华东师大版数学八年级上册全册知识点汇编(整理版,思维导图)
- 格式:pdf
- 大小:990.50 KB
- 文档页数:11
八年级上册知识点第11章 数的平方11.1平方根与立方根一、平方根的概念如果一个数的平方等于a ,那么这个数叫做a 的平方根。
二、平方根的性质1. 一个正数有两个平方根,它们互为相反数。
2. 0有一个平方根,就是它本身。
3. 负数没有平方根。
三、算术平方根正数a 的正的平方根,叫做a的算术平方根,记作,读作“根号a ”;另一个平方根是它的相反数,即-。
因此,正数a 的平方根可以记作±,其中a 称为被开方数。
0的算术平方根是0,负数没有算术平方根。
四、平方根与算术平方根的区别与联系 1. 概念不同; 2. 表示方法不同; 3. 个数及取值不同。
a a a五、开平方求一个非负数的平方根的运算,叫做开平方。
六、立方根1.概念:如果一个数的立方等于a,那么这个数叫做a的立方根。
2.性质:任何数(正数、负数和0)的立方根只有一个。
3a3.表示:数a的立方根,记作,读作“三次根号a”。
其中a称为被开方数,3是根指数。
4.一个正数只有一个正的立方根,一个负数只有一个负的立方根,0的立方根是0。
七、开立方求一个数的立方根的运算,叫做开立方。
11.2实数一、无理数1.无限不循环小数叫做无理数。
2.无理数与有理数的区别(1)有理数是有限小数或无限循环小数,而无理数是无限不循环小数。
(2)所有的有理数都能写成分数的形式(整数可以看成分母是1的分数),而无理数不能写成分数的形式。
二、实数及其分类1.实数的概念有理数和无理数统称为实数,即实数包括有理数和无理数。
2.实数的分类(1)按概念分类正整数整数0有理数负整数正分数分数实数负分数正无理数无理数负无理数(2)按正负分类正整数 正有理数正实数 正分数 正无理数实数 0负整数 负有理数负实数 负分数 负无理数三、实数与数轴上点的关系 实数与数轴上的点意义对应。
四、实数的有关概念1.一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。
初中数学知识点华东师大版初中数学八年级上册 第11章 数的开方 知识点 典型例题、平方根 .平方根 1)定 已知正数m 有两个平方义:如果一个数的平方等于a ,那么这个数叫做a 的平方根.(2)表示方法:)0(,≥±a a . (3)性质:正数有两个互为相反数的平方根;零的平方根是零;负数没有平方根.2.算术平方根 (1)定义:正数a 的正的平方根,叫做a 的算术平方根.0的算术平方根是0.(2)表示方法:)0(,≥a a .(3)重要性质:双重非负性:)0(,0≥≥a a其他具有非负性的式子:a n a n ,(2为正整数).运算性质:如果几个非负数的和为0,那么每一个非负数都为0. (4)运算性质:一个非负数的算术平方根的平方等于它本身,)0(,)(2≥=a a a . 一个实数的平方的算术平方根等于它的绝对值,a a =2. 3.开平方定义:求一个非负数的平方根的运算,叫做开平方. 二、立方根 1.立方根 (1)定义:如果一个数的立方等于a ,那么这个数叫做a 的立方根.(2)表示方法:3a . (3)性质:正数的立方根是正数,负数的立方根是负数,0的立方根是0.(4)运算性质:a a a ==3333)(. 三、实数 1.无理数定义:无限不循环小数叫做无理数. 2.实数有理数和无理数统称实数. 3.实数的分类 按定义分:⎪⎩⎪⎨⎧⎩⎨⎧无理数分数整数有理数实数按性质分:根,分别是a+3与2a -15,求a 的值,并求这个正数m.已知a a -=-22,求a 的取值范围.若0a 2=++c b ,求a 、b 、c 的值.已知实数a 、b 、c 在数轴上的位置如图所示,化简:222)(c a c b a a ---++一个数的立方根是它本身,则这个数是 .计算:=-33)2( .有下列各数:2π,0,9,32.0 ,2-1,722,⋅⋅⋅3030030003.0,其中无理数有 . 求一个无理数的整数部分和小数部分:已知a 是11的整数部分,b 是11的小数部分,求a 和b 的值.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零正无理数正有理数正实数实数 4.实数与数轴上点的关系 实数与数轴上的点一一对应. 5.实数大小比较常有方法平方法;做差法;倒数法;做商法比较大小:23____32 32____3-5+华东师大版初中数学八年级上册 第12章 整式的乘除 知识点典型例题一、幂的运算 1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.已知32=x ,求32+x 的值.华东师大版初中数学八年级上册第13章全等三角形知识点典型例题一、命题、定理与证明1.命题(1)定义:表示判断的语句叫做命题.(2)组成:命题是由条件和结论两部分组成。
八年级上册华师版数学思维导图
:实数
:平方根
:全等三角形
:整式的乘除
华师大八年级上册数学目录
