2.5 一元一次不等式与一次函数(1)
- 格式:ppt
- 大小:350.00 KB
- 文档页数:12
一元一次不等式与一次函数【基础知识精讲】1.一元一次不等式与一次函数的关系。
两个一次函数有时根据需要,要比较其函数值的大小,这时问题就转化为一元一次不等式的问题。
另一方面,利用解不等式的方法也可以求出两个一次函数的值的大小。
事实上,不等式与函数和方程是紧密联系的一个整体。
2.一次函数的图象与一元一次不等式的关系。
一次函数y=kx+b(k≠0)的图像是一条直线,当kx+b>0时,表示图像在x轴上方的部分;当kx+b=0时,表示直线与x轴的交点;当kx+b<0时,表示图像在x轴下方的部分。
【考点聚焦】本章一元一次不等式与一次函数是中考热点,随着素质教育的逐步发展,突出了对创新意识的考查,加大了对“三个一次”(即一元一次方程,一次函数,一元一次不等式)综合应用考查及解决实际问题的考查。
题型有选择题、填空题及解决实际问题(多为压轴题)。
【典例精析】例1作出函数y=x-3的图象如图所示,并观察图象回答下列问题:(1)x取哪些值时,y>0;(2)x取哪些值时,y<0;(3)x取哪些值时,y>3。
思路点拨:首先要认清一次函数的图象是一条直线,两点确定一条直线,所以需要知图象上两点的坐标,可取(3,0)和(0,-3)。
解:由图象可知:(1)当x>3时,y>0;(2)当x<3时,y<0;(3)当x>6时,y>3。
评注:(1)两点确定一条直线。
(2)大于往右看,小于往左看。
【试解相关题】兄弟俩赛跑,哥哥先让弟弟跑9米,然后自己才开始跑。
已知弟弟每秒跑3米,哥哥每秒跑4米,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?思路点拨:此题两问均牵扯到不等式问题,但需先列函数关系式。
解:设当时间为x秒时,跑过的路为y米,则y哥哥=4x,y弟弟=3x+9如图所示,由图象知9秒前弟弟跑在哥哥前面;9秒后,哥哥跑在弟弟前面。
评注:通过以上两例,体会:刻画运动变化的规律需要用函数模型;刻画运动变化过程中的某一瞬间需要用方程模型。
《一元一次不等式与一次函数》作业设计方案(第一课时)一、作业目标本作业设计旨在通过一元一次不等式与一次函数的综合练习,加深学生对基本概念的理解,提高学生的运算能力和解题技巧,同时培养学生的逻辑思维和问题解决能力。
二、作业内容作业内容主要围绕一元一次不等式与一次函数的认知、性质及运用展开。
具体包括:1. 回顾一次函数的基本概念,包括函数表达式、图像特征及性质。
2. 掌握一元一次不等式的解法,包括不等式的变形、求解及解集的表示。
3. 结合一次函数与一元一次不等式,进行实际应用题的练习。
例如,利用一次函数解决生活中的最值问题,利用一元一次不等式描述现实生活中的数量关系等。
4. 强化学生对函数图像与不等式解集关系的理解,通过绘制函数图像,分析解集的几何意义。
5. 布置一定量的练习题,包括选择题、填空题和解答题,题型涵盖基础知识和拔高知识,以满足不同层次学生的学习需求。
三、作业要求1. 学生需独立完成作业,不得抄袭他人答案或使用网络搜索答案。
2. 要求学生按照课本知识和课堂讲解的内容进行答题,注重理解题目中的关键词和隐含条件。
3. 对于需要画图的题目,要求使用数学工具准确绘制函数图像,并在图像上标明关键点。
4. 解题过程要清晰,步骤完整,结果准确。
对于解答题,需写出详细的解题思路和步骤。
5. 作业需按时提交,迟到或未交作业将按照班级规定处理。
四、作业评价1. 教师将根据学生的答题情况,对作业进行批改和评价。
2. 评价标准包括知识点的掌握程度、解题思路的正确性、计算过程的准确性以及答案的完整性等。
3. 对于优秀作业,将在班级内进行展示和表扬,激励学生积极学习。
4. 对于存在问题的作业,教师将给出详细的批改意见和指导建议,帮助学生改进学习方法。
五、作业反馈1. 教师将通过作业反馈,及时了解学生的学习情况,以便调整教学策略。
2. 针对学生在作业中出现的共性问题,将在课堂上进行讲解和指导。
