北航研究生矩阵论课后参考答案
- 格式:doc
- 大小:857.00 KB
- 文档页数:32
姓名:学号:
1.(42分)填空
(1)设是R4的⼀一
组基,则在上述基下的坐标是___________________. ()
(2)在三次多项式空间中,由多项式组
张成的⼦子空间维数是___2___.(3)设矩阵,当参数a满⾜足_______()时,矩阵A与B相似.
(4)A=,则A的全部盖尔圆为_______________________________,且A是⼀一个________(可逆或者不不可逆)矩阵.
(5)设,则矩阵A的正奇异值有______个,_____(是或否)存在矩阵B使得BA=I n.
(6)矩阵幂级数=__________________。
(7)设,则A的Jordan标准形J=。
(8)设,则A+=________________。
(9)若=__4__,的迹=__2sin1__.
(10)设,则||A||1=_6___,||A||F=____. 2.(15分)设A=,求A的奇异值分解.
解:,则
,
对,求得
对,求得
分别单位化为;令
⽽而,补充基为
令所以
3.(10分)设并且A是正交矩阵,证明A的每个特征值的模等于1.课本P51推论2
证明:设,共轭转置得所以
即
4.(18分)已知A=,b=.(1)求A的满秩分解,并⽤用满
秩分解求.(2)判断⽅方程组Ax=b是否有解.(3)求Ax=b的极⼩小范数解或极⼩小最⼩小⼆二乘解.
解:(1)
(2)
(3)
(4)
5.(15分)设,求.
解:,因为所以最⼩小多项式为,设.有:。
一(15分)计算 (1) 已知A 可逆,求10d Ate t ⎰(用矩阵A 或其逆矩阵表示); (2)设1234(,,,)Ta a a a =α是给定的常向量,42)(⨯=ij x X 是矩阵变量,求Td()d X αX ;(3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求kk A A ⎪⎪⎭⎫⎝⎛∞→)(lim ρ。
二(15分)设微分方程组d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,508316203A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭,0111x ⎛⎫ ⎪= ⎪ ⎪⎝⎭(1)求A 的最小多项式)(λA m ; (3)求Ate ; (3)求该方程组的解。
三(15分)对下面矛盾方程组b Ax =312312111x x x x x x =⎧⎪++=⎨⎪+=⎩ (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ;(3)求该方程组的最小2-范数最小二乘解LS x 。
四(10分)设1113A ⎫=⎪⎭求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。
五(10分) 设(0,,2)TnA R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2()tr()m A λλλ=-;(2)求A 的Jordan 形(需要讨论)。
六(10分)设m n r A R ⨯∈,(1)证明rank()n I A A n r +-=-;(2)0Ax =的通解是(),n n x I A A y y R +=-∀∈。
七(10分)证明矩阵2121212311122222224333333644421(1)(1)n n n n n n n n n n ---⎛⎫ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪+++⎝⎭A (1)能与对角矩阵相似;(2)特征值全为实数。
八(15分) 设A 是可逆矩阵,11,B A Aαβ-=-=(这里矩阵范数都是算子范数), 如果βα<,证明(1)B 是可逆矩阵;(2)11B αβ-≤-;(3)11()B A βααβ---≤-。
2021.1.11北京航空航天大学矩阵理论2班试题(带答案) 姓名: 学号:一.(10分)判断与选择 1. 设A=()ij n n a ⨯的特征值是1,,n λλ,则221,1||||.nnk ijk i j aλ==≤∑∑ ( √ )2. ||•是矩阵范数,I 是单位矩阵,则有可能|I|<1. ( × )3. 设n A C n ⨯∈满足2A =A ,则()()tr A r A =. ( √ )4. 若齐次线性方程组A =0(A C ,C )m n n x x ⨯∈∈其中有唯一解,则H A A 是正定矩阵. ( √ )5. 设120A=,=003a B b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,张量积A B ⊗的全部特征值是2,3a b . ( × )6. 设A 是Hermite 幂等矩阵,则A +=A. ( √ )7. 若0H A AX =,则有可能0AX ≠ ( × )8. 若B 是列满秩(高阵), C 是行满秩, 则1()+-=H H B B B B 且+H H -1C =C (CC ) ( √ )9. 正确的张量积公式为__(a)___ (a)H H H ()A B A B ⊗=⊗;(b) H H H ()B A A B ⊗=⊗10. 齐次方程0AX =通解公式为:__(a)__ (a) X ()Y I A A -=-; (b) X ()Y I AA -=-二.(39分)填空1.若A BC =是满秩分解(高低分解),则A C B +++=,也即()BC C B +++-= 0 .2. 若2阶方阵A 的特征多项式21x x =++,则2A A I ++= 0 .3. 设111561011A=0841111065⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭,则lim kk A →∞=__0___,矩阵幂级数1k k A ∞=∑___收敛____。
(填“收敛”或者“发散”)4. A 是n 阶方阵, 则行列式()det()A tr A e e =,且A A e e -= I .5. 已知0t -t001cos sin , =-10-sin cos tA t t A e et t ⎛⎫⎪⎝⎭⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 则2=tA e cos2sin 2-sin 2cos2t t t t ⎛⎫ ⎪⎝⎭. 6. 设A 为方阵,且1||A ||1<. 则220()k k I A A ∞=⎛⎫-= ⎪⎝⎭∑ I .7.设A 是n 阶可逆矩阵,O 是n 阶零矩阵,则O A O O ⎛⎫ ⎪⎝⎭的伪逆是___-1O O O A ⎛⎫⎪⎝⎭____。
第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。
(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。
(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。
第一章第一章第6题实数域R 上的全体n 阶对称(反对称)矩阵,对矩阵的加法和数量乘法。