第11章数的开方
本章综合解说
11.1平方根与立方根
11.2实数
本章大归纳
第12章整式的乘除
本章综合解说
12.1幂的运算
12.2整式的乘法
12.3乘法公式
12.4整式的除法
12.5因式分解
本章大归纳
第13章全等三角形
本章综合解说
13.1命题、定理与证明
13.2三角形全等的判定
13.3等腰三角形
13.4尺规作图
13.5逆命题与逆定理
本章大归纳
第14章勾股定理
本章综合解说
14.1勾股定理
14.2勾股定理的应用
本章大归纳
第15章数据的收集与表示本章综合解说15.1数据的收集
15.2数据的表示
本章大归纳
全书大归纳
综合提升训练。
八年级上数学思维导图完整版1. 数与式数与式是数学的基础,掌握好数与式的概念对于学习更高级的数学知识非常重要。
•整数:正整数、负整数、零•分数:分子、分母、带分数•实数:有理数、无理数•表达式:算式中的字母代表未知数,可以是常数、代数式和函数•列式:把一类东西用类似的形式列出来的式子2. 一元一次方程与不等式一元一次方程与不等式是数学中常见的问题求解方法,通过变量的求解来获得解的集合。
2.1 一元一次方程•方程:等号连接的代数式,具有相等关系•等式:两个代数式相等•等式的性质:等式两边可以同时加(减)、乘(除)同一个数,等式仍然成立•一元一次方程:未知数的最高次数是1的方程,常用形式为ax + b = 0•解方程原则:对等式两边进行相同运算,保持等式成立2.2 一元一次不等式•不等式:不等号连接的代数式,具有不等关系•不等式的性质:不等式两边可以同时加(减)、乘(除)同一个正数,不等关系不变;两边乘(除)同一个负数,不等关系颠倒•一元一次不等式:未知数的最高次数是1的不等式,常用形式为ax + b > 03. 图形的认识图形的认识是数学几何中的基础知识,通过对图形特性的认识,可以进行几何推理和问题解决。
3.1 点、线、面•点:几何中最基本的概念,没有大小和方向•线:由无数个点组成,没有宽度和厚度,有无数个方向•线段:具有起点和终点的线•射线:具有起点但无终点的线•面:由无数个点和线组成,有无数个方向•平面图形:封闭的有限个线段构成的图形,例如矩形、正方形、三角形等3.2 图形的基本性质•线段的长度:用长度单位表示,如cm、m等•线段的相等:线段的长度相等•角的概念:由两条射线的公共端点所确定的图形•角的度量:用角度表示,以度为单位•垂直:两条线段、射线、直线相交且互相垂直•平行:两条线段、射线、直线永远不相交,且在同一个平面中•三角形的内角和:任意一角的两个邻角之和为180°•矩形的特性:4条边两两相等且相邻两条边互相垂直4. 面积与体积面积和体积是研究图形大小的重要概念,通过计算可以得到准确的数值。
最新华东师大版八年级数学(shùxué)上册知识点总结最新华东师大版八年级数学(shùxué)上册知识点总结华师版八年级上册知识点总结第十一章:数的开方知识点平方根内容概念:如果一个数的平方等于a,那么这个数叫做a的平方根算术(suànshù)平方根:正数a的正的平方根记作:a性质:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根概念:如果一个数的立方等于a,那么这个数叫做a的立方根性质:任何实数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0考点:①〔a的取值范围(fànwéi)a≥〕②(的取值范围≥)③(a的取值范围为任意实数)(≥)④==(多项式与多项式多项式与多项式相乘,先用一个多项式的每一项分别(fēnbié)乘以另一个多项式的每一项,再把所得的积相加例:〔某+2〕〔某3〕=+=例:24÷=〔24÷〕〔÷〕〔÷〕=8整式的除法单项式相除,把系数、同底数幂分别相除作为商的因式,对单项式除于单项式于只在被除式中出现的字母,那么连同它的指数一起作为商的一个因式多项式除于单项式,先用这个多项式除于单项式多项式的每一项除于这个单项式,再把所得的商相加例:(9+)÷(3某)=9÷÷+÷=3+例:(a+b)(a-b)=逆用:=(a+b)(a-b)例:(+)=++逆用++=(+)例:()=+逆用+=()常考点:①两种因式分解法一起运用〔先提公因式,然后再运用公式法〕例:++=++=(+)乘法公式平方差公式两数和与这两数差的积,等于这两数的平方差两数和的平方公式两数和的平方,等于这两数的平方和加上它们的积的2倍两数差的平方公式两数差的平方,等于这两数的平方和减去它们的积的2倍定义:把一个多项式化为几个整式的积的形式,叫做多项式的因式分解因式分解的方法:因式分解①提公因式法②运用乘法公式法=(a+b)(a-b)++=(+)+=()②“1〞常常要变成“12〞例:=()=+〔〕第十三章:全等三角形知识点全等三角形内容性质:全等三角形的对应边和对应角相等三角形全等的判定:1.〔边边边〕S.S.S.:如果两个三角形的三条边都对应地相等,那么这两个三角形全等。