3. 学生应根据教师的反馈意见,认真反思自己的学习过程,找出不足之处并加以改进。
北师大版数学八年级下 2.5 一元一次不等式与一次函数(1)教学设计同学们,在前面的学习中,我们学习了一次函数的相关知识,下面请同学们回答:问题1.什么是一次函数?答案:一般地,形如y=kx+b(k,b为常数,k≠0)的函数叫一次函数.问题2.你能在平面直角坐标系中画出一次函数y=2x-5的图象吗?答案:1.列表;2.描点;3.连线x0 2.5y-50观察:请根据函数y=2x-5的图象回答下列问题:(1)x取何值时,y=0?答案:x=2.5时,y=0;(2)x取哪些值时,y>0?答案:x>2.5时,y>0;(3)x取哪些值时,y<0?答案:x<2.5时,y<0;(4)x取哪些值时,y>1?答案:x>3时,y>1.想一想:如果y=-2x-5.(1)当x取何值时,y>0?解:-2x-5>0-2x>5x<-2.5答案:当x<-2.5时,y>0;(2)当x取哪些值时,y<0?解:-2x-5<0-2x<5x>-2.5答案:当x>-2.5时,y<0;(3)当x取哪些值时,y>1?解:-2x-5>1-2x>6x<-3答案:当x<-3时,y>1.追问1:你还有其他的方法吗?解:函数y=-2x-5的图象如图所示:(1)当x<-2.5时,y>0;(2)当x>-2.5时,y<0;(3)当x<-3时,y>1.追问2:你能说一说一元一次不等式和一次函数的关系吗?归纳:一次函数和一元一次不等式的关系任何一个以x 为未知数的一元一次不等式都可以变形为kx +b >0或kx +b <0(k ≠0,k ,b 为常数)的形式; 所以解一元一次不等式可以看成是求一次函数y =kx +b (k ≠0,k ,b 为常数)的函数值大于0或小于0时,自变量x 的取值范围;反映在图象上,就是直线y =kx +b 在x 轴上方的部分或在x 轴下方的部分对应的自变量x 的取值范围. 即:关于一次函数的值的问题代数法图象法关于一次不等式的问题做一做:兄弟俩赛跑,哥哥先让弟弟跑9m ,然后自己才开始跑.已知弟弟每秒跑3m ,哥哥每秒跑4m.列出函数关系式,作出函数图象. 观察图象回答下列问题: (1)何时弟弟跑在哥哥前面? (2)何时哥哥跑在弟弟前面? (3)谁先跑过20m?谁先跑过100m?解:设哥哥跑的时间为x s ,他们跑的路程为y m.根据题意得:4y x 哥=,39y x 弟= 函数图象如图所示:(1)令4x =3x +9, 解得,x =9根据图象可知:9s 前,弟弟跑在了哥哥的前面. (2)根据图象可知:9s 后,哥哥跑在了弟弟的前面. (3)当x =9时,y =36.根据图象可知:弟弟先跑过了20m ,哥哥先跑过了100m. 练习:已知函数y 1=2x -5,y 2=3-2x ,求当x 取何值时,(1)y 1>y 2?(2)y 1=y 2?(3)y 1<y 2?解:方法一:代数法(1)y1>y2,即2x-5>3-2x,解得x>2.(2)y1=y2,即2x-5=3-2x,解得x=2.(3)y1<y2,即2x-5<3-2x,解得x<2.答:当x>2时,y1>y2;当x=2时,y1=y2;当x<2时,y1<y2.方法二:图象法解:在同一直角坐标系内画出函数y1=2x-5和y2=3-2x的图象,如图所示.由图象知,两直线的交点坐标为(2,-1).观察图象可知,当x>2时,y1>y2;当x=2时,y1=y2;当x<2时,y1<y2.1.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤2答案:B2.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是()A.x>2 B.x<2 C.x>-1 D.x<-1答案:D若一次函数y=ax+b(a>0)的图象与x轴的交点坐标是(m,下面让我们一起赏析中考题:(2018·锦州)如图,直线y1=-x+a与y2=bx-4相交于点P,已知点P的坐标为(1,-3),则关于x的不等式-x+a<bx-4的解集是_______.答案:x>1在课堂的最后,我们一起来回忆总结我们这节课所学的知。
