表3可以看出,厚膜电路的可靠性是普通PCB板电路的四倍,是贴片PCB板电路的两倍。

7.2.2外形尺寸及引脚功能

注:①1RT为负温度系数热敏电阻,RT=10KΩ(在温度为25℃);

②Ⅰ型为单片使用型(充放电电流小于3A);

③Ⅱ型为功能扩展型(需外扩功率器件)。

本PV控制器厚膜电路共16只引脚,各引脚功能如下:

1脚(SOL+/BAT+/LOAD+):接太阳能电池组件、蓄电池、负载的正极(+)和1N5408/1N4007(防反接二极管)的阴极;

2脚(LOAD-/d1):单片使用(12V/10W、I≤1A),接负载的负极(-);

作为部件使用(1A<I≤8A=,接负载的负极(-)和Q1管的漏极(d极)。

3脚(BAT-/d2/s1):(8脚,13脚同3脚功能一样),单片使用(12V/10W、I≤1A),接蓄电池的负极(-)和1N5408(D5)的阳极;

作为部件使用(1A<I≤8A=,接蓄电池的负极(-)和Q1的源极(s极)Q2管的漏极(d 极)。

4脚(g1):单片使用(12V/10W、I≤1A),不接;

作为部件使用(1A<I≤8A=,接Q1管的栅极(g极)。

12脚(g2):单片使用(12V/10W、I≤1A),不接;

作为部件用﹙1A<I≤8A=,接Q2的栅极(g极)。

14脚(s2/s3):单片使用(12V/10W、I≤1A),不接;

作为部件使用(1A<I≤8A=,接Q2、Q3的源极(s极)。

15脚(g3):单片使用(12V/10W、I≤1A),不接;

作为部件使用﹙1A<I≤8A=,接Q3的栅极(g极)。

16脚(d3/SOL-):单片使用(12V/10W、I≤1A),接太阳能电池组件的负极(-);

作为部件使用﹙1A<I≤8A=,接Q3的漏极(d极)和太阳能的负极(-)。

6、7、9、10、11脚不接(作为电路功能扩展使用);

4、5脚:短接时,具有光控自动开灯、关灯功能,不接时,不具有光控自动开灯、关灯功能。

7.2.3技术参数

7.3分时/分压太阳能灯控智能制器

太阳能灯作为一种新型节能灯具,它与传统灯具相比有许多优点,但是它的价格昂贵又是推广应用的瓶颈,因此,如何降低太阳能灯的成本是一个重要的课题。分时,分压控制太阳能灯技术就是解决这个问题的好办法。

分时、分压控制太阳能灯技术的核心就是根据夜晚不同时间段,人们对照度不同要求,控制太阳能灯的输入功率,以及根据太阳能电池白天吸收能量的大小,控制太阳能灯的输入功率,达到用最小成本设计出能够满足最恶劣气象条件下人们对太阳能灯的最基本要求。

图中太阳能电池电压在夜晚低于2V时,晶体管截止,集电极输出高电平,作为开灯信号。天亮以后,太阳能电池电压高于2V时,集电极输出低电平,作为关灯信号。运算放大器正端连接一个基准电压,该电压与蓄电池电压进行比较,当蓄电池电压低于一定值时,运算放大器输出端输出高电平作为控制信号。上面的信号作为单片计算机输入信号在软件支持下完成前面的功能。

展望——从PN结到PN结的绿色照明

太阳能电池正在以出乎人们预料的惊人速度发展。根据科学家的保守估计,在未来的10年里,太阳能电池的平均转换效率要达到20%以上,而价格要下降一半,这就是说,10年以后的今天,我们用于照明电力的一半可能来源于太阳能,达到从PN结到PN结真正的绿色照明。大家知道,太阳能电池是一个巨大的PN结,它把太阳能转换为电能。LED是另一个可以将电能转换为光线的PN结,它的转换效率一天一天地在提高,据说不久的将来就可以达到节能灯的水平,而使用寿命可以达到10万小时以上,这是真正意义上的绿色照明。

太阳能电池

太阳能电池及材料研究 引言 太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电 池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等