解:实数域R 上的全体n 阶矩阵,对矩阵的加法和数量乘法构成R 上的线性空间nn R ⨯,记{}{}A A R A A W A A R A A V T n n T n n -=∈==∈=⨯⨯,/;,/ 以为,对任意的,,,,B B A A V B A T T ==∈则(),B A B A T+=+即V B A ∈+,所以V 对加法运算是封闭的;对任意的A A R k V A T =∈∈,,,则(),,V kA kA kA T∈=即所以V 对数乘运算封闭;所以,V 是nn R⨯的一个线性子空间,故V 构成实数域R 上的一个线性空间。
同理可证,W 也是一个线性空间。
P41第一章第8题(参考P10例题 1.2.5) 证明:存在1k ,2k ,3k ,4k 使得112233440k k k k αααα+++=即11111k ⎡⎤⎢⎥⎣⎦+21101k ⎡⎤⎢⎥⎣⎦+31110k ⎡⎤⎢⎥⎣⎦+41011k ⎡⎤⎢⎥⎣⎦=0 解12341231341240000k k k k k k k k k k k k k +++=⎧⎪++=⎪⎨++=⎪⎪++=⎩ 得12340k k k k ====所以1α,2α,3α,4α线性无关P42第1章第12题解:因为A=x 1α1+x 2α2+x33α+x 4α4即x 1+x 2+x 3+x 4=1x 1+x 2+x 3=2x 1+x 3+x 4=-2x 1+x 2+x 4=0⇒x 1=-2x2=3x 3=1 x 4=-1所以A 的坐标为[x 1,x 2,x 3,x 4]T=[-2,3,1,-1]TP42第一章第13题 答案 f(x)=3+1-n 2x( 泰勒展开))(f x '=2(n-1)2-n x(x)f ''=2(n-1)(n-2)3-n x …… )1(f -n (x)=2(n-1)! )(f n (x)=0f(1)=5 )1(f '=2(n-1) (1)f ''=2(n-1)(n-2) …… )1(f -n (1)=2(n-1)!f(x)=f(1)+ )1(f '(x-1)+!21(1)f ''2)1(-x +……+)!1(1-n )1(f -n (1)1)1(--n x =5+2(n-1)(n-2)+!2)2)(1(2--n n 2)1(-x +……+)!1()1(2--n n !1)1(--n x=5+211-n C (x-1)+221-n C 2)1(-x +……+211--n n C 1)1(--n x取f(x)=3+1-n 2x在基1, (x-1), 2)1(-x , ……,1)1(--n x 下的坐标为(5 , 211-n C , 221-n C ,…… , 211--n n C T)教材P42习题14:求基T)0,0,0,1(1=α,T)0,0,1,0(2=α,T )0,1,0,0(3=α,T)1,0,0,0(4=α,到基T )1,1,1,2(1-=β,T )0,1,3,0(2=β,T )1,2,3,5(3=β,T )3,1,6,6(4=β的过度矩阵,确定向量T x x x x ),,,(4321=ξ在基1β,2β,3β,4β,下的坐标,并求一非零向量,使它在这两组基下的坐标相同。
矩阵论课后参考答案:第1章 线性代数引论习题1.12(1)解:由定义知n m C n m ⋅=⨯)dim(故可知其基为n m ⋅个n m ⨯阶矩阵,简单基记为在矩阵上的某一元素位置上为1,其他元素为0 ,如下⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000000001 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00000010000(2)解:对约束A A T =分析可知,其为一个上下对称的矩阵(对称阵),则其维数为2)1(1)1()dim(+=++-+=n n n n V 其基为2)1(+n n 个n n ⨯阶的矩阵,故基可写为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000001,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000010010 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10000000000(3)解:同上理,对A A T -=分析可知其为一个上下成负对称的矩阵,且对角元全为0,则其维数为 2)1(2)1)1)((1(1)2()1()dim(-=+--=++-+-=n n n n n n V其基为2)1(-n n 个n n ⨯阶的矩阵,故基可写为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-0000000000010010 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-000000010000010, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-01100000000000003解:由题可得},,,{212121ββααspan W W =+ 不难看出其秩为3,则3)dim(21=+W W 设21W W x ∈,则存在2121,,,l l k k 有 22112211ββααl l k k x +=+=则 ⎪⎩⎪⎨⎧=--=-+=+++=---0703020221222121212121l l k l k k l l k k l l k k ,故有⎪⎩⎪⎨⎧-==-=21222134l l l k l k 即)4,3,2,5()4(21222211-=-=+=l l k k x αααα 所以1)dim(21=W W 8(先补充定理:定理:设n 元齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则齐次线性方程组的基础解析存在,并且基础解系所含线性无关的解向量的个数等于r n -)证:1)对任意的21V V B ∈,则有0=AB 且0)(=-B I A 成立,故0=B 所以{0}21=V V 。
习题 1.21. 解:因为对2的任一向量(21,x x),按对应规则都有2中惟一确定的向量与之对应,所以是2的一个变换.(1) 关于x 轴的对称变换; (2) 关于y 轴的对称变换; (3) 关于原点的对称变换; (4) 到x 轴的投影变换; (5) 到y 轴的投影变换.2. 解: (1) 不是.因为(2211ααk k +)=2211ααk k ++β≠k1(1α)+k2)()()(22112βαβαα+++=k k=2211ααk k ++)(21k k +β(2) 不是.因为(2211ααk k +)=β≠k1(1α)+k2βα)()(212k k +=(3) 不是.因为取 x =(1 , 0 , 0 ) ,1≠k 时,(k x )=(k 2,0, 0)≠k( x )= k (1, 0, 0)=(k , 0, 0) (4) 是.因为 设x =(321,,x x x ) ,y =(321,,y y y)(k 1x +k 2y )=112(x k),,2(),,1322121322y y y y y k x x x x +-++-=k1(x )+k 2( y )(5) 是.因为()()(2211x f k x f k+)=)1()1(2211+++x f k x f k=k1(f 1(x ))+k2))((2x f(6) 是.