知识回顾:1、定义:不等式:一般地用不等号连接的式子叫做不等式。
2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
3、解不等式:把不等式变为x>。
或x<a的形式。
一、知识要点:1、一次函数的定义:若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,kHO)的形式,则称y是x的一次函数(x为自变量)。
当b=0时,y=kx,所以说正比例函数是一种特殊的一次函数.一次函数的解析式:y=kx+b(kH0)注:一次函数的解析式的形式是y=d+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.一次函数一般形式y=kx+b(k不为零)①k不为零②x指数为1③b取任意实数一次函数y=kx+b的图象是经过(0,b)和(-纟,0)两点的一条直线,我们称它为直线ky=kx+b,它可以看作由直线尸kx平移|b|个单位长度得到.(当b〉0时,向上平移;当b〈0时,向下平移)(1)解析式:(k、b是常数,kHO)(2)必过点:和(3)走向:k>0,b=0,图象经过第象限;k<0,b二0,图象经过象限O直线经过第象限O直线经过第象限Z?>0\b<0<O C>直线经过第象限P<0<=>直线经过第象限\b>Q[b<0(4)增减性:k>0,y随x的增而;k<0,y随x增大而(5)倾斜度:|k|越大,图象越接近于轴;|k|越小,图象越接近于轴.(6)图像的平移:上加下减;左加右减将函数y=kx+b图像向上平移3个单位变为,然后再向右平移3个单位变为;将函数y=kx+b图像向下平移3个单位变为然后再向左平移3个单位变为2、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线, 所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点,.即横坐标或纵坐标为0的点.34、用待定系数法确定函数解析式的一般步骤:(设、列、解、答)(1)设:根据已知条件写出含有待定系数的函数关系式;(2)列:将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解:解方程得出未知系数的值;(4)答:将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.二、典型例题:1、若点(inji)在函数y=2x+l的图象上,则2m-n的值2、己知正比例函数y=kx伙工0),点⑵-3)在函数上,则y随x的增大而3、如果一次函数空+3的图象经过第一、二、四象限,则m的取值范围是4、地面气温是20°C,如果每升高100m,气温下降6°C,则气温t(°C)与高度h(m)的函数关系式是o5、己知一次函数尸kx+b的图象如图所示,则k,b的符号是()(A)k>0,b>0(B)k>0,b<0(C)k<0,b>0(D)k<0,b<06、已知一次函数尸kx+b的图象经过点(-1,-5),且与正比例函数尸**的图象相交于点(2,a),(1)求a的值,(2)k,b的值,(3)这两个函数图象与x轴所围成的三角形的面积。
一次函数与一元一次不等式的关系一次函数与一元一次不等式的关系一次函数是数学中非常重要的一个概念,而它与一元一次不等式之间也存在着密切的关系。
下面就让我们来了解一下。
一、一次函数的定义与性质一次函数指的是形如y=kx+b的函数,其中x为自变量,y为因变量,k 和b为常数。
它的图像是一条直线,具有以下性质:1. 斜率k表示线性关系的比例系数,k越大,直线越陡峭;k为正数时,直线右上方倾斜;k为负数时,直线左下方倾斜。
2. 截距b表示直线与y轴的交点,当x=0时,y=b。
当k=0时,直线平行于x轴,即为一条水平直线。
3. 一次函数图像在直线上每个点的斜率都相等,斜率就是函数的导数。