太阳能灯具项目申请报告

太阳能灯具项目 申请报告 规划设计/投资方案/产业运营

摘要说明— 随着我国城市化建设进程的加速以及城市基建设施建设的加快,城市 对照明产品的市场需求逐渐扩大。传统照明设备耗能巨大,且存在巨大的 能源浪费,还影响城市生态环境,这明显不符合我国能源利用的发展方向,同时也极大的限制了照明设备的利用效率。而太阳能路灯的出现,有效的 弥补了上述不足。 该太阳能灯具项目计划总投资26282.79万元,其中:固定资产投资17213.37万元,占项目总投资的65.49%;流动资金9069.42万元,占项目 总投资的34.51%。 达产年营业收入60686.00万元,总成本费用46967.75万元,税金及 附加464.65万元,利润总额13718.25万元,利税总额16075.07万元,税 后净利润10288.69万元,达产年纳税总额5786.38万元;达产年投资利润 率52.19%,投资利税率61.16%,投资回报率39.15%,全部投资回收期 4.05年,提供就业职位1234个。 当前随着我国城市化建设进程的加速以及城市基建设施建设的加快, 城市对照明产品的市场需求逐渐扩大。在能源紧张的大背景下,传统照明 设备耗能巨大,且存在巨大的能源浪费,还影响城市生态环境,这明显不 符合我国能源利用的发展方向,同时也极大的限制了照明设备的利用效率。而太阳能路灯的出现,有效的弥补了上述不足。

报告内容:基本信息、建设背景及必要性、项目市场前景分析、项目规划分析、选址分析、土建工程、工艺说明、项目环境保护分析、项目安全规范管理、风险应对评估、项目节能方案分析、实施计划、投资方案分析、盈利能力分析、项目总结等。 规划设计/投资分析/产业运营

太阳能电池的种类特点及发展趋势

太阳能电池的种类特点及发展趋势一、种类 按照材料分类 ?硅太阳能电池:以硅为基体材料(单晶硅、多晶硅、非晶硅) ?化合物半导体太阳能电池:由两种或两种以上的元素组成具 半导体特性的化合物半导体材料制成的太阳能电池(硫化镉、 砷化稼、碲化镉、硒铟铜、磷化铟) ?有机半导体太阳能电池:用含有一定数量的碳-碳键且导电 能力介于金属和绝缘体之间的半导体材料制成的电池(分子 晶体、电荷转移络合物、高聚物) 单晶硅太阳电池 特点 硅系列太阳能电池中,单晶硅的光电转换效率最高,技术也最成熟,高性能单晶硅电池是建立在高质量单晶硅材料和相关成熟的加工工艺基础上。提高转换效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。单晶硅太阳能电池的转换效率无疑是最高的,在大规模应用和工业生产中仍旧占据主导地位,但由于受单晶硅材料价格及相应繁琐的电池工艺影响,致使单晶硅成本据高不下,严重影响了其广泛应用。 单晶硅太阳能电池的特点是对于大于0.7μm的红外光也有一定的灵敏度。以p 型单晶硅为衬底,其上扩散n型杂质的太阳能电池与n型单晶硅为衬底的太阳能电池相比,其光谱特性的峰值更偏向左边(短波长一方)。它对从蓝到紫色的短波长(波长小于0.5μm)的光有较高的灵敏度,但其制法复杂,成本高,仅限于空间应用。此外,带状多晶硅太阳能电池的光谱特性也接近于单晶硅太阳能电池的光谱特性。 1.多晶硅太阳电池 特点 单晶硅太阳能电池的缺点是制造过程复杂,制造电池的能耗大。为解决这些问题,用浇铸法或晶带法制造的多晶硅太阳能电池的开发取得了进展。在1976年证明用多晶硅材料制作的太阳能电池的转换效率已超过10%,对大晶粒的电池,有报道效率可达20%。这种低成本的多晶硅太阳能电池已经大量生产,目前,它在太阳能电池工业中所占的分额也相当大。 但是多晶硅材料质量比单晶硅差,有许多 晶界存在,电池效率比单晶硅低; 晶向不一致,表面织构化困难。 单晶、多晶与非晶的区别 多晶:短程有序(团体有序),成百上千个原子尺度,通常是在微米的量级; 非晶:局部有序(个体有序),微观尺度,几个原子、分子尺度,一般只有十几

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

太阳能LED灯具说明书

太阳能LED灯具使用说明书 一、概述 太阳能LED灯具由控制柜、太阳能电池、LED球泡灯组成,如下图所示,太阳能电池将光能转化电能对控制器内部蓄电池充电。太阳能LED灯具工作在两种状态:①充电状态;②开灯状态。

