大学物理学-狭义相对论
- 格式:ppt
- 大小:1.21 MB
- 文档页数:51
授课章节第4章 狭义相对论教学目的1. 理解爱因斯坦狭义相对论的两条基本原理及洛伦兹坐标、速度变换式;2. 掌握狭义相对论的时空观:即理解同时的相对性、长度的收缩和时间的膨胀,并能进行相关的计算;3. 了解狭义相对论动力学的几个结论及其具体应用。
教学重点、难点1. 正确地理解相对论的时空观;2. 掌握洛伦兹变换的物理意义;3. 理解长度收缩效应只发生在运动方向上;4. 理解“时间膨胀”效应是指运动着的钟比静止的钟慢;5. 在相对论动力学中,动能不能用221mv 进行计算,只能用202c m mc E K -=进行计算;6. 在经典物理中能量守恒律与质量守恒律彼此独立。
而在相对论中通过质能关系式把两个定律统一起来了。
即在相对论中能量守恒与质量守恒总是同时成立的。
教学内容 备注第四章 狭义相对论相对论研究的内容:研究物质的运动与空间、时间的联系。
狭义相对论:研究自然定律在所有惯性系中都表示为相同的形式(数学)问题。
广义相对论:研究自然定律在所有参照系中都表示为相同的形式(数学)问题。
§4.1 伽利略变换和经典力学时空观一、伽利略变换 经典力学时空观1、伽利略坐标变换方程:如图,两个参照系的坐标轴互相平行,参照系S '相对于参照系S 沿x 轴的正方向以速度u 运动,时间0='=t t 时、两坐标系的原点o 和o '重合。
则某一空—时点的坐标变换方程为tt zz y y utx x ='='='-=' 或 t t z z y y t u x x '='='='+'= (1)2、经典力学时空观伽利略坐标变换方程已经对时间、空间性质作了两条假设:(1)t t'=,t t '∆=∆,即时间间隔与参考系的运动状态无关;(2)L L '∆=∆,即空间长度与参考系的运动状态无关。
(同时测量棒两端点的坐标值),总之,时间和空间是彼此独立的,互不相关,并且不受物质和运动的影响,这就是经典力学的时空观,也称绝对时空观。
大一狭义相对论知识点总结引言狭义相对论是德国物理学家爱因斯坦提出的一种理论物理学理论。
它首先通过爱因斯坦在1905年提出的特殊相对论治疗,引起了物理学家和数学家的广泛兴趣。
特殊相对论的提出,颠覆了牛顿力学对于时间和空间的观念,揭示了新的科学世界。
狭义相对论主要关注的是质点的运动,在匀速直线运动的参考系中,物体的质量与速度之间存在着简单的关系。
这一理论不仅在理论物理学领域引起了巨大的影响,也在实用物理学和工程学中具有重要的应用价值。
下面将围绕狭义相对论的基本概念、数学公式以及实际应用等方面进行详细的介绍。
基本概念相对论的提出突破了以往对于时间和空间的观念,提出了新的物理学理论。
其中最重要的概念之一就是“相对性原理”,它指出物理定律在所有惯性系中都相同的性质。
即使在不同的参考系中,物理定律也是不变的,这就是相对性原理的核心。
在相对论中,时间和空间也都不再是绝对的,而是与观察者的参考系相关的。
因此,相对论是一种与经典力学有着根本区别的物理学理论。
在特殊相对论中,另一个重要的概念是“光速不变原理”,它指出在任何惯性系中,光速都是一个恒定不变的值。
光速的不变性使得时间和空间的测量都变得相对而言,这也是狭义相对论与牛顿力学最大的不同之处。
数学公式狭义相对论涉及到了一些重要的数学公式,这些公式揭示了时间和空间的相对性质。
其中最重要的一条公式就是爱因斯坦提出的质能关系公式,它表示了质量和能量之间的等价关系,在相对论中,质量并不是一个不变的量,不同的观察者会测得不同的质量值。
而质能关系公式则揭示了质量与能量之间的等价关系,它可以用来描述物质的能量转化过程,是狭义相对论中的核心公式之一。
另外,相对论中还有着动量和能量之间的关系,这一点也揭示了物理量在不同惯性系中的变化规律。
总的来说,相对论的数学公式揭示了时间和空间的相对性质,揭示了一种新的物理学理论。
实际应用相对论不仅在理论物理学领域具有重要的理论意义,也在实际的科学研究和工程应用中发挥着关键作用。
1 第5章狭义相对论习题及答案1. 牛顿力学的时空观与相对论的时空观的根本区别是什么?二者有何联系?答:牛顿力学的时空观认为自然界存在着与物质运动无关的绝对空间和时间,这种空间和时间是彼此孤立的;狭义相对论的时空观认为自然界时间和空间的量度具有相对性,时间和空间的概念具有不可分割性,而且它们都与物质运动密切相关。
在远小于光速的低速情况下,狭义相对论的时空观与牛顿力学的时空观趋于一致。
2. 狭义相对论的两个基本原理是什么?答:狭义相对论的两个基本原理是:(1)相对性原理在所有惯性系中,物理定律都具有相同形式;(2)光速不变原理在所有惯性系中,光在真空中的传播速度均为c ,与光源运动与否无关。
3.你是否认为在相对论中,一切都是相对的?有没有绝对性的方面?有那些方面?举例说明。
解在相对论中,不是一切都是相对的,也有绝对性存在的方面。
如,光相对于所有惯性系其速率是不变的,即是绝对的;又如,力学规律,如动量守恒定律、能量守恒定律等在所有惯性系中都是成立的,即相对于不同的惯性系力学规律不会有所不同,此也是绝对的;还有,对同时同地的两事件同时具有绝对性等。
4.设'S 系相对S 系以速度u 沿着x 正方向运动,今有两事件对S 系来说是同时发生的,问在以下两种情况中,它们对'S 系是否同时发生?(1)两事件发生于S 系的同一地点;(2)两事件发生于S 系的不同地点。
解由洛伦兹变化2()vt t x c g ¢D =D -D 知,第一种情况,0x D =,0t D =,故'S 系中0t ¢D =,即两事件同时发生;第二种情况,0x D ¹,0t D =,故'S 系中0t ¢D ¹,两事件不同时发生。
5-5飞船A 中的观察者测得飞船B 正以0.4c 的速率尾随而来,一地面站测得飞船A 的速率为0.5c ,求:(1)地面站测得飞船B 的速率;(2)飞船B 测得飞船A 的速率。