二、一元一次不等式的定义与性质一元一次不等式是指形如ax+b>0或ax+b<0的不等式,其中x为变量,a和b为常数。
它的解集是一个区间。
不等式的基本性质如下:1. 如果不等式两边同时加上一个正数,则不等式不变。
2. 如果不等式两边同时乘上一个正数,则不等式不变。
3. 如果不等式两边同时乘上一个负数,则不等式的不等号方向改变。
三、一次函数与一元一次不等式的关系一次函数与一元一次不等式之间存在着密切的关系,具体表现在以下几个方面:1. 根据一次函数的性质,我们可以根据一次不等式求解其解集合并确定一次函数的定义域和值域。
2. 根据一元一次不等式的基本性质,我们可以对一次函数的图像进行平移、伸缩和翻折等操作,从而得到不同的函数图像。
3. 一元一次不等式的解与一次函数的斜率有关,当一次不等式为ax+b>0时,解集表示函数图像位于y轴上方的区间,此时函数的斜率为正数a;当一次不等式为ax+b<0时,解集表示函数图像位于y轴下方的区间,此时函数的斜率为负数a。
综上所述,一次函数与一元一次不等式之间存在着密切的关系,掌握了它们之间的关系,不仅有助于我们深入理解函数与不等式的概念,还能够为我们解决实际问题提供很多有益的启示。
北师大版八年级数学易错试题 2.5一元一次不等式与一次函数专项练习一.选择题1.如图,直线y= kx+ b(k≠0)经过点A( - 2,4),则不等式kx+ b> 4的解集为()A.x>- 2B.x<- 2C.x> 4D.x< 4第1题图第2题图第3题图2.直线y = kx + b在平面直角坐标系中的位置如图所示,则不等式kx + b≤2的解集是()A.x≤ - 2B.x≤ - 4C.x≥ - 2D.x≥ - 43.如图,直线y = kx + b(k≠0)与y轴交于点(0,3),与x轴交于点(a,0),当a满足 - 3≤a< 0时,k的取值范围是()A.k≥2B.k≤5C.k≥1D.k> 34.如图,在同一直角坐标系中,函数y1 = 2x和y2 =- x + b的图象交于点A(m,n).若不等式y1<y2恰好有3个非负整数解,则()A.m = 2B.m = 3C.2 < m < 3D.2 < m≤3第4题图第5题图第6题图5.如图,函数y1 =- 2x和y2 = ax + 3的图象相交于点A(m,2),则关于x的不等式- 2x>ax + 3的解集是()A.x> 2B.x< 2C.x>- 1D.x<- 16.如图,已知直线y1 = x + b与y2 = kx - 1相交于点P,点P的横坐标为1,则关于x 的不等式x + b≤kx - 1的解集在数轴上表示正确的是()7.小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每本笔记本2元,那么小明最多能买钢笔的支数是()A.12B.13C.14D.15二.填空题1.如图,直线y = x + 32 与y = kx - 1相交于点P,点P的纵坐标为12 ,则关于 ×的不等式 ×+ 32 >kx - 1的解集为_________.2.如图,直线y1=- 13 x+ b与x轴交于点A,与y轴交于点B,与直线y2= x交于点E,点E的横坐标为3.则b的值: _________ ;当0 <y1≤y2时,x的取值范围是_________ ;在x轴上有一点P(m,0),过点P作x轴的垂线,与直线y1=-13 x+ b交于点C,与直线y2 = x交于点D,若CD = 2OB,则m的值为_________.第1题图第2题图第3题图3.已知一次函数y1 = kx + b与y2 = x + a的图象如图所示,则下列结论:①k< 0;②a>0;③关于x的方程kx + b = x + a的解为x = 3;④x> 3时,y1>y2.正确的有_________.三.解答题1如图,在平面直角坐标系中,一次函数y = kx + b的图象与x轴交点为A( - 3,0),与y轴交点为B,且与正比例函数y = 43x的图象交于点C(m,4).(1)求m的值及一次函数y = kx + b的表达式;(2)观察函数图象,直接写出关于x的不等式43x<kx + b的解集.2.