二、电参数 太阳能电池最大输入电压:DC 17V; 输出电压:DC 12V; 工作环境温度:-25~60℃。 三、功能说明 太阳能电池平稳放于日照处,用于充分吸收外界光能。 充电状态:太阳能电池与控制柜连接好后按下AN1开关,外界光照足够强时,此时太阳能电源指示灯亮,蓄电池充电指示灯HL1慢闪烁,此时蓄电池正在充电。 开灯状态:闭合S1开关,1路输出LED球泡灯亮同时HL2输出指示灯也亮。 闭合S2开关,2路输出LED球泡灯亮同时HL2输出指示灯也亮。 四、控制柜结构尺寸

五、产品包装 1.检验合格的产品用塑料袋封装后放入箱内,并衬以防震材料,防止运输过程中发生窜动或碰撞。 2.产品包装能满足防潮、防尘的要求。包装箱外表面标有产品名称、型号规格、生产批号、数量、净重、制造厂家等,还标有防潮、防震、小心轻放、切勿倒置等字样或图案标志。 六、设备附件 七、产品维护 敬告:在进行产品维护时,请确保断电操作,以免发生意外触电,请参照以下要求和方法进行日常维护和定期检修,对于已损坏设备请及时寄回我公司进行维修。 1. 日常维护 定期检查系统控制器各紧固件,确保不会脱落影响设备正常运行。保持清洁,注意防潮。如发现故障,请作好记录以待维修。 2. 故障分析及维修 说明:因系统单元较简单,一般性故障可在现场检修处理,如有个别疑难故障无法排除,可联系相关人员进行帮助检修,排除故障。 (1)无法进充电或点亮 如因特殊原因,系统不能正常启动或无法进充电或点亮,请先确认外线路是否正常,如太阳能板连接线是否有短路等;在确认外线路正常后,打开系统控制

太阳能电池基本特性测定试验

太阳能电池基本特性测定实验 太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为23%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。 太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线; UI U I曲线图;并测量太阳能变化关系,画出2. 有光照时,测量电池在不同负载电阻下,对IUP FF;及填充因子电池的短路电流、开路电压、最大输出功率SCaxOCm IU L的关系,求出它们的近似函数关系。与光照度 3. 测量太阳能电池的短路电流、开路电压SCOC 【实验仪器】 白炽灯源、太阳能电池板、光照度计、电压表、电流表、滑线变阻器、稳压电源、单刀开关 连接导线若干 供参考. 】【实验原理 区,pn区流向结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由太阳光照在半导体

《太阳能电池基础与应用》太阳能电池-第四章-4

第四章
4.1 3 4.2 4.3 3 4.4 4.5 4.6
太阳电池基础
光生伏特效应 光生载流子的浓度和电流 太阳电池的伏安特性 太阳电池的性能表征 太阳电池的测试技术 太阳电池的效率分析

4.6 太阳电池效率分析-极限效率
太阳电池的理论效率
VOC I SC ? FF ?? ?100% Pin
当入射太阳光谱AM0或AM1.5确定后, 为获得较高的转换效率, 需要增加Voc、Isc和FF
填充因子FF
在理想情况下(当voc>10),填充因子FF仅是开路电压Voc的函数
Voc的函 数
voc ? ln(voc ? 0.72) q FF ? voc ? Voc , voc ? 1 kT

4.6 太阳电池效率分析-极限效率
短路电流Isc
I sc ? ? I L I L ? qAG ? Le ? W ? Lh ? ,
假设到达电池表面的每一个能量大于材料禁 带宽度Eg的光子,会产生一个电子-空穴对。 将光通量对波长进行积分,可以得到产生率G。
开路电压Voc
Voc ?
2
? kT ? I L ln ? ? 1? q ? I0 ?
? Eg ? I 0 =1.5 ? 10 exp ? ? ? kT ? ?
5
Eg ) I0∝ ni ? N C N V exp(? kT
禁带宽度Eg减小,I0增加,Voc减小