因为()()(2211x f k x f k+)=)()(022011x f k x f k+= k1(f 1(x ))+k2))((2x f(7) 不是.因为 设x =(321,,x x x) ,y =(321,,y y y)(k 1x +k 2y )= ()0),sin(),cos(22211211y k x k y k x k ++≠k 1(x )+k2( y )=)0,sin ,(cos )0,sin ,(cos 212211y y k x x k+ =()0,sin sin ,cos cos 22211211y k x k y k x k++.3. 解:1(α+β)=1[()]()11222221,,y x y x y x y x--+=++()()=-+-=1212,,y y x x 1(α)+1(β)1(k α)=1(k (x 1, x 2))()()kx x k kx kx=-=-=1212,,1(α)所以1是线性变换.同理可证2也是线性变换.(1+2)(α)= (1+2)[(x 1, x 2)]=1[(x 1, x 2)]+2[(x 1, x 2)]),(),(),(21212112x x x x x x x x --+=-+-=12(α)=1[2(α)]=1[( x 1, -x 2)]=(- x 2, -x 1)21(α)=2[1(α)]=2[( x 2, -x 1)]=( x 2, x 1) .4. 证:(1)因()()()C B A B A C B A +-+=+()()=-+-=BCCBACCA (A )+(B )()()()()=-=-=ACCA k C kA kA C kA k(A )故是线性变换.(2)(A )B +A (B )()()BC CB A B AC CA -+-==-=ABC CAB (AB )5. 解:令 ()3,,R c b a c c b a a ∈↔⎥⎦⎤⎢⎣⎡+ 即可.6. 证:设()[]nx p x f ∈,则(12-21)(f(x))=1[2(f(x))]-2[1(f(x))]=1[xf(x)]-2[f(x)]()()()()x f x f x x f x x f ='-'+=故12-21是恒等变换.7. 证:设2V∈α,则2211e k e k +=α,由于2(e 1)+ 2(e 2)=2(e 1+e 2)=e '1+e '22(e 1)-2(e 2)=2(e 1-e 2)=e '1-e '2所以,2(e 1)=e '1,2(e 2)= e '2于是1(α)=k11(e 1)+k21(e 2)2211e k e k'+'== k12(e 1)+k22(e 2)=2(α)故1=2.8. 解:(1) 因为j i ,在xoy 平面上,其投影不变,故有(i )=i ,(j)=j ,又k 垂直xoy 平面,则0)(=k , 得((i ),(j ),(k ))=(i ,j ,k ) 0010001所求矩阵为A =010001.(2) 因为,001)(γβαα++==i,010)(γβαβ++==j ,,011)(γβαγ++=+=j i所以, 所求矩阵为 A =110101 .(3) 由的定义知,(i )=((1 ,0 ,0 ))= ( 2 ,0 ,1)(j )= ((0 ,1, 0 ))= ( -1, 1 , 0)(k )=((0 ,0 ,1))= ( 0 ,1 , 0)有 ((i ),(j ),(k ))=(),,k j i1110012-所求矩阵为 A =1110012- .(4) 据题设:)())(('t f t f = 则)(1x =(bt eatcos )'=btbebt aeatatsin cos -=21bx ax-)(2x =(bteatsin )'=12bx ax +)(3x =( btteatcos )'=431bx ax x-+ )(4x =(btte atsin )'=342bx ax x++ )(5x =(bte t atcos 212)'=653bx ax x-+)(6x = (btt sin 212)'=564bx ax x++于是 ()(1x ,)(2x ,)(3x ,)(4x ,)(5x ,)(6x )()Dx x x x x x 654321,,,,,= ,所求矩阵为D =abb a a bbaa bba ---000010000100001000019. 解:(1) (123,,e e e)=(321,,e e e )1010100=(321,,e e e)C所求矩阵为 B=C 1-AC =111213212223313233a a a a a a a a a(2) (321,,e ke e)=(321,,e e e )100001k =(321,,e e e)C所求矩阵为B=C1-AC =333231232221131211akaakaakaakaa(3)(3221,,eeee+)=(321,,eee)1111=(321,,eee)C 所求矩阵为B=C1-AC=33323231132312221211222113121211aaaaaaaaaaaaaaaa+----++10. 解:由定义知()()31121,0,2εεε+==212)0,1,1()(εεε+-=-=()()23,1,0εε==所以,所求矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-11112.11. 解:因为()()21121,2εεε'+'==()()1231,3εε'==()()2131,1εεε'+'-=-=所以,所求矩阵为⎥⎦⎤⎢⎣⎡-11132.12. 解: (1η,2η,3η)=(321,,εεε)111101011--(321,,εεε)=(1η,2η,3η)111101011--1-= (1η,2η,3η) CB=C 1-AC =111101011--21011101-111101011-- 1-= 12121211---- .13. 解:(1) (1η,2η,3η) = (321,,e e e) C ,过渡矩阵为C=(321,,e e e)1-(1η,2η,3η)=11110121 1-111122221---- =252112323123232---(2) ()(1e ,)(2e ,)(3e )=(1η,2η,3η) = (321,,e e e) C故在基{}ie 下的矩阵就是 C . (3) (()1η,(2η),(3η) ) = (1η,2η,3η) = (321,,e e e) C=()(1e ,)(2e ,)(3e ) C = (1η,2η,3η) C故在基{}iη下的矩阵仍为C . 14. 解:(1) 由于()21111110cE aE c aE +=⎥⎦⎤⎢⎣⎡=()22121210cE aE c a E +=⎥⎦⎤⎢⎣⎡=()211121100dE bE db E +=⎥⎦⎤⎢⎣⎡=()2212221dE bE d b E +=⎥⎦⎤⎢⎣⎡=故1在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=d cd c b a b a A 00000001类似地,可得2在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=d bc ad bc a A 00000002.