初二数学华师大版知识点初二上学期数学知识点归纳三角形知识概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:边形的内角和等于?180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
八年级下册数学复习资料正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
初中数学八年级上册思维导图一、数的开方1. 平方根:如果一个正数x的平方等于a,那么x是a的平方根,记作x=√a。
正数a的平方根有两个,它们互为相反数,分别记作+√a 和√a。
0的平方根是0,负数没有平方根。
2. 立方根:如果一个数x的立方等于a,那么x是a的立方根,记作x=³√a。
每个实数都有唯一的立方根。
3. 开方运算:开方运算是求一个数的平方根或立方根的运算。
对于正数a,开方运算可以表示为√a或³√a。
二、实数1. 实数的概念:实数包括有理数和无理数。
有理数是可以表示为两个整数比的数,无理数是不能表示为两个整数比的数。
2. 实数的分类:实数可以分为正实数、负实数和0。
正实数是大于0的实数,负实数是小于0的实数,0既不是正实数也不是负实数。
3. 实数的运算:实数可以进行加法、减法、乘法和除法运算。
在运算过程中,需要遵循实数的运算规律,如交换律、结合律和分配律。
三、勾股定理1. 勾股定理的内容:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。
即a²+b²=c²,其中a、b是直角边,c是斜边。
2. 勾股定理的应用:勾股定理可以用来解决直角三角形中的边长问题,也可以用来解决一些与直角三角形相关的实际问题。
3. 勾股定理的证明:勾股定理的证明有多种方法,其中一种常见的证明方法是使用几何图形的面积关系。
四、一次函数1. 一次函数的概念:一次函数是指函数的图像是一条直线,其一般形式为y=kx+b,其中k是斜率,b是截距。
2. 一次函数的性质:一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
3. 一次函数的应用:一次函数可以用来描述一些线性关系,如物体的速度与时间的关系、正比例关系等。
五、不等式1. 不等式的概念:不等式是表示两个数之间大小关系的数学表达式,如a>b、a<b、a≥b、a≤b等。
2. 不等式的性质:不等式可以进行加减、乘除运算,但在乘除运算中需要注意符号的变化。
初中数学八年级上册思维导图一、数的开方1. 平方根:如果一个正数x的平方等于a,那么x是a的平方根,记作x=√a。
正数a的平方根有两个,它们互为相反数,分别记作√a和√a。
0的平方根是0。
2. 立方根:如果一个数x的立方等于a,那么x是a的立方根,记作x=³√a。
立方根只有一个。
3. 算术平方根:正数a的正的平方根,记作√a,称为a的算术平方根。
4. 立方根的性质:①正数的立方根是正数;②负数的立方根是负数;③0的立方根是0。
二、实数1. 实数的概念:实数包括有理数和无理数。
有理数是可以表示为两个整数比的数,无理数是不能表示为两个整数比的数。
2. 实数的分类:①正实数;②负实数;③零。
3. 实数的运算:实数的加减乘除运算与有理数的运算类似,但需要注意无理数的运算。
三、二次根式1. 二次根式的概念:形如√a的式子,其中a≥0,称为二次根式。
2. 二次根式的性质:①√a²=a(a≥0);②(√a)²=a(a≥0);③√ab=√a√b(a≥0,b≥0);④√a²+b²=√a²+√b²(a≥0,b≥0)。
3. 二次根式的运算:二次根式的加减乘除运算与有理数的运算类似,但需要注意无理数的运算。
四、一元二次方程1. 一元二次方程的概念:形如ax²+bx+c=0(a≠0)的方程,称为一元二次方程。
2. 一元二次方程的解法:①配方法;②求根公式法;③因式分解法。
3. 一元二次方程的根的判别式:判别式△=b²4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根。
五、不等式1. 不等式的概念:表示不相等关系的式子称为不等式。
2. 不等式的性质:①两边同时加上或减去同一个数,不等号方向不变;②两边同时乘以或除以同一个正数,不等号方向不变;③两边同时乘以或除以同一个负数,不等号方向改变。
八年级上第11 章数的开方1.平方根( 1)如果一个数的平方等于a,那么这个数就叫做 a 的平方根。
即:如果 x2 a ,那么 x 叫做 a 的平方根( 2)一个正数有两个平方根,它们互为相反数。
其中:正数 a 的正的平方根,叫做 a 的算术平方根,记作a,读作“根号a”,另一个平方根是它的相反数,即 a 。
因此,正数 a 的平方根可以记作 a 。
a称为被开方数。
0 的平方根只有一个,就是0,记作00 。
负数没有平方根。
a 0(a0 )( 3)求一个非负数的平方根的运算,叫做开平方。
2.立方根( 1)如果一个数的立方等于a,那么这个数叫做 a 的立方根。
即:如果x3a,那么x叫做a 的立方根数 a 的立方根,记作3a,读作“三次根号a”,其中 a 称为被开方数, 3 称为根指数。