4.6 太阳电池效率分析-极限效率
最佳带隙宽度
禁带宽度Eg减小
Isc增加
Voc减小

太阳能照明灯具设计参考

如何选购经济实用的太阳能灯具产品随着太阳能光伏技术的发展和进步,在民用方面首先应用在照明灯具上,近几年来,太阳能灯具产品由于环保节能的双重优势,太阳能庭院灯和太阳能草坪灯,太阳能装饰灯等方面的应用已经逐渐形成规模。如何在众多耀眼的商业广告中,选择一款比较适合当地气候条件而又经济实用的太阳能灯具产品呢?这一直是用户的最终疑问?在太阳能照明灯具的设计中,涉及光源、太阳能电池系统、蓄电池充放电控制许多因素,其中任何一个环节出现问题都会造成产品缺陷。 那就让我们先了解一下太阳能灯具组成吧!1、太阳能电池板2、充放电控制器3、蓄电池4、负载5、灯具外壳 太阳能电池 太阳能电池主要功能在将光能转换成电能,这个现象称之为光伏效应。 在众多太阳光电池中较普遍且较实用的有单晶硅太阳能电池、多晶硅太阳能电池及非晶硅太阳能电池等三种,在太阳光充足日照好的东西部地区,采用多晶硅太阳能电池为好,因多晶硅太阳能电池生产工艺相对简单,价格比单晶低。转换效率在近几年不断提高。 在阴雨天比较多阳光相对不是很充足的南方地区,采用单晶硅太阳能电池为好,因单晶硅太阳能电池电性能参数比较稳定。 当然非晶硅太阳能电池在室内阳光很弱的情况下比较好,因为非晶硅太阳能电池对太阳光照条件要求比较低。 首先,任何一款太阳能灯具产品我们必须先了解太阳能电池, 太阳能电池有五大电性能参数: 1、Isc是短路电流 2、是峰值电流 3、Voc是开路电压 4、Vm是峰值电压 5、Pm是峰值功率Pm是峰值功率= Im是峰值电流×Vm是峰值电压 注:以上计算跟据太阳能电池的外特性对于单片太阳能电池来说,它是一个PN 结,除了当太阳光照射在上面时,它能够产生电能外,它还具有PN结的一切特性。 在标准光照条件下,它的额定输出电压为0.48V。 在太阳能照明灯具使用中的太阳能电池组件都是由多片太阳能电池连接构成的。用户可以先看太阳能电池来知道价格,性能及太阳能灯具照明的稳定性,下面我会根据和负载,蓄电池之间作介绍。 充放电控制器无论太阳能灯具大小,一个性能良好的充放电控制电路是必不可少的。为了延长蓄电池的使用寿命,必须对它的充放电条件加以限制,防止蓄电

光电池的应用与发展

光电池的应用与发展 摘要: 光电池是利用光伏效应制成的检测光辐射的器件,主要是利用价带电子在光的照射下产生电动势。光电池也叫太阳能电池,直接把太阳光转变成电。因此光电池的特点是能够把地球从太阳辐射中吸收的大量光能转化换成电能。 光电池的种类很多,常用有硒光电池、硅光电池和硫化铊、硫化银光电池等。主要用于仪表,自动化遥测和遥控方面。有的光电池可以直接把太阳能转变为电能,这种光电池又叫太阳能电池。太阳能电池作为能源广泛应用在人造地卫星、灯塔、无人气象站等处。 随着可持续发展战略在世界范围内的实施,新能源的开发与利用显得尤为重要。在有关光电池的技术走进了我们的生活,因此这对于光电池的应用与发展方向进行的研究具有较为广泛的意义。 关键字:光电池;光伏效应;价带电子

目录 1.光电池简介 (3) 1.1光电池的定义 (3) 1.2光电池的种类 (3) 2.光电池的原理 (3) 3.光电池发展历史 (4) 4.光电池的应用与前景 (5) 4.1光电池的应用 (5) 4.1.1光电池的运用范围 (6) 4.1.2光电池家庭化的应用 (6) ①太阳能电话 (6) ②太阳能冰箱 (6) ③太阳能空调器 (7) ④太阳能电视机 (7) 4.1.3光电池的市场与应用 (7) 4.2光电池的前景 (8) 总结 (8) 参考文献 (9)

1.光电池简介 1.1光电池的定义 光电池(photovoltaic cell)是利用光伏效应(光电效应的衍生)制成的检测光辐射的器件,是一种在光的照射下产生电动势的半导体元件。可见光电池也是一种光电传感器。 光电池广泛用于把太阳能直接转换成电能,亦称太阳能电池。 1.2光电池的种类 光电池的种类很多,有硒光电池、硅光电池和硫化铊、硫化镉、砷化镓光电池等。其中硅光电池由于其转换效率高、寿命长、价格便宜而应用最为广泛。 2.光电池的原理 光电池是一种特殊的半导体二极管,能将可见光转化为直流电。有的光电池还可以将红外光和紫外光转化为直流电。 最早的光电池是用掺杂的氧化硅来制作的,掺杂的目的是为了影响电子或空穴的行为。 光伏发电是利用半导体pn结(pn junction)的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池(solar cell)。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件(module),再配合上功率控制器等部件就形成了光