由于3=12,所以3在该基下的矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==2222213d bdcdbccd ad cac bd bad abbc ab ac a A A A同理,可得4在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a ca cb a b aA 0200022000204(2)由于由简单基E 11,E 12,E 21,E 22改变为给定基E 1,E 2,E 3,E 4的过渡矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=001110011000001C于是,4在给定基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==-a bca b c cc a b b a C A C B 002202204115. 解: (1)将题给关系式写成矩阵形式为(()1e ,(2e ),(3e ) )()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11011101,,423312121321εεε即()()()B e e e 3211321321,42331212111011101,,,,εεεεεε=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-由于()()C e e e 321321,,,,=εεε,所以有(=),,321εεε()()BCC e e e 321321,,,,εεε=故在基(II )下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==256355123BC A(2)因为(=)1ε()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001,,001,,321321A εεεεεε()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=953,,001,,321321e e e CA e e e所以()1ε在基(I )下的坐标为(3,5,9).16. 解:(1)取[]2x p 的简单基1,x ,x 2,则有()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==101110102,,1,,1,,22321xx Axx f f f从简单基改变到基f 1,f 2,f 3和g 1,g 2,g 3的过渡阵分别为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5222101011C ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=211010112C故有(g 1, g 2, g 3)=(1, x, x 2)C =()211321,,C C f f f -()()21101232121102,,,,1C C A C g g g C C Axx ---==即在基(II )下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==--11211221211012C C A C A(2)因为()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-321,,321,,1123212C g g g xx x f()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=032,,321g g g所以(f(x))=()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-032,,032,,321321A g g g g g g()23211354,,x x g g g +--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-= .17. 证:设在给定基下的矩阵为()ija A =,并设C 为从旧基到新基的过渡矩阵,由于在任一组基下的矩阵相同,则有ACCA 1-=,即AC=CA ,根据“A 与一切满秩矩阵可变换”性质,即可定出A 必为数量矩阵()常数k kI A ,=.18. 解:由基321,,ηηη到基321,,εεε的过渡矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=3103161213121211C故{}i ε在基下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==-46846453106111C B C B .那么,+,,, (+ )在基{}iε下的矩阵分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+2644241011151061B A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=60127212212661AB ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=123414026215291361BA ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=+3612078611442549675181B A B .19. 证:设有可逆方阵P 与Q ,使 B=P 1-AP , D=Q 1-CQ 则DB OO =CQQAPP11--O O=11--OO QPCA OOQP O=QP OO 1-CA OOQP OO即 CA OO 与 DB OO 相似.20. 证:设1r rankA=,2r rankB =,则A ,B 的行向量的极大无关组中分别含有21,r r 个行向量,设分别为11,,r αα 和21,,r ββ ,则A 的每个行向量均可由11,,r αα线性表示,B的每个行向量均可由21,,r ββ线性表示.又可A+B 的每个行向量是A 与B 的相应行向量的和,故A+B 的每个行向量均可由11,,r αα,21,,r ββ 线性表示.因此A+B 的行向量组的极大无关组中所含向量的个数不超过21r r+,即()rankBrankA B A rank+≤+.21. 证:设()n B r rankAβββ,,,,21 ==,则()()0,,,,,,2121===n n A A A A AB ββββββ ,所以θβ=1A ,θβ=2A ,…,θβ=n A .这就说明B 的列向量nβββ,,,21 都是以A 为系数矩阵的齐次方程组的解.由于rr a n k A =,所以解空间的维数为r n -,从而知nββ,,1的极大无关组所含向量的个数rn -≤,即rn rankB-≤,因此有nr n r rankB rankA =-+≤+ .22. 证:设A ,B 为同一数域上的n m ⨯与g n ⨯阶矩阵,显然,方程组BX=θ的解向量X 也满足方程组()θ=XAB ,记{}θ==BX X U , (){}θ==XAB XV则VU⊂,于是dinV AB rank n rankB n U =-≤-=)(dim即()rankBAB rank ≤.