(2)求一个数的立方根的运算,叫做开立方。
(3)任何数(正数、负数、 0)都有立方根,并且只有一个。
正数有一个正的立方根。
负数有一个负的立方根。
0的立方根是 0。
3.无理数无限不循环小数叫做无理数。
实数有理数和无理数统称为实数。
实数与数轴上的点一一对应。
第 12 章整式的乘除1.幂的运算( 1)同底数幂相乘,底数不变,指数相加。
a m a n a m n(m、n为正整数)(2)幂的乘方幂的乘方,底数不变,指数相乘。
a mnamn( m、n 为正整数)(3)积的乘方积的乘方,等于把积中每一个因式分别乘方,再把所得的幂相乘。
ab n a n b n(n为正整数)(4)同底数幂的除法同底数幂相除,底数不变,指数相减。
(m、 n 为正整数, m>n, a0 )2.整式的乘法( 1)单项式与单项式相乘将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。
( 2)单项式与多项式相乘将单项式分别乘以多项式的每一项,再将所得的积相加。
(3)多项式与多项式相乘先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。
华师版八年级上册知识点总结第十一章:数的开方知识点内容备注幂同底数幂的乘法同底数幂相乘,底数不变,指数相加逆用:=知识点内容备注平方根概念:如果一个数的平方等于a,那么这个数叫做a的平方根算术平方根:正数a的正的平方根记作:性质:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根考点:(a的取值范围a)2。
()3。
(a的取值范围为任意实数)4.=例:=()=55。
=a(a为任意实数)例:=2,=—2立方根概念:如果一个数的立方等于a,那么这个数叫做a的立方根性质:任何实数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0实数1.包括有理数和无理数2.实数与数轴上的点一一对应常见的无理数(无限不循环小数)有:①π②开方开不尽的数,如,等考点:判断下列的数哪些是无理数?有理数:分数和整数的统称如:,,0都是有理数的运算幂的乘方幂的乘方,底数不变,指数相乘逆用:例:积的乘方积的乘方,把积的每一个因式分别相乘,再把所得的幂相乘==逆用:例=1同底数幂的除法同底数幂相处,底数不变,指数相减逆用:例:若=2,则的值是?整式的乘法单项式与单项式相乘单项式与单项式相乘,只要将它们的系数、相同的字母的幂分别相乘,对于只在一个单项式中出现的字母,连同它的指数一起作为积的一个因式例:·=[3·(-2)]·(·x)·(y·)=单项式与多项式相乘单项式与多项式相乘,将单项式分别乘以多项式的每一项,再将所得的积相加例:(—2=(-2+(—2)=-6+10多项式与多项式多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加例:(X+2)(X-3)==整式的除法单项式除于单项式单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式例:24=(24)()()=8多项式除于单项式多项式除于单项式,先用这个多项式的每一项除于这个单项式,再把所得的商相加例: (9)(3x)=9=3乘法公式平方差公式两数和与这两数差的积,等于这两数的平方差例:(a+b)(a-b)=逆用:=(a+b)(a-b)两数和的平方公式两数和的平方,等于这两数的平方和加上它们的积的2倍例:逆用两数差的平方公式两数差的平方,等于这两数的平方和减去它们的积的2倍例:逆用因式分解定义:把一个多项式化为几个整式的积的形式,叫做多项式的因式分解因式分解的方法:①提公因式法常考点:①两种因式分解法一起运用(先提公因式,然后再运用公式法)例:=②运用乘法公式法=(a+b)(a—b)②“1”常常要变成“”例:第十三章:全等三角形知识点内容备注全等三角形性质:全等三角形的对应边和对应角相等三角形全等的判定:1。
华师大版数学八年级上册知识点汇总第一章数的开方重点知识点知识点一:平方根和立方根类型项目平方根立方根被开方数非负数任意实数符号表示a±3a 性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a 333333)(aa aa a a -=-==知识点二:实数有理数和无理数统称为实数.1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数知识点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点的对应关系数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应,即实数与数轴上的点一一对应.3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。