太阳能电池基本特性的测量(讲义)

太阳能电池基本特性的测量 太阳能的利用和太阳能电池特性研究是21世纪新型能源开发的重点课题。目前硅太阳能电池应用领域除人造卫星和宇宙飞船外,已大量用于民用领域:如太阳能汽车、太阳能游艇、太阳能收音机、太阳能计算机、太阳能乡村电站等。太阳能是一种清洁、“绿色”能源,因此,世界各国十分重视对太阳能电池的研究和利用。本实验的目的主要是探讨太阳能电池的基本特性,太阳能电池能够吸收光的能量,并将所吸收的光子能量转换为电能。 【实验目的】 1. 在没有光照时,太阳能电池主要结构为一个二极管,测量该二极管在正向偏压时的伏安 特性曲线,并求得电压和电流关系的经验公式。 2. 测量太阳能电池在光照时的输出伏安特性,作出伏安特性曲线图,从图中求得它的短路 电流(SC I )、开路电压(OC U )、最大输出功率m P 及填充因子FF , )]U I /(P FF [OC SC m ?=。填充因子是代表太阳能电池性能优劣的一个重要参数。 3. 测量太阳能电池的光照特性:测量短路电流SC I 和相对光强度0J /J 之间关系,画出SC I 与相对光强0J /J 之间的关系图;测量开路电压OC U 和相对光强度0J /J 之间的关系,画出OC U 与相对光强0J /J 之间的关系图。 【实验原理】 太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I 的关系式为: )1e (I I U o -?=β (1) (1)式中,o I 和β是常数。

由半导体理论,二极管主要是由能隙为V C E E -的半导体构成,如图1所示。C E 为半导体导电带,V E 为半导体价电带。当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。电子和空穴对会分别受到二极管之内电场的影响而产生光电流。 假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻sh R 与一个电阻s R 所组成,如图2所示。 图2中,ph I 为太阳能电池在光照时的等效电源输出电流,d I 为光照时通过太阳能电池内部二极管的电流。由基尔霍夫定律得: 0R )I I I (U IR sh d ph s =---+ (2) (2)式中,I 为太阳能电池的输出电流,U 为输出电压。由(1)式可得, d sh ph sh s I R U I )R R 1(I --=+ (3) 假定∞=sh R 和0R s =,太阳能电池可简化为图3所示电路。 这里,)1e (I I I I I U 0ph d ph --=-=β。 在短路时,0U =,sc ph I I =; 而在开路时,0I =,0)1e (I I oc U 0sc =--β; ∴]1I I ln[1U 0 sc OC +β = (4)