又由于()()()TT TAB rank AB rankAB rank ==rankArankAT=≤因此 (){}r a n k B r a n k AAB rank,min ≤.23. 证:由上题知,()rankAA A rank T≤,现在只需证明()rankAA A rank T≥即可.考虑线性方程组θ=AX A T,设()T nx x x X,,,21 =是方程组的一组解,将θ=AX A T两边左乘X T ,得θ=AX A XTT,即()θ=AX AX T,所以θ=AX,即{}{}00=⊂=AX X AX A XT.于是()rankAn A Arankn T-≤-即有()rankAA Arank T≤,故有()rankAA Arank T= ,并且有()()rankArankA A A rankA ArankTTTT T===即有()()TTAA rankA ArankrankA==.注:对复矩阵A ,上式不一定成立.例如⎥⎦⎤⎢⎣⎡-=11ii A ,1=rankA .由于⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=00001111i i i i A AT故()=A Arank T.此时,相应的关系式应为()()A A rankAA rankrankA **== .24. 证:必要性.由上题已证得,充分性只要在AX=θ两边左乘A T 即可.25. 证:(1)因为nrankA=,故nm≥,不妨设A 的前n 行线性无关,且构成的n 阶满秩方阵为A 1,后n m -行构成的矩阵为A 2,则⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=B A B A B A A AB 2121所以()()rankBB A rankAB rank =≥1,但()r a n k B AB rank ≤,故()r a n k BAB rank =.(2) 同理可证. 26. 解:(1)⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡--=0011B ;(2)⎥⎦⎤⎢⎣⎡=0001A , ⎥⎦⎤⎢⎣⎡=0020B ; (3)⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B .27. 证:因为()()()n m rankBrankA AB rankrankC,min ,min ≤≤=,但n m >,故m 阶方阵C 的秩mn <≤,所以C 是降秩的.28. 解:先求矩阵A 的特征值和特征向量为 121==λλ,()T20,6,31-=α23-=λ,()T1,0,02=α故的特征值和特征向量为121==λλ,()3212063e e ek +-,0≠k23-=λ,3ke , 0≠k .29. 解:(1)121==λλ,()T1,0,11=α,()T0,1,02=α,13-=λ,()T1,0,13-=α.(2)1=λ,()T2,1,31-=α,i143,2±=λ,().10,1432,1463,2Ti i -±-±=α(3)121==λλ,()T20,6,31-=α,23-=λ,()T1,0,02=α;(4)2321===λλλ,()T0,0,1,11=α,()T0,1,0,12=α,()T1,0,0,13=α,24-=λ,()T1,1,1,14---=α.以上分别求出了在不同基下所对应矩阵A 的特征值和特征向量,则类似于上题的方法,可求出不同基下所对应的特征值和特征向量.30. 解:(1),(2),(4)为非亏损矩阵(单纯矩阵),其变换矩阵P 分别为(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010101;(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+---+101021432143211461463i ii i;(4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---11101010011111.31. 证 : 设在给定基下的矩阵为A ,则()n i A i ni i ,,2,100det 1=≠⇔≠=∏=λλ32. 证:设rrankA =,则存在满秩矩阵P 与Q ,使得()0,r I diagPAQ =,故有()C I diagBPPAQQPABPr 0,111==---其中()ijC BQQC==--11, 这说明AB 与diag (0,rI)相似.另一方面,有()0,111r I C d i a g P A Q BPQBAQ Q==---,说明BA 与()0,r I Cdiag相似.不难验证有()()()()0,det 0,det r r I CdigI C I diagI -=-λλ故AB 与BA 有相同的特征多项式,因此有相同的特征值和迹.33. 证:设A 的任一特征值为λ,λ的对应于λ的特征子空间记为λV .对λV 中任意向量Z 有BZZ B BAZ ABZ λλ===故λV BZ ∈,因此λV 为线性变换()BZZ =的不变子空间,即()BZZ =为λV 中的线性变换,此线性变换的特征向量即为B 的特征向量,但它又属于λV ,由λV 的定义知它又是A 的特征向量,即A 与B 有公共的特征向量.34. 证:设A 的特征值为iλ,则A 2的特征值为2iλ,由12=iλ有1±=i λ,若所有1=i λ,则A+I 为满秩矩阵,故由(A+I )(A-I )=A 2-I 2=0,有A=I .35. 证:不失一般性,设B 非奇异,有AB=B -1(BA )B 即AB 与BA 相似,所以它们有相同的特征多项式.36. 证:设A 为n 阶方阵,具其秩为r ,由于A 2=A ,知A 的列向量都是A 的对应于特征值1的特征向量.因γ=rankA ,故特征值1的几何重复度为r ,其代数重复度至少为r .又θ=AX的基础解系中的向量个数为r n -,即A 的特征值0的几何重复度为r n -,其代数重复度不小于r n -.由于一个n 阶矩阵的特征值的代数重复度之和恰为n ,故特征值1和0的代数重复度分别为r 和r n -.可见A 除了1和0外无其它特征值,而1和0的几何重复度之和为n ,故A 为非亏损矩阵,所以A 相似()0,rIdiag .37. 证:用反证法.若A 可相似于对角矩阵,对角元素即为A 的特征值,且至少有一个不为0.但是,由于λαα=A ,于是θαλα==kkA,因为θα≠,所以0=kλ,故0=λ,即A 的特征值都等于0,矛盾.38. 证:由XAX λ=,有()Xk kX A λ=,XX A kk λ=,从而有()()Xf X A f λ=,即X 也是()A f 的特征向量.显然()A f 的特征值为()λf ,即为λ的多项式.39. 解:取3中的自然基321,,εεε,计算得(1ε)=(0 , -2 ,-2 ) , (2ε)=(-2 , 3 ,-1 ) , (3ε)=(-2 , -1 ,3 )则在基321,,εεε下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=31213222A而A的特征值为2,4321-===λλλ,与之对应的特征向量为()TX0,2,11-=,()TX2,0,12-=,()TX1,1,23=,则有()2,4,41-=Λ=-diagACC,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=112211C.