不规则三角网(TIN)的建立
- 格式:ppt
- 大小:1.22 MB
- 文档页数:28
GIS名词解释一建立DEM的方法之一【建立不规则三角网方法(TIN)】原理:对有限个离散点,每三个最临近点联结成三角形,每个三角形代表一个局部平面,再根据每个平面方程,计算每个网格点的高程,生成DEM。
TIN定义:将离散分布的实测数据点连成三角网,网中的每个三角形要求尽量接近等边形状,并保证由最近邻的点构成三角形,即三角形的边长之和最小。
【空间插值】常用于将离散点的测量数据转换为连续的数据曲面,它包括内插和外推两种算法。
前者是通过已知点的数据计算同一区域内其他未知点的数据,后者则是通过已知区域的数据,求未知区域的数据。
通常,在以下几种情况下要做空间插值:1、现有数据的分辨率不够,如遥感图象从一种分辨率转换到另一种分辨率。
2、现有数据的结构与所需结构不同,如将栅格数据转换到TIN数据。
3、现有数据没有完全覆盖整个区域,如只有一些离散点数据。
4、需要进行空间插值处理的原始数据包括:航片/卫片、野外测量采样数据、等值线图等。
【空间内插】定义:从已知点或分区的数据推求任意点或分区的数据的方法称为间数据的内插。
有点内插和区域内插两种。
【数字地面(形)模型】定义:描述地球表面形态多种信息空间分布的有序数值阵列,从数学的角度,可以用二维函数系列取值的有序集合来概括地表示数字地面模型的丰富内容和多样形式。
书中定义:用数字化的形式表达的地形信息。
【地理空间的特征实体】概念:地理空间实体特征是指具有形状、属性和时序特征的空间对象或地理实体。
;实体包括点、线、面、曲面和体等类型,它包括两种基本表达形式:矢量表示法、栅格表示法【E-R模型】常用的语义数据模型之一是实体--联系模型。
提供三种重要的语义概念,即实体、联系和属性。
实体: 就是对客观存在起独立作用的客体的抽象,用矩形符号表示;关系: 就是客体间有意义的相互作用或对应关系, 用菱形符号表示;属性: 对实体和联系特征的描述, 每个属性都有一个域,用椭圆表示【数据与信息的关系】数据是信息的一种表现形式,数据通过能书写的信息编码表示信息。
不规则三角网(TIN)Ⅰ 数字高程模型(DEM)地球表面高低起伏,呈现一种连续变化的曲面,这种曲面无法用平面地图来确切表示。
于是我们就利用一种全新的数字地球表面的方法——数字高程模型的方法,这种方法已被普遍广泛采用。
数字高程模型即DEM(Digital Elevation Model),是以数字形式按一定结构组织在一起,表示实际地形特征空间分布的模型,也是地形形状大小和起伏的数字描述。
DEM有三种主要的表示模型:规则格网模型,等高线模型和不规则三角网。
格网(即GRID)DEM在地形平坦的地方,存在大量的数据冗余,在不改变格网大小情况下,难以表达复杂地形的突变现象,在某些计算,如通视问题,过分强调网格的轴方向。
不规则三角网(简称TIN,即Triangulated Irregular Network)是另外一种表示数字高程模型的的方法(Peuker等,1978),它既减少了规则格网带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高线的方法。
不规则三角网能随地形起伏变化的复杂性而改变采样点的密度和决定采样点的位置,因而它能够避免地形起伏平坦时的数据冗余,又能按地形特征点如山脊,山谷线,地形变化线等表示数字高程特征。
Ⅱ TIN的基本知识在TIN中,满足最佳三角形的条件为:尽可能的保证三角形的三个角都是锐角,三角形的三条边近似相等,最小角最大化。
TIN 是基于矢量的数字地理数据的一种形式,通过将一系列折点(点)组成三角形来构建。
形成这些三角形的插值方法有很多种,例如Delaunay 三角测量法或距离排序法。
ArcGIS 支持Delaunay 三角测量方法。
TIN 的单位是英尺或米等长度单位,而不是度分秒。
当使用地理坐标系的角度坐标进行构建时,Delaunay 三角测量无效。
创建TIN 时,应使用投影坐标系(PCS)。
TIN 模型的适用范围不及栅格表面模型那么广泛,且构建和处理所需的开销更大。
获得优良源数据的成本可能会很高,并且,由于数据结构非常复杂,处理TIN 的效率要比处理栅格数据低。
[测绘]不规则点建立TIN和等高线的方法!不规则点建立TIN对于不规则分布的高程点,可以形式化地描述为平面的一个无序的点集P,点集中每个点p对应于它的高程值。
将该点集转成TIN,最常用的方法是Delaunay三角剖分方法。
生成TIN的关键是Delaunay三角网的产生算法,下面先对Delaunay三角网和它的偶图V oronoi图作简要的描述。
V oronoi图,又叫泰森多边形或Dirichlet图,它由一组连续多边形组成,多边形的边界是由连接两邻点线段的垂直平分线组成。