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

太阳能灯具安装说明书

太阳能灯具安装说明书 一、太阳能灯具工作原理 太阳能灯具利用太阳电池组件发电、蓄电池储电,控制器控制蓄电池的充放电来工作的。控制器分为光控和光控+时控两种。其工作原理如下图:白天,当阳光照射到太阳电池组件表面,太阳电池的光伏效应产生电能,通过控制器对蓄电池进行充电;夜晚,光线逐渐减弱,太阳电池的工作电压、工作电流不断下降,当工作电压小于控制器设定的电压时,控制器启动负载,此时太阳能灯点亮,当设定的时间到达或环境光线过强时,控制器自动关闭负载。 二、安装工具 每组安装人员至少应该有吊车一台,柴油发电机,支撑架一个,活口扳手 24〞两个,扳手(200×24、250×30)两把,斜口钳一把,剥线钳一把,内六角扳手一套,呆扳手一套,平口、十字螺丝刀各一把,万用表一个,电烙铁一把,指南针一个,铆钉枪,绝缘胶布、防水胶布若干,铆钉若干,手电钻一把,穿线铁丝一根,焊锡丝,热缩管,透明胶带等。 三、地点选择 尽可能的靠近安装地点,以便于运输。 四、施工车辆及灯杆的摆放位置 应确保施工道路通畅,并对过往行人及车辆进行安全警示,保证施工安全,不得影响居民正常生活。 五、地基浇注 1、确定立灯位置;勘察地质情况,如果地表 1 米 2 皆是松软土质,那么开挖深度应加深;同时要确认开挖位置以下没有其他设施(如电缆、管道等),路灯顶部没有长时间遮阳物体,否则要适当更换位置。 2、在立灯具的位置预留(开挖)符合标准的 1 米 3 坑;进行予埋件定位浇筑。预埋件放置在方坑正中, PVC穿线管一端放在预埋件正中间、另端放在蓄电池储存处(如上图所示)。注意保持预埋件、地基与原地面在同一水平面上(或螺杆顶端与原地面在同一水平面上,根据场地需要而定),有一边要与道路平行;这样方可保证灯杆竖立后端正而不偏斜。然后以 C20 混凝土浇筑固定,浇筑过程中要不停用震动棒震动,保证整体的密实性,牢固性。 3、施工完毕,及时清理定位板上残留泥渣,并以废油清洗螺栓上杂质。 4、混泥土凝固过程中,要定时浇水养护;待混凝土完全凝固(一般 72 小时以上),才能进行吊灯安装。 六、安装步骤 1、配件检查:依照装箱清单一一核对各零部件,检查是否有缺失或损坏的部件,检测控制器、光源、蓄电池等,损坏部件不允许安装。 2、灯杆组装:依据灯杆造型确定组装顺序,将下灯杆利用专用的支撑架固定,同时下面垫上柔软物品,防止划伤;组装过程中螺栓等连接件对称均匀拧紧。 3、灯杆穿线:利用穿线铁丝进行穿线,避免灯杆对电源线造成损害。灯杆内部电源线不准有接头及护套线划破现象。 4、灯具安装:首先将光源引出线连接好,接线时注意电源线的极性,一般对应颜色或者按照极性标示相接,接线头要烙铁焊接,并用热缩管绝缘。最后进行灯具的固定,确保安装牢固,无松动。根据光源的电压要求接入蓄电池,检查光源是否工作正常。 5、组件安装:将电池组件固定在电池支架上,注意安装方向,一般正面对南偏西约5 度。确保紧固件安装牢固,不能有松动现象,然后根据系统电压要求对组件接线,接线头处用焊枪焊接,套上热缩管,确保线头处绝缘,最后利用万用表检测组件输出电压,确保接线正确。

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

《太阳能电池基础与应用》太阳能电池-第四章-1

第四章 太阳电池基础 光生载流子的浓度和电流4.2太阳电池的测试技术4.4光生伏特效应34.1太阳电池的伏安特性34.34.5太阳电池的效率分析 太阳电池的性能表征4.6

太阳电池基本结构 以晶体硅太阳电池为例。 (1)以p型晶体硅半导体材料为衬底; (2)为了减少光的反射损失,常制作绒面减反结构(3)采用扩散法在硅衬底上制作重掺杂的n型层(4)PECVD生长SiO 减反层 2 (5)在n型层上面制作金属栅线,作为正面接触电极(6)在衬底背面制作金属膜,作为背面欧姆接触电极

半导体 吸收光子产生电子空穴对,电子空穴对在p-n结内建电场作用下分离,从而在p-n结两端产生电动势。 p-n结是太阳电池的核心 光生载流子形成一个与热平衡结电场方向相反的电场,使得势垒降低;光生电流与正向结电流相等时,pn结建立稳定的电势差,即光生电压 Electric Field

载流子运动的角度 太阳电池工作原理:当太阳光照射到太阳电池上并被吸收时,其中 的光子能把价带中电子激发到导带上去,形成 能量大于禁带宽度E g 自由电子,价带中留下带正电的自由空穴,即电子—空穴对,通常 称它们为光生载流子。自由电子和空穴在不停的运动中扩散到p-n结的空间电荷区,被该区的内建电场分离,电子被扫到电池的n型一例,空穴被扫到电池的p型一侧,从而在电池上下两面(两极)分别形成了正负电荷积累,产生“光生电压”,即“光伏效应”。如果在电 池的两端接上负载,在持续的太阳光照下,就会不断有电流经过负载。这就是太阳电池的基本工作原理。

能带的角度 持续光照条件下,大量的光生载流子产生,光生电子和空穴被源源不断地分别扫到n型和p型一两侧,致使n区和p区费米能级的分裂,若太阳电池断路,光生电压V即为开路电压V 。若外电路短路,pn结正向电流为 oc 零,外电路电流为短路电流,理想情况下也就是光电流。