由()321,,ααα=(321,,εεε)C求得3R的另一组基为()0,2,12211-=+-=εεα,()2,0,12312-=+-=εεα,()1,1,223213=++=εεεα,显然在该基下的矩阵为对角阵Λ.40. 解:(1)因为()21xx+=,()21xx+=,()xx+=12,所以在基1,x,x2下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111A.(2)由于A原特征值为121-==λλ,23=λ,相应的特征向量为()TX01,11-=,()TX1,12-=,()TX11,13=,存在可逆阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111111C,使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==-2111AACC,故所求的基321,,eee为()()()2223211,1,1,,1,,xxxxCxxeee+++-+-==.41. 解:(1)对任意的V∈βα,及Rlk∈,,有()()()()()BBlBBkBlklkBlkTTTTTTββααβαβαβα-+-=+-+=+=k ((α))+l ((β))故是线性变换.(2)取V的简单基⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=1,1,11321AAA由于(),111⎥⎦⎤⎢⎣⎡-=A⎥⎦⎤⎢⎣⎡-=11)(2A,⎥⎦⎤⎢⎣⎡-=11)(3A,所以在基321,,AAA下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111111RR的特征值为2,0321===λλλ,对应的线性无关的特征向量为(1,1,0)T,(0,1,1)T,(0,1,-1)T,令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111111C,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ2则有Λ=-RCC1,由(B1,B2,B3)=(A1,A2,A3)C求得V的另一组基为⎥⎦⎤⎢⎣⎡-=+=111211AAB,⎥⎦⎤⎢⎣⎡=+=11322AAB,⎥⎦⎤⎢⎣⎡-=-=11323AAB,在该基下的矩阵为Λ.42. 证:(1)取n的一组基neee,,,21,设1(neee,,,21)=(n eee,,,21)A2(neee,,,21)=(n eee,,,21)B则有 (12)(n e e e ,,,21)=(n e e e ,,,21)(AB )(1+2)(ne e e,,,21)=(ne e e,,,21)(A+B )由12=1+2,可得AB=A+B ,从而有B T A T =A T +B T .若1是1的特征值,则 1也是A 的特征值,从而1也是A T 的特征值,设A T 对应于特征值1的特征向量为β,即()0≠=βββTA,由(B T A T )β=(A T +B T )β,可得B T β=β+B T β,即β=0,这与β是A T 的特征向量矛盾,故1不是1的特征值.(2)因1有几个不同的特征值,所以1有n 个线性无关的特征向量.记1的对应于特征值nλλλ,,,21的线性无关的特征向量为X 1,X 2,…,X n ,即1ii iXXλ= (i =1,2,…,n ),则X 1,X 2,…,X n 作为n的基时,1的矩阵A =diag (nλλλ,,,21).再由AB=A+B 及1≠iλ知 ()⎪⎪⎭⎫ ⎝⎛---=-=-1,,1,122111n n d i a g A I A B λλλλλλ 即1与2在该基X 1,X 2,…,X n 下的矩阵都为对角阵.43. 证:对任意0λαV ∈,有1(αλα0)∈.由于1(2(α))=2(1(α))=2(λα)所以2()0λαV ∈, 故0λV 是2的不变子空间.44. 解:(1) ('3'2''1,,,ee e e )=( 4321,,,e e e e )C=(4321,,,e e e e)2111011*********---∴ B=C1-AC =242134040168101042699631-----(2) 先求核θ(1-) . 设η=)(1θ-在基{}iε下的坐标为(4321,,,x x x x),(θη=)在此基下的坐标为(0,0,0,0),于是A4321x x x x = 000此时A 的秩为2,解之,得基础解系 )1,0,2,1(,)0,1,23,2(21--=--=ξξ,作 421232112,232e e e e e e +--=+--=ηη. 显然,21,ηη为核θ(1-)的一组基,故核由21,ηη所张成,即 θ(1-)=Span (21,ηη) .再求值域(4) . 由于((e 1),(e 2),(e 3),(e 4)) = (4321,,,e e e e) A而A 的秩为2,所以(e 1),(e 2),(e 3),(e 4)的秩也为2,且(e 1),(e 2)线性无关,故组成(4)的基,从而(4)=Span ((e 1),(e 2)) .(3) 由(2)知21,ηη是核θ(1-)的一组基,易知2121,,,ηηe e为4的一组基,由于有(2121,,,ηηe e)=(4321,,,e e e e )1100223101201---- = (4321,,,e e e e) D所以在此基下的矩阵为B=D 1-AD =220021001290025-(4) (2)知(e 1),(e 2)是值域(4)的一组基,又知(e 1),(e 2),43,e e为4的一组基,有((e1),(e2),43,e e )=(4321,,,e e e e )122012100210001--=(4321,,,e e e e) T所以在此基下的矩阵为B=T 1-A T =00002231291225 .45. 证:取3中的自然基321,,εεε,因为(+ )(1ε)=(1ε)+ (1ε)=(1,0,0)+(0,0,1)=(1,0,1)同理有(+ )(2ε)=(2,0,0),(+ )(3ε) =(1,1,0)这表明+ 将基321,,εεε变换成3中的另一组基1e =(1,0,1),2e =(2,0,0),3e =(1,1,0)(易证它们线性无关). 又因(+ )(3)是3的子空间,而321,,e e e是(+ )(3)的最大无关组,故这个子空间的维数为3,再由习题1.1中第22题的结果知(+ )(3)=3(此时取V 2=3).46. 解:因为2[(321,,a a a)]=([(321,,a a a)])=()[]21,,0a a =(0,0,1a )所以2的像子空间为R (2)(){}R a a ∈=,0,核子空间为N (2)(){}R a a a a ∈=2232,,,因此,dimR (2)=1,其一组基为(0,0,1);dim N (2)=2,其一组基为(0,1,0),(0,0,1).47. 证 :(1)由的定义容易验证满足可加性和齐次性,所以它为线性变换.又因2[(nx x x,,,21)]=[()()2111,,,0,0],,,0--=n n x x x x ,…推知n[()()0,,0,0],,,21==n x x x,即nϑ=(零变换).