N个在平面上有区别的点,按照最近邻原则划分平面:每个点与它的最近邻区域相关联。
Delaunay三角形是由与相邻V oronoi多边形共享一条边的相关点连接而成的三角形。
Delaunay三角形的外接圆圆心是与三角形相关的V oronoi多边形的一个顶点。
Delaunay三角形是V oronoi图的偶图,如图所示。
此主题相关图片如下:对于给定的初始点集P,有多种三角网剖分方式,而Delaunay三角网有以下特性:1)其Delaunay三角网是唯一的;2)三角网的外边界构成了点集P的凸多边形“外壳”;3)没有任何点在三角形的外接圆内部,反之,如果一个三角网满足此条件,那么它就是Delaunay三角网。
4)如果将三角网中的每个三角形的最小角进行升序排列,则Delaunay三角网的排列得到的数值最大,从这个意义上讲,Delaunay三角网是“最接近于规则化”的三角网。
下面简要介绍Delaunay三角形产生的基本准则:Delaunay三角形产生准则的最简明的形式是:任何一个Delaunay三角形的外接圆的内部不能包含其它任何点[Delaunay 1934]。
Lawson[1972]提出了最大化最小角原则:每两个相邻的三角形构成的凸四边形的对角线,在相互交换后,六个内角的最小角不再增大。
Lawson [1977]又提出了一个局部优化过程LOP(Local Opti mization Procedure)方法。
TIN三角形的建立的算法及实现研究摘要:不规则三角网(TIN)是数字高程模型(DEM)中最基本和最重要的一种模型,它能以不同层次的分辨率来描述地形表面,可以灵活的处理特殊地形。
因此,TIN的构建和重构、基于TIN模型的等值线追踪以及对TIN模型的三维可视化都是GIS中的重要研究领域。
关键词:不规则三角网;构建不规则三角网;生长算法;TIN数据结构。
一:TIN三角网的几种算法1、分割合并算法分割合并算法的思想很简单,就是将复杂问题简单化,首先将数据点分割成易于进行三角剖分的子集,如一个子集中包括三个、四个点,然后对每个子集进行三角剖分,并用LOP算法保证三角剖分为DT三角网。
当每个子集剖分完成后,对每个子集的三角剖分进行合并,形成最终完整体三角网。
不同的实现方法可有不同的点集划分方法、子三角网生成方法及合并算法等。
分割合并算法的步骤为:1)把数据以横坐标为主、纵坐标为辅按升序进行排序。
2)如果数据集中的数据个数大于给定的阀值,则把数据域划分为个数近似相等的左右两个子集并对每个子集做如下工作:(1)计算每一个子集的凸壳。
(2)以凸壳为数据边界,对每一数据域进行三角剖分,并用LOP进行优化,使之成为DT三角剖分;(3)找到链接左右子集两个凸壳的底线和顶线;(4)由底线到顶线,合并两个子三角网。
3)如果数据小于阀值,则直接输出三角剖分结果。
在第一步中,主要工作是对数据点进行排序,目的是使三角网不互相重叠和交叉。
一般以横坐标为主、纵坐标为辅按升序排列。
第二步是该算法的主体,包括连续分割、凸壳生凸壳三角剖分、子网合并等内容,集中体现了该算法的基本思想,即分割(数据点分割),合并(子三角网合并)。
数据点分割:是以递归的方式将数据点划分成大小相同的子集,一般要求每一个子集能采用同样的算法进行处理。
在三角网剖分情况下,规范化子集包含至少三个点但不高于六个点(数据分割阀值)。
当数据以横坐标为主排序后,递归划分的结果是垂直于横轴的连续条带。
不规则三角网(TIN)Ⅰ数字高程模型(DEM)地球表面高低起伏,呈现一种连续变化的曲面,这种曲面无法用平面地图来确切表示。
于是我们就利用一种全新的数字地球表面的方法——数字高程模型的方法,这种方法已被普遍广泛采用。
数字高程模型即DEM(Digital Elevation Model),是以数字形式按一定结构组织在一起,表示实际地形特征空间分布的模型,也是地形形状大小和起伏的数字描述。
DEM有三种主要的表示模型:规则格网模型,等高线模型和不规则三角网。
格网(即GRID)DEM在地形平坦的地方,存在大量的数据冗余,在不改变格网大小情况下,难以表达复杂地形的突变现象,在某些计算,如通视问题,过分强调网格的轴方向。
不规则三角网(简称TIN,即Triangulated Irregular Network)是另外一种表示数字高程模型的的方法(Peuker等,1978),它既减少了规则格网带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高线的方法。
不规则三角网能随地形起伏变化的复杂性而改变采样点的密度和决定采样点的位置,因而它能够避免地形起伏平坦时的数据冗余,又能按地形特征点如山脊,山谷线,地形变化线等表示数字高程特征。