太阳能路灯说明材料

精心整理 太阳能路灯说明书 TYN-012 目录 安装前须知事项 (8) 安装前准备 (9) 安装操作流程 (11) 安装注意 (12) 注意项目 (12) 安装顺序 (12)

安装手册 选址 (12) 地基 (12) 路灯安装 太阳能板的安装 (13) LED灯的安装 (13) 控制器的安装 (13) 蓄电池的安装 (13) 各部件接线 (14) 路灯吊装 (14) 注意事项 (14) 故障处理 (15) 太阳能路灯介绍 产品介绍 LED太阳能路灯是以太阳能作为电能供给用来提供夜间道路照明,采用高光效LED光源设计,具有亮度高、绿色环保、安装简便、工作稳定可靠、不敷设电缆、不消耗常规能源,使用寿命长等优点,特别是本品控制器采用多重节能线路设计,拥有过充、过放、反接,自动光控装置,全面提升LED发光效率,极大节约电能。本产品白天利用太阳能电池板太阳能转换成电能给蓄电池充电,晚上蓄电池放电使LED灯发光工作,属于当今社会大力提倡利用的绿色能源产品。主要应用于城市道路、小区道路、工业园区、景观亮化、旅游风景区、公园、庭院绿化带、广场、步行街、健身 休闲广场等场所。

工作原理 系统工作原理,利用光生伏特效应原理制成的太阳能电池白天太阳能电池板接收太阳辐射能并转化为电能转化为电能输出,经过充放电控制器储存在蓄电池中,夜晚当照度逐渐降低至10lux左右、太阳能电池板开路电压5V左右,充放电控制器侦测到这一电压值后动作,蓄电池对灯头放电。太阳能路灯主要由太阳能电池组件、、太阳能控制器、免维护蓄电池、LED路灯、灯杆和结构件 等组成。 太阳能路灯在晴天利用太阳光照发电,产生电能。控制器对蓄电池的过充、过放进行保护,并对光 源的开启和亮灯时间进行控制 产品质保 产品保修 非自然灾害及人为过失引起的产品质量问题,公司对整套太阳能路灯各主要部件保修如下: 蓄电池:3年 LED路灯:3年 太阳能板:3年 控制器:3年 免责条款 a.公司对因地震、洪水、雷电等自然灾害,不是因为公司的责任而发 生的火灾,第三方操作、失盗、损坏、意外事故或因在不正常情况下使用(如不正确的操作,误操作或其它问题)引起的损失不承担任何责任。 b.公司对因未遵守本使用说明书而引起的任何损失不承担任何责任。 c.公司对因与公司无关的设备结合使用而引起的故障造成的任何损失不承担任何责任。 产品构造 一.主要部件

浅谈太阳能电池的发展与应用

浅谈太阳能电池的基本原理与应用 摘要:人类面临着有限常规能源和环境破坏严重的双重压力。特别是煤、石油、天然气等不可再生能源的逐渐枯竭,能源问题已经成为制约社会经济发展的重大问题,研究新能源的开发利用已是当务之急。太阳能作为一种清洁、高效、取用不尽的能源已有尽半个世纪的发展历程。并成为当前各国争相开发利用的一种新能源。太阳能光伏发电的最核心的器件是太阳能电池,太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。为全面的了解太阳能电池的相关知识,本文通过查阅大量资料与新闻信息,综述太阳能电池的发展历程与当前应用情况。重点研究太阳能电池的工作原理,基本结构,主要类型,发展现状及趋势。 关键词:太阳能电池;基本原理;材料; 晶体硅;薄膜太阳能电池;转换效率 引言:由于人类对可再生能源的不断需求。促使人们致力于开发新型能源。太阳在40min内照射带地球表面的能量可供全球目前能源消费的速度使用1年。合理的利用好太阳能将是人类解决能源问题的长期发展战略,是其中最受瞩目的研究热点之一。在太阳能的有效利用中, 太阳能的光电利用是近些年来发展最快、最具活力的研究领域. 太阳能电池的研制和开发日益得到重视. 太阳能电池是利用光电材料吸收光能后发生的光电子转移反应而进行工作的. 根据所用材料的不同, 太阳能电池主要可分为四种类型: ( 1) 硅太阳能电池; ( 2) 多元化合物薄膜太阳能电池; ( 3) 有机物太阳能电池; ( 4) 纳米晶太阳能电池.太阳能电池以硅材料为主的主要原因是其对电池材料的要求: ( 1) 半导体材料的禁带宽度不能太宽; ( 2) 要有较高的光电转换效率; ( 3) 材料本身对环境不造成污染; ( 4) 材料便于工业化生产且材料性能稳定. 随着新材料的不断开发和相关技术的发展, 以其他材料为基础的太阳能电池也愈来愈显示出诱人的前景. 本文简要地综述了太阳能电池的原理、种类及其研究现状, 并讨论了太阳能电池的发展趋势. 1 基本原理 太阳能(Solar Energy),一般是指太阳光的辐射能量。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源。太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。 1.1 半导体的简单介绍 半导体材料指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,这种材料在某个温度范围内随温度升高而增加电荷载流子的浓度,电阻率下降。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。 1.1.1关于半导体的基本概念 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 载流子:运载电荷的粒子称为载流子,包括电子与空穴。 杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。 P型半导体:在纯净的硅晶体中掺入三