如图,函数y =- 2x + 3与y =- 12 x + m的图象交于点P(n, - 2).(1)求出m,n的值;(2)直接写出不等式 - 12x + m >- 2x + 3的解集;(3)求出△ABP的面积.3.某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8立方米,则每立方米按1元收费;若每户每月用水超过8立方米,则超过的部分每立方米按2元收费.某用户7月份用水x立方米,缴纳水费y元.(1)求y关于x的函数关系式,并写出x的取值范围;(2)此用户要想每月水费不超过20元,那么每月的用水量不超过多少立方米?4.为了响应“足球进学校”的号召,某学校准备到体育用品批发市场购买A型号与B型号两种足球,其中A型号足球的批发价是每个200元,B型号足球的批发价是每个250元,该校需购买A、B两种型号足球共100个.(1)若该校购买A、B两种型号足球共用了22000元,则分别购买两种型号足球多少个?(2)若该校计划购进A型号足球的数量不多于B型号足球数量的9倍,请求出最省钱的购买方案,并说明理由.5.如图,某面粉加工企业急需汽车,但因资金问题无力购买,公司经理想租一辆汽车.一国有公司的条件是每千米租费1.1元;一个体出租车公司的条件是每月付租金1000元,油钱600元,另外每千米付0.1元,请问公司经理根据自己的情况应该怎样租汽车比较划算?。
2.5 一元一次不等式与一次函数 第1课时 一元一次不等式与一次函数的关系1.学会使用图象法解一元一次不等式;(重点)2.理解并掌握一元一次不等式与一次函数之间的关系,能够运用其解决问题.(重点,难点)一、情境导入小华准备将平时的零用钱储存起来,他已经存有300元,现在起每月存50元.小华的同学小丽以前没有存过零用钱,在听说小华存零用钱后,表示从现在起每月存70元,争取超过小华.根据以上信息,你能帮助小丽计算出她需要多久才能超过小华吗?二、合作探究 探究点一:不等式的解集 如图,函数y =2x 和y =-23x +4的图象相交于点A . (1)求点A 的坐标; (2)根据图象,直接写出不等式2x ≥-23x +4的解集.解析:(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边部分的x 的取值范围即可.解:(1)由⎩⎪⎨⎪⎧y =2x ,y =-23x +4,解得⎩⎪⎨⎪⎧x =32,y =3.∴点A 的坐标为(32,3);(2)由图象得不等式2x ≥-23x +4的解集为x ≥32.方法总结:通过联立两直线解析式求交点坐标的方法,求出交点坐标.求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应函数值的大小.探究点二:一元一次不等式与一次函数的关系【类型一】 根据一次函数的值求一元一次不等式的解集一次函数y =kx +b (k ≠0)中两个变量x 、y 的部分对应值如下表所示: 那么关于x 的不等式kx +b ≥-1的解集是________.解析:由表格得到函数的增减性后,再得出y =-1时,对应的x 的值即可.当x =1时,y =-1,根据表可以知道函数值y随x 的增大而减小,∴不等式kx +b ≥-1的解集是x ≤1.故答案为x ≤1.方法总结:此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.理解一次函数的增减性是解决本题的关键.【类型二】 根据一次函数图象求不等式的解集如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>2解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.第2课时三角形三边的垂直平分线及作图1.理解并掌握三角形三边的垂直平分线的性质,能够运用其解决实际问题;(重点)2.能够利用尺规作出三角形的垂直平分线.一、情境导入现在有A、B、C三个新建的小区,开发商为了方便业主需求,打算在如图所示的区域内建造一座购物中心,要求购物中心到三个小区的距离相等,你能帮购物中心选址吗?