Ⅱ TIN的基本知识在TIN中,满足最佳三角形的条件为:尽可能的保证三角形的三个角都是锐角,三角形的三条边近似相等,最小角最大化。
TIN 是基于矢量的数字地理数据的一种形式,通过将一系列折点(点)组成三角形来构建。
形成这些三角形的插值方法有很多种,例如 Delaunay 三角测量法或距离排序法。
ArcGIS 支持 Delaunay 三角测量方法。
TIN 的单位是英尺或米等长度单位,而不是度分秒。
当使用地理坐标系的角度坐标进行构建时,Delaunay 三角测量无效。
创建TIN 时,应使用投影坐标系(PCS)。
TIN 模型的适用范围不及栅格表面模型那么广泛,且构建和处理所需的开销更大。
不规则三角网(TIN)生成的算法第五章不规则三角网(TIN)生成的算法在第四章,基于三角网和格网的建模方法使用较多,被认为是两种基本的建模方法。
三角网被视为最基本的一种网络,它既可适应规则分布数据,也可适应不规则分布数据,即可通过对三角网的内插生成规则格网网络,也可根据三角网直接建立连续或光滑表面模型。
在第四章中同时也介绍了Delaunay 三角网的基本概念及其产生原理,并将三角网构网算法归纳为两大类:即静态三角网和动态三角网。
由于增量式动态构网方法在形成Delaunay 三角网的同时具有很高的计算效率而被普遍采用。
本章主要介绍静态方法中典型的三角网生长算法和动态方法中的数据点逐点插入算法;同时,还将给出考虑地形特征线和其他约束线段的插入算法。
而其他非Delaunay 三角网算法如辐射扫描法Radial Sweep Algorigthm(Mirante & Weingarten, 1982)等本文将不再介绍。
5.1 三角网生长法5.1.1 递归生长法递归生长算法的基本过程为如图 5.1.1 所示:3 213 21(a)形成第一个三角形(b) 扩展生成第二个和第三个三角形图5.1.1 递归生长法构建 Delaunay 三角网(1)在所有数据中取任意一点1(一般从几何中心附近开始),查找1距离此点最近的点 2,相连后作为初始基线 1-2;(2)在初始基线右边应用 Delaunay 法则搜寻第三点 3,形成第一个Delaunay 三角形;(3)并以此三角形的两条新边(2-3,3-1)作为新的初始基线;(4)重复步骤(2)和(3)直至所有数据点处理完毕。
该算法主要的工作是在大量数据点中搜寻给定基线符合要求的邻域点。
一种比较简单的搜索方法是通过计算三角形外接圆的圆心和半径来完成对邻域点的搜索。
为减少搜索时间,还可以预先将数据按 X 或 Y 坐标分块并进行排序。
使用外接圆的搜索方法限定了基线的待选邻域点,因而降低了用于搜寻Delaunay 三角网的计算时间。
第一章绪论1.1研究背景地球是人类生活和活动的承载体。
多年以来,我们为了更充分的认识自然客体和改造自然,总在不懈的努力尝试用不同的方式方法来描述、表达人所处的环境,其中地形图就是一个有代表性的测绘表述变迁的缩影。
从最开始的象形符号抽象的雏形到后来的在二维介质上对三维表面进行地形写景图,地貌写景图等描述是一个进步,但写景方式不具备可量测性,所以还是很局限的。
随着测绘技术发展,地形的表达也由写景式的定性表达过渡到了以等高线为主的矢量化表达。
航空摄影测量,遥感技术提供的影响都在对三维现实世界的模拟。
但是有一个矛盾体,那就是对于地形表面形态而言,一方面我们尽可能的从几何角度去理解和描述以解决实际应用中的可量测性;另外一个方面它本身是一种三维景观现象,对于其表述要考虑生理视觉感受,我们总是希望能够尽可能的直观形象逼真。
从20世纪四十年代开始的计算机图形学、计算机辅助制图等相关学科和理论的发展,使得在测绘领域,在图形表达表述方面发生了从模拟表达时代走向了数字表达时代,有了质的飞跃。
其中地理信息系统(GIS )及数字高程模型(DEM )学科或技术显得尤为重要。
地理信息系统,简称GIS (Geographical Information System ),它源于20世纪60年代初期加拿大测量学家Tomlinson 的“把地图变成数字形式的地图,以便计算机进行处理与分析”的观点,但是在技术工具处理中,则是利用计算机存贮、处理地理信息,并且在计算机软、硬件支持下,把各种资源信息和环境参数按空间分布或地理坐标,以一定的格式或者分类输入、处理、存贮、输出,用以满足其应用需要的人机交互系统。
因此GIS 的本质是在二维地理空间基础上实现对地下、地表和空中诸地理信息的数字化表达和管理。
当然地理信息系统技术发展到当前,功能不再是当初的局限于查询、检索和制图,而是丰富到空间分析、建模、决策等诸多方面,在数据管理上则从简单的栅格数据、矢量数据管理转向多元数据融合,在现实生活中应用的很活跃,也很充分。