太阳能光伏发电必须掌握的基础知识

太阳能光伏发电必须掌握的基础知识 1、太阳能光伏系统的组成和原理 太阳能光伏系统由以下三部分组成: 太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。 太阳能光伏系统具有以下的特点: -没有转动部件,不产生噪音; -没有空气污染、不排放废水; -没有燃烧过程,不需要燃料; -xx 简单,维护费用低; -运行可靠性、稳定性好; -作为关键部件的太阳电池使用寿命长,晶体硅太阳电池寿命可达到25 年以上;根据需要很容易扩大发电规模。 光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类: 独立发电系统和并网发电系统。应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW 级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~ 2W的 太阳能庭院灯,大到MW 级的太阳能光伏电站,如 3.75kWp 家用型屋顶发电设 备、敦煌10MW 项目。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结 构和工作原理基本相同。图4-1 是一个典型的供应直流负载的光伏系统示意图。其中包含了光伏系统中的几个主要部件:

光伏组件方阵: 由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。 蓄电池: 将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求,它是太阳能光伏系统的储能部件。目前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。 控制器: 它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个系统的核心控制部分。随着太阳能光伏产业的发展,控制器的功能越来越强大,有将传统的控制部分、逆变器以及监测系统集成的趋势,如AES公司的SPP和SMD系列的控制器就集成了上述三种功能。 逆变器: 在太阳能光伏供电系统中,如果含有交流负载,那么就要使用逆变器设备,将太阳电池组件产生的直流电或者蓄电池释放的直流电转化为负载需要的交流电。 太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。对 于其他类型的光伏系统只是在控制机理和系统部件上根据实际的需要有所不同,下面将对不同类型的光伏系统进行详细地描述。 直流负载的光伏系统 2、光伏系统的分类与介绍 小型太阳能供电系统(Small DC ;简单直流系统(Simple DC ;大型太阳能供

太阳能电池基础知识

一,基础知识 (1)太阳能电池的发电原理 太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置. ?半导体的光电效应所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子. 光激励 核核 电子 空穴电子 电子对?PN 结合型太阳能电池 太阳能电池是由 P 型半导体和 N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子 ,当 P 型和 N 型半导体结合时在结合处会形成电势当芯 片在受光过程中,带正电的空穴往 P 型区移动,带负电子的电子往 N 型区移动,在接上连线和负载后,就形成电流.. (2)太阳能电池种类 - ++- - +P 型

铸 造 2 工 PN 结合(正面 N 极,反 面 P 极 ) 减 反膜形成 通过电极,汇集电 ※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于 其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有 广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料. 化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用. ※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时 以氧化状态的硅原料是世界上第二大的储藏物质. ※京瓷公司早在上世纪的八十年代就认识到多晶硅太阳能电池的光阔前景和美好未来,率先 开启多晶硅太阳能电池的工业化生产大门.现在已经是行业的龙头,同时多晶硅太阳能电 池也结晶类太阳能电池的主流产品(太阳能电池的 70%以上). (3)多晶硅太阳能电池的制造方法 空间用 民用 转换效率:24% 转换效率:10% 转换效率:8% (1400 度以上) 破锭(150mm *155mm ) N 极烧结 电极 印刷 ( 正 反

相关主题
文本预览
相关文档 最新文档