二、合作探究探究点一:三角形三边的垂直平分线【类型一】运用三角形三边的垂直平分线的性质求角度如图,在△ABC中,∠BAC=110°,点E、G分别是AB、AC的中点,DE⊥AB交BC于D,FG⊥AC交BC于F,连接AD 、AF .求∠DAF 的度数.解析:根据三角形内角和定理求出∠B +∠C ,根据线段垂直平分线得出AD =BD ,AF =CF ,推出∠BAD =∠B ,∠CAF =∠C ,即可求出答案.解:在△ABC 中,∵∠BAC =110°,∴∠B +∠C =180°-110°=70°.∵E 、G 分别是AB 、AC 的中点,DE ⊥AB ,FG ⊥AC ,∴AD =BD ,AF =CF ,∴∠BAD =∠B ,∠CAF =∠C ,∴∠DAF =∠BAC -(∠BAD +∠CAF )=∠BAC -(∠B +∠C )=110°-70°=40°.方法总结:本题考查了等腰三角形的性质,线段垂直平分线的性质,三角形内角和定理的应用.注意:线段垂直平分线上的点到线段两个端点的距离相等.【类型二】 运用三角形三边的垂直平分线的性质求线段如图,在△ABC 中,AB =AC ,∠A =120°,BC =8cm ,AB 的垂直平分线交BC 于点M ,交AB 于点D ,AC 的垂直平分线交BC 于点N ,交AC 于点E ,求MN 的长.解析:首先连接AM ,AN ,在△ABC 中,AB =AC ,∠A =120°,可求得∠B =∠C =30°.又由AB 的垂直平分线交BC 于点M ,交AB 于点D ,AC 的垂直平分线交BC 于点N ,交AC 于点E ,易得△AMN 是等边三角形,继而求得答案.解:连接AM ,AN ,∵在△ABC 中,AB =AC ,∠A =120°,∴∠C =∠B =30°.∵AB 的垂直平分线交BC 于点M ,交AB 于点D ,AC 的垂直平分线交BC 于点N ,交AC 于点E ,∴AN =CN ,AM =BM ,∴∠CAN =∠C =30°,∠BAM =∠B =30°,∴∠ANM =∠AMN =60°,∴△AMN 是等边三角形,∴AM =AN =MN ,∴BM =MN =CN .∵BC =8cm ,∴MN =83cm.方法总结:此题考查了线段垂直平分线的性质以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法.【类型三】 三角形三边的垂直平分线的性质的应用某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使得三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.解析:由三个娱乐项目所处位置到售票中心的距离相等,可得售票中心是海盗船、摩天轮、碰碰车三个娱乐场组成三角形的三边的垂直平分线的交点.解:如图,①连接AB ,AC ,②分别作线段AB ,AC 的垂直平分线,两垂直平分线相交于点P ,则P 即为售票中心.方法总结:此题考查了线段垂直平分线的性质.此题难度不大,注意掌握线段垂直平分线的作法.探究点二:作图已知线段c ,求作△ABC ,使AC =BC ,AB =c ,AB 边上的高CD =12c.解析:由题意知,△ABC 是等腰三角形,高把底边垂直平分,且高等于底边长的一半.解:作法:1.作线段AB =c ; 2.作线段AB 的垂直平分线EF ,交AB 于D ;3.在射线DF上截取DC=12c,连接AC,BC,则△ABC即为所求作的三角形,如图所示.方法总结:已知底边长作等腰三角形时,一般可先作底边的垂直平分线,再结合等腰三角形底边上的高确定另一个顶点的位置.三、板书设计1.三角形三边的垂直平分线三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.2.作图本节课学习了用尺规作三角形,作图时要学会分析.一般先画一个满足题目已知条件的草图,有时结合基本作图和已知条件可作一个与求作三角形相关联的三角形,然后应用有关条件结合基本作图作出其余的图形.。