我们已经学习过的非负数有如下三种形式:(1)任何一个实数a 的绝对值是非负数,即|a |≥0;(2)任何一个实数a 的平方是非负数,即2a ≥0;0≥(0a ≥).非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1.实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3.两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.第二章整式的乘除重点知识点知识点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0,m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.知识点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.知识点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.知识点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c++÷=÷+÷+÷=++知识点三、乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-知识点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.()2222a b a ab b +=++;2222)(b ab a b a +-=-知识点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.知识点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:提公因式法,公式法等.知识点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.第三章全等三角形重点知识点知识点一、全等三角形的性质和判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定2——“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).全等三角形判定3——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).全等三角形判定4——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).知识点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等.(2)可以从已知出发,看已知条件确定证哪两个三角形全等.(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等.(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.3.判定直角三角形全等的特殊方法——斜边直角边定理斜边直角边定理(或简记为HL):斜边和一条直角边分别相等的两个直角三角形全等.知识点诠释:判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.知识点二、等腰三角形1.等腰三角形的性质及其作用性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质1用之证明同一个三角形中的两角相等,是证明角相等的一个重要依据.性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).性质2用来证明线段相等,角相等,垂直关系等.2.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).知识点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.3.等边三角形的性质和判定:性质:等边三角形三个内角都相等,并且每一个内角都等于60°.判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.知识点诠释:由等边三角形的“三线合一”可得:在直角三角形中,30°所对的直角边等于斜边的一半.知识点三、尺规作图、命题、定理与逆命题、逆定理1.尺规作图只能使用圆规和没有刻度的直尺这两种工具作几何图形的方法称为尺规作图.知识点诠释:(1)要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.(2)掌握五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;经过一已知点作已知直线的垂线;作已知线段的垂直平分线.