(2)若[()()()0,,0,0,,,0],,,1121==-n n x x x x x,则1x =2x =…=1-n x=0即()θ1-为由一切形如(0,0,…,n x )的向量构成的子空间,它是一维子空间,则(0,…,0,1)是它的基.又由维数关系 dim (V)+dim1-(θ)=n便得 (V) 的维数等于 n-1 .48. 证 :(1)必要性.若(V)= (V),对任V∈α,则∈)(α(V )=(V) ,故存在V∈β,使=)(α)(β,=)(α2)(β= )(β=)(α ,由α的任意性有 = .同理可证= .充分性.若= ,=, 对任(∈)α(V )V ⊂,=)(α)(α= ()(α)∈ (V ) , 故(V)⊂ (V) ;同理可证 (V)⊂(V).(2)必要性.若()=-θ1)(1θ-,对任V∈β,作-β)(β,因(-β)(β)=)(β-2)(β=)(β-)(β=θ ,所以,-β)(β∈()θ1- =)(1θ- ,则 (-β)(β)= θ,故=)(β )(β,由β的任意性有 =. 同理,通过作β- )(β, 可得=.充分性.若= , =, 对任 ∈α()θ1-,由=)(α=)(α()(α)= (θ)=θ ,故()⊂-θ1)(1θ-;同理,由任∈β)(1θ- ,可得 ()⊂-θ1)(1θ-.。
矩阵论课后参考答案:第1章 线性代数引论习题1.12(1)解:由定义知n m C n m ⋅=⨯)dim(故可知其基为n m ⋅个n m ⨯阶矩阵,简单基记为在矩阵上的某一元素位置上为1,其他元素为0 ,如下⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000000001 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00000010000(2)解:对约束A A T =分析可知,其为一个上下对称的矩阵(对称阵),则其维数为2)1(1)1()dim(+=++-+=n n n n V 其基为2)1(+n n 个n n ⨯阶的矩阵,故基可写为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000001,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000010010 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10000000000(3)解:同上理,对A A T -=分析可知其为一个上下成负对称的矩阵,且对角元全为0,则其维数为 2)1(2)1)1)((1(1)2()1()dim(-=+--=++-+-=n n n n n n V其基为2)1(-n n 个n n ⨯阶的矩阵,故基可写为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-0000000000010010 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-000000010000010, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-01100000000000003解:由题可得},,,{212121ββααspan W W =+ 不难看出其秩为3,则3)dim(21=+W W 设21W W x ∈,则存在2121,,,l l k k 有 22112211ββααl l k k x +=+=则 ⎪⎩⎪⎨⎧=--=-+=+++=---0703020221222121212121l l k l k k l l k k l l k k ,故有⎪⎩⎪⎨⎧-==-=21222134l l l k l k 即)4,3,2,5()4(21222211-=-=+=l l k k x αααα 所以1)dim(21=W W 8(先补充定理:定理:设n 元齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则齐次线性方程组的基础解析存在,并且基础解系所含线性无关的解向量的个数等于r n -)证:1)对任意的21V V B ∈,则有0=AB 且0)(=-B I A 成立,故0=B 所以{0}21=V V 。
2)明显n V V F 21⊂+3)对于1V 来说,X 为A 的一个基础解系,不妨设r A =)dim(,则 有 r V -=n )dim(1 式1 而由约束条件A A =2知 0)(=-I A A其中I A -为A 的一个基础解系,则有 r n I A -=-)dim(故2V 的秩为r I A V =--=)dim(n )dim(2 式2故由式1及式2可知:)dim()dim()dim(21n F n V V ==+综上1),2),3)。
则有21F V V n ⊕= 证毕习题1.28解:由题可知321,,ααα与321,,ηηη时空间)(3F L 的两组基,则存在一个过渡矩阵C 使得()()C 321321,,,,αααηηη= -------------------------------------1 引入)(3F L 的一组简单基 131211,,E E E则 ()()()()⎩⎨⎧==21312113211131211321,,,,,,,,C E E E C E E E ηηηααα------------------------------------2 其中 ⎥⎥⎦⎤⎢⎢⎣⎡----=713737691681C ,⎥⎥⎦⎤⎢⎢⎣⎡-=22111-22312C --------------------------------3 故有 ()()()2113212131211321,,,,,,C C C E E E -==αααηηη-----------------------------4则 ⎥⎥⎦⎤⎢⎢⎣⎡---==-631521311211C C C -------------------------------------------------5设B 为T 在基321,,ηηη下的矩阵,则由题意有()()()()BT A T 321321321321,,,,,,,,ηηηηηηαααααα==-------------------------------------------6 由式1与式6综合可得AC C B 1-=-----------------------------------------------------------7故 ⎥⎥⎦⎤⎢⎢⎣⎡---=⎥⎥⎦⎤⎢⎢⎣⎡---⨯⎥⎥⎦⎤⎢⎢⎣⎡----⨯⎥⎥⎦⎤⎢⎢⎣⎡---=132213221631521311222512022115181121231133B补充知识:对2C 求逆及求原始的C从题中我们可以看出直接求1C 的逆有很大的困难度,而2C 的逆矩阵较为好求,故我们将式5转化一下变为1121-C C C -=,[]⎥⎥⎦⎤⎢⎢⎣⎡−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-=-++101-01-001255000123110022101011-20012311)1(31)2(22r r r r I C⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-−−→−-+↔-15153100101010001231051521101010100012312)1(3323)1(251r