2.5 一元一次不等式与一次函数(1)一、选择题1.已知函数:y1=2x+4,y2=-x-2,若y1<y2,则x的取值范围是(C)A.x≤-2 B.x≥1C.x<-2 D.x>02.已知一次函数y=ax+b的图象经过一、二、三象限,且与x轴交于点(-2,0),则不等式ax>b的解集为(C)A.x>-2 B.x<-2C.x>2 D.x<23.已知一次函数y=kx+b的图象如图所示,则关于x的不等式kx -2b>0的解集为(B)A.x<1 B.x<-2C.x>-2 D.x<24.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是(D)A.x>2 B.x<2C.x>-1 D.x<-15.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为(C)A.x>0 B.0<x<1C.1<x<2 D.x>26.如图,在平面直角坐标系中,点P(-12,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是(B)A.2<a<4 B.1<a<3C.1<a<2 D.0<a<2二、填空题7.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为x<1.8.如图,已知直线y =-2x +b 与直线y =ax -1相交于点(2,-2),由图象可得不等式-2x +b >ax -1的解集是x <2.9.如图,直线y =kx 和y =ax +4交于点A (1,k ),则不等式kx -6<ax +4<kx 的解集为1<x <52.10.如图,直线y =3x 和y =kx +2相交于点P (a ,3),则关于x 不等式(3-k )x ≤2的解集为x ≤1.三、解答题11.已知直线l 1:y =x +n -2与直线l 2:y =mx +n 相交于点P (1,2).(1)求m ,n 的值;(2)请结合图象直接写出不等式mx +n >x +n -2的解集.解:(1)把P (1,2)代入y =x +n -2得1+n -2=2,解得n =3; 把P (1,2)代入y =mx +3得m +3=2,解得m =-1;(2)不等式mx +n >x +n -2的解集为x <1.12.在平面直角坐标系xOy 中,直线l 1:y =k 1x +b 过A (0,-3),B (5,2),直线l 2:y =k 2x +2.(1)求直线l 1的表达式;(2)当x ≥4时,不等式k 1x +b >k 2x +2恒成立,请写出一个满足题意的k 2的值.解:(1)∵l 1:y =k 1x +b 过A (0,-3),B (5,2),∴⎩⎪⎨⎪⎧b =-35k 1+b =2,解得⎩⎪⎨⎪⎧k 1=1b =-3, ∴直线l 1的表达式为y =x -3;(2)∵当x ≥4时,不等式x -3>k 2x +2恒成立,∴4-3>4k 2+2,∴k 2<-14, ∴取k 2=-1满足题意.13.画出函数y=|x|-2的图象,利用图象回答下列问题:(1)写出函数图象上最低点的坐标,并求出函数y的最小值;(2)利用图象直接写出不等式|x|-2>0的解集;(3)若直线y=kx+b(k,b为常数,且k≠0)与y=|x|-2的图象有两个交点A(m,1), B(12,-32), 直接写出关于x的方程|x|-2=kx+b的解.解:函数y=|x|-2的图象如图,(1)最低点坐标是(0,-2),函数y的最小值是-2;(2)x>2或x<-2;(3)当y=1时,|x|-2=1,解得x=3(舍去)或x=-3,所以交点A的坐标为(-3,1),而交点B的坐标为(12,-32),所以关于x的方程|x|-2=kx+b的解为x=-3或x=12 .14.定义运算min{a,b}:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a;如:min{4,0}=0;min{2,2}=2;min{-3,-1}=-3.根据该定义运算完成下列问题:。