并能利用本章的知识理解这些基本作图的方法.2.命题与逆命题判断一件事件的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.知识点诠释:(1)对于命题的定义要正确理解,也即是通过这句话可以确定一件事是发生了还是没发生,如果这句话不能对于结果给予肯定或者否定的回答,那它就不是命题.(2)每一个命题都可以写成“如果…,那么…”的形式,“如果”后面为题设部分,“那么”后面为结论部分.(3)所有的命题都有逆命题.原命题正确,它的逆命题不一定正确.3.定理与逆定理数学中,有些命题可以从基本事实或者其他真命题出发,用逻用推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.如果一个定理的逆命题也是真命题,那就称它为原定理的逆定理.知识点诠释:(1)定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.(2)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理.知识点四、角平分线、线段垂直平分线的性质定理及其逆定理1.角平分线性质定理及其逆定理角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边的距离相等的点在角的平分线上.知识点诠释:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.2.线段垂直平分线(也称中垂线)的性质定理及其逆定理线段的垂直平分线上的点到线段两端的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.知识点诠释:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理则是在结论中确定线段被垂直平分,一定要注意着两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.第四章勾股定理重点知识点知识点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段.知识点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证2c 与22a b +是否具有相等关系,若222a b c +=,则△ABC 是以∠C 为直角的直角三角形,反之,则不是直角三角形.3.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)知识点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.第五章数据的收集与表示重点知识点知识点一、数据的收集1.收集数据的步骤(1)明确调查问题;(2)确定调查对象;(3)选择调查方法;(4)展开调查;(5)记录结果;(6)分析结果,得出结论.2.频数与频率频数表示每个对象出现的次数;频率表示每个对象出现的次数与总次数的比值.频数与频率都能够反映每个对象出现的频繁程度.但在总次数不相等时,应比较频率而不是频数.知识点诠释:收集数据时,通常采用画“正”字的方法记录数据出现的频数.知识点二、数据的表示1.统计表和统计图:统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据;统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.2.三种统计图(1)条形统计图是用宽度相同的条形的高低或长短来表示数据的统计图,它可以很直观地反映出数据的数量特征,便于比较大小,但不能清楚地反映各部分占总体的百分比.如果有两个研究对象,常常把这两个对象的相应数据并列表示在同一幅条形统计图中.(2)扇形统计图是用整个圆代表所研究的总体,用圆中各个扇形代表组成总体的各个部分,扇形圆心角的大小反映出各组成部分的数量在总数量中所占份额的大小.从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图是用折线表示数量变化规律的统计图.如果关注的是某种现象随时间变化而发生的变化,常常以时间为水平放置的数轴,以折线的起伏直观地反映出数量随时间所发生的相应变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.知识点诠释:三种统计图都有各自的优缺点,在实际生活中我们常常将它们结合起来使用.。
八年级上册知识点第11章 数的平方11.1平方根与立方根一、平方根的概念如果一个数的平方等于a ,那么这个数叫做a 的平方根。
二、平方根的性质1. 一个正数有两个平方根,它们互为相反数。
2. 0有一个平方根,就是它本身。
3. 负数没有平方根。
三、算术平方根正数a 的正的平方根,叫做a的算术平方根,记作,读作“根号a ”;另一个平方根是它的相反数,即-。