r r r r r ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----−−−→−-+-+15153100101010152540013)2(12)3(1r r r r 故可知 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----=-151531011525412C 从而可求得 ⎥⎥⎦⎤⎢⎢⎣⎡---==--1212311331121C C C同理知道1-C 后可求得C 如下[]⎥⎥⎦⎤⎢⎢⎣⎡−−→−⎥⎥⎦⎤⎢⎢⎣⎡=↔00113-301023-110012-110012-101023-100113-3131-r r I C⎥⎥⎦⎤⎢⎢⎣⎡---−−−→−⎥⎥⎦⎤⎢⎢⎣⎡---−−−→−-+-+-+63110011011010012-130123011011-010012-12)1(2)3(31)3(31)1(2r r r r r r r⎥⎥⎦⎤⎢⎢⎣⎡---−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-−−→−-+++6311005210103110016311005-2101010012-13)1(12)2(132r r r r r r从而可得 ⎥⎥⎦⎤⎢⎢⎣⎡---=631521311C17证明:由题知n 阶矩阵A 的秩为1,则说明A 有n-1重0特征根与一个特征根0λ。
又因存在 )(1A tr ni i=∑=λ,故可知)(0A tr =λ,故A 的特征多项式可写为())()(1A tr n A -=-λλλϕ 且存在可逆矩阵P , 使得1()00tr A P AP -*⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 又最小多项式)(|)(λϕλA A m ,且最小多项式与特征多项式具有相同的根,则最小多项式为 ()()(),1k A m tr A k λλλ=-≥因为()1[()]0P A A tr A I P --=故n 阶矩阵A 的最小多项式为λλ)(2A tr -。
18 证明:不妨引入辅助矩阵,则有下式成立⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡BA A I B O I A AB I B O I 0000 则⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-I B O I A AB I B O I BA A 00I 00I λλ ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=I B O I A AB I B O I 00I λ ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=I B O I A AB I B O I 00I λ=⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-=00I A AB λ 故可得 ()()AB -BA I I λλλλ=- 亦即 ()()A -B -B I A I m n λλλλ= 从而有 ()()A -B -B I A I n m λλλ-= 19解:借用18题的结论,则可知BA 的特征值为∑=ni i i b a 1,C=AB 的特征多项式为)()()(11∑=--==ni i i n AB C b a λλλϕλϕ20解:和19题的解法相同.A A T 的特征多项式为)()(121∑=--=ni i n A A b Tλλλϕ故特征根为0(n-1重)与∑=ni i b 12。
习题1.313解:由题可得A I -λ的初等因子为 ()()()()λλλλλλλ,,1,1,,1,12+-+-A I -λ的不变因子为()()11)(28+-=λλλλd ,λλ=)(7dλλ=)(6d ,1)()()()()(12345=====λλλλλd d d d d22解:−−−−→−⎥⎥⎦⎤⎢⎢⎣⎡---+-−−→−⎥⎥⎦⎤⎢⎢⎣⎡--+--=-++-+↔131))1((221211221121211212112r r r r c c A I λλλλλλλλ()()()()−−→−⎥⎥⎦⎤⎢⎢⎣⎡------≅⎥⎥⎦⎤⎢⎢⎣⎡-------↔32110110001110110121c c λλλλλλλλλλλ ()()()()()≅⎥⎥⎦⎤⎢⎢⎣⎡------−−→−⎥⎥⎦⎤⎢⎢⎣⎡------+223100110001110110001λλλλλλλλλr r()()⎥⎥⎦⎤⎢⎢⎣⎡----2100010001λλ 故其初等因子为()()21,1--λλ,所以⎥⎥⎦⎤⎢⎢⎣⎡=100110001J令[]321,,X X X P =,则有PJ AP =,即⎥⎥⎦⎤⎢⎢⎣⎡=100110001),,(),,(321321X X X X X X A即3232211,,X X AX X AX X AX +=== 则由()01=-X A I 解出向量()T X 0,1,11=则由()02=-X A I 解出向量()T X 1,2,12-=(这为任取一个值) 则由()23X X A I -=-解出向量()T X 1,0,23=(这是2X 给定后的任一值) 故可得⎥⎥⎦⎤⎢⎢⎣⎡-=110021211P补充要点:关于2X 的讨论由于2X 不仅与()02=-X A I 有关,它还与下面的式子有关,故需要找到一个合适的式子使得两式成立。
不妨设[][]T T x x x X c b a X 32132,,,,==,则由式()02=-X A I 可得 c b a += 而由式()23X X A I -=-可知⎥⎥⎦⎤⎢⎢⎣⎡---=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡----c b a x x x 321111222111故可知()()⎪⎩⎪⎨⎧-=++---=++--=++-cx x x b x x x ax x x 3213213212从而可得⎩⎨⎧-==a c a b 2 不妨取1=a ,则可得[]T X 1,2,12-=习题1.42.(2)解: 复数域中向量T x ,T y 内积为()x y y x y x y x y x H n n =+++=...,2211()()()()()()()()()()12213111132222333111122211225,1,21,,,,0,23,230,,23-2-0,2,3,,0,,y y y i i i y y y y x y y y y x x y i i i i i i y y y y x x y i i x T TTT T-+--+=--=⎪⎭⎫ ⎝⎛++=--=-=-==)()()(()()()TTTTi i i i i i i -=--++--+=,0,0)0,,(0,1,1,1,21正交化后()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-⎪⎭⎫ ⎝⎛++-=T TT i i i i i s ,0,0,0,23,23,0,,2. (3) 解:先取一组简单基为()Txx 2,,1,再根据题中内积定义进行Schmidt 正交化。