因此,正数a 的平方根可以记作±,其中a 称为被开方数。
0的算术平方根是0,负数没有算术平方根。
四、平方根与算术平方根的区别与联系1. 概念不同;2. 表示方法不同;3. 个数及取值不同。
a a a五、开平方求一个非负数的平方根的运算,叫做开平方。
六、立方根1. 概念:如果一个数的立方等于a ,那么这个数叫做a 的立方根。
2. 性质:任何数(正数、负数和0)的立方根只有一个。
3. 表示:数a 的立方根,记作,读作“三次根号a ”。
其中a 称为被开方数,3是根指数。
4. 一个正数只有一个正的立方根,一个负数只有一个负的立方根,0的立方根是0。
七、开立方求一个数的立方根的运算,叫做开立方。
11.2实数一、无理数1. 无限不循环小数叫做无理数。
2. 无理数与有理数的区别(1)有理数是有限小数或无限循环小数,而无理数是无限不循环小数。
(2)所有的有理数都能写成分数的形式(整数可以看成分母是1的分数),而无理数不能写成分数的形式。
二、实数及其分类1. 实数的概念有理数和无理数统称为实数,即实数包括有理数和无理数。
2. 实数的分类(1)按概念分类正整数整数 0有理数 负整数正分数分数实数 负分数正无理数无理数负无理数(2)按正负分类3a正整数正有理数正实数 正分数正无理数实数 0负整数负有理数负实数 负分数负无理数三、实数与数轴上点的关系实数与数轴上的点意义对应。
四、实数的有关概念1.一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。
⎪⎩⎪⎨⎧<−=>=0,0,00,a a a a a a 2.一个数的绝对值是非负数,即a≥0,因此,在实数范围内,绝对值最小的数是零.两个相反数的绝对值相等.第12章 整式的乘除12.1幂的运算12.1.1同底数幂的乘法一、同底数幂的意义及同底数幂的乘法法则1. 同底数幂的意义同底数幂是指底数相同的幂。
(其中底数可以是数、单独的字母或其他单项式,也可以是多项式)。
2. 同底数幂的乘法法则n m n m a a a +=⋅(m 、n 为正整数),即同底数幂相乘,底数不变,指数相加。
二、逆用同底数幂的乘法法则同底数幂的乘法法则 n m n m a a a +=⋅(m 、n 为正整数)可以逆用,即a m+n =a m ·a n (m 、n 为正整数)。
12.1.2幂的乘方,12.1.3积的乘方一、幂的乘方的意义及运算法则1. 幂的乘方的意义幂的乘方是指几个相同的幂相乘。
如(a ³)²是两个a ³相乘。
2. 幂的乘方的运算法则()mn n m a a =(m 、n 为正整数),即幂的乘方,底数不变,指数相乘。
二、幂的乘方运算法则的逆向运用幂的乘方运算法则可以逆向运用,即a mn =(a m )n =(a n )m (m 、n 为正整数)。
三、积的乘方的意义及运算法则1. 积的乘方的意义积的乘方指底数是乘积形式的乘方。
2. 积的乘方的运算法则()n n n b a ab =(n 为正整数),即积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘。
四、积的乘方运算法则的的逆向运用积的乘方的运算法则可以逆用,即a n b n =(ab)n (n 为正整数)。
注意:运用积的乘方运算法则进行运算,要注意系数也要乘方;底数是科学计数法的形式时,乘方后的结果往往也需要写成科学计数法的形式。
12.1.4同底数幂的除法一、同底数幂的除法法则一般地,设m,n 为正整数,m ﹥n,a ≠0,有a m ÷a n =a m-n这就是说,同底数幂相除,底数不变,指数相减。
注意:只有“同底数”的幂才可应用同底数幂的除法法则,底数互为相反数时可以先化为同底数的幂再进行运算。
()二、逆用同底数幂的除法法则同底数幂的除法法则可以逆用,即a m-n =a m ÷a n (m,n 都是正整数,且m ﹥n,a ≠0)12.2整式的乘法12.2.1单项式与单项式相乘12.2.2单项式与多项式相乘一、单项式与单项式相乘单项式与单项式相乘,只要将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。
二、单项式与多项式相乘单项式与多项式相乘,将单项式分别乘以多项式的每一项,再将所得的积相加。
12.2.3多项式与多项式相乘一、多项式与多项式相乘多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加,即(m+n )(a+b)=ma+mb+na+nb12.3乘法公式12.3.1两数和乘以这两数的差一、两数和与这两数差的乘法公式(平方差公式)两数和与这两数差的乘法公式:()()22b a b a b a −=−+即两数和与这两数差的积,等于这两数的平方差。
此公式也简称为平方差公式。
12.3.2两数和(差)的平方一、两数和(差)的平方公式及其几何意义两数和(差)的平方公式:()2222b ab a b a ++=+ ()2222b ab a b a +−=− 语言描述:两数和(差)的平方,等于这两数的平方和加上(减去)它们的积的2倍。
(注:此公式简称完全平方公式)。
12.4整式的除法一、单项式除以单项式单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式。
二、多项式除以单项式多项式除以单项式,先用这个多项式的每一项除以这个单项式,再把所得的商相加。
12.5因式分解一、因式分解的概念把一个多项式化为几个整式的积的形式,叫做多项式的因式分解。
注意:多项式因式分解的结果必须是乘积的形式。
二、提公因式法多项式的每项中都含有相同的因式叫做公因式。
如ab+ac+ad 中,公因式是a.如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种因式分解的方法叫做提公因式法。
如ma+mb+mc=m(a+b+c).三、公式法把乘法公式反过来运用,可以把符合公式特点的多项式因式分解,这种因式分解的方法称为公式法。
公式法1:平方差公式的逆用:a ²-b ²=(a+b)(a-b)公式法2:两数和(差)的平方公式的逆用:a ²+2ab+b ²=(a+b)²,a ²-2ab+b ²=(a-b)²四、十字相乘法:ab x b a x +++)(2=))((b x a x ++(a 、b 是常数)公式特点:1)右边相乘的两个因式都只含有一个相同的字母,都是一次二项式,并且一次项的系数为一。
2)左边是二次三项式,二次项的系数是1,一次项系数是两常数项之和,积的常数项等于两个因式中常数项之积。
五、因式分解的一般步骤在进行因式分解是应遵循“首先提取公因式,然后考虑用公式”的原则。
第13章全等三角形13.1命题、定理与证明一、命题表示判断的语句叫做命题。
命题的两层含义:(1)命题必须是一个完整的句子,通常是一个陈述句,包括肯定句和否定句;(2)命题必须是对某件事情作出肯定或否定的判断。
二、命题的组成命题是由条件和结论两部分组成。
条件是已知事项;结论是由已知事项推出的事项。
这样的命题通常可写成“如果.....那么.....”的形式。
三、命题的分类命题分为真命题和假命题两类:真命题:有些命题,如果条件成立,那么结论一定成立,像这样的命题,称为真命题。
假命题:有些命题,条件成立时,不能保证结论总是正确,也就是说结论不成立或不一定成立,像这样的命题,称为假命题。
四、定理基本事实:人们在长期实践中总结出来的,并作为判断其他命题真假依据的真命题。
数学中,有些命题可以从基本事实或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理。
五、证明及证明的一般步骤证明:根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明。
13.2三角形全等的判定一、全等三角形全等三角形的定义:能够完全重合的两个三角形是全等三角形。
相互重合的顶点是对应顶点,相互重合的边是对应边,相互重合的角是对应角。
一个三角形经过翻折、平移和旋转等变换得到的新三角形一定与原三角形全等。
二、边角边(S.A.S.)基本事实:两边及其夹角分别相等的两个三角形全等。
简记为S.A.S.(或边角边)。
注意:应用S.A.S.判定两个三角形全等时一定要保证相等的角必须是分别对应相等的两边的夹角,即“两边夹一角”,切不可出现“边边角”的错误。
三、角边角(A.S.A.)基本事实:两角及其夹边分别相等的两个三角形全等。
简记为A.S.A.(或边角边)。
四、角角边(A.A.S.)两角分别相等且其中一组等角的对边相等的两个三角形全等。
简记为A.A.S.(或角角边)五、边边边(S.S.S.)基本事实:三边分别相等的两个三角形全等。
简记为S.S.S.(或边边边)。
六、斜边直角边(H.L.)斜边和一条直角边分别相等的两个直角三角形全等。
简记为H.L.(或斜边直角边)。
13.3等腰三角形一、等腰三角形的有关概念有两条边相等的三角形,叫做等腰三角形,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
二、等腰三角形的性质(1)等腰三角形是轴对称图形,对称轴是底边的垂直平分线。
(2)等腰三角形的两底角相等,(简写成“等边对等角”)(3)等腰三角形底边上的高、中线及顶角的平分线互相重合。
(简称“三线合一”)三、等边三角形的有关概念及性质三条边都相等的三角形叫做等边三角形。
等边三角形的各个角都相等,并且每个角都等于60°。
等边三角形也具有“三线合一”的性质。
四、等腰三角形的判定判定方法1:在同一个三角形中两边相等的三角形是等腰三角形。
判定方法2:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”),即在同一个三角形中两角相等的三角形是等腰三角形。
判定方法3:如果一个三角形一边上的高、中线和这一条边所对角的平分线中有任意两条线互相重合,那么这个三角形是等腰三角形。
五、等边三角形的判定1.三条边都相等的三角形是等边三角形。
2.三个角都相等的三角形是等边三角形。