习题1.2
- 格式:docx
- 大小:13.67 KB
- 文档页数:1
大学化学课后习题1,2,3答案大学化学课后习题答案(吉林大学版)第1_2_3_章第一章化学反应的基本规律1.2习题及详解一、判断问题1.状态函数都具有加和性。
(×)2.系统的状态发生改变时,至少有一个状态函数发生了改变。
(√)3.由于caco3固体的分解反应是吸热的,故caco3的标准摩尔生成焓是负值。
(×)4.利用盖斯定律计算反应热效应时,其热效应与过程无关,这表明任何情况下,化学反应的热效应只与反应的起,始状态有关,而与反应途径无关。
(×)5.因为物质的绝对熵随温度的升高而增大,故温度升高可使各种化学反应的δs大大增加。
(×)6.δh,δs受温度影响很小,所以δg受温度的影响不大。
(×)7.凡δg大于零的过程都不能自发进行。
(×)8.273k,101.325kpa下,水凝结为冰,其过程的δs<0,δg=0。
(√)kt??(ph2o/p?)4(ph2/p?)49.反应Fe3O4(s)+4h2(g)的平衡常数表达式→ 3Fe(s)+4H2O(g)为10。
2No+O2反应速率方程→ 2no2是:v?kc2(no)?c(o2)。
(√),该反应一定是基元反应。
(×)二.选择题1.气体系统通过路径1和路径2扩展到相同的最终状态,两个变化过程产生的体积功相等,没有非体积功,则两个过程(b)a.因变化过程的温度未知,依吉布斯公式无法判断δg是否相等b.δh相等c、系统和环境之间的热交换不等于D。
上述所有选项都是正确的cucl2(s)+cu(s)→2cucl(s)δrhmθ(1)=170kj?mol-1cu(s)+cl2(g)→cucl2(s)δrhmθ(2)=-206kj?mol-1则δfhmθ(cucl,s)应为(d)kj.mol-1a、 36b.-36摄氏度。
18d.-十八3.下列方程式中,能正确表示agbr(s)的δfhmθ的是(b)a.ag(s)+1/2br2(g)→agbr(s)b.ag(s)+1/2br2(l)→agbr(s)c.2ag(s)+br2(l)→2agbr( s)d.ag+(aq)+br-(aq)→agbr(s)在4.298k下,在下面对参考状态元素的描述中,正确的一个是(c)aδfhmθ≠0,δfgmθ=0,smθ=0b。
1.2会计基本假设、会计基础练习题单选题1。
下列各项中,属于企业会计核算的基础是()A收付实现制B持续经营C会计分期D权责发生制2.下列有关企业会计基础的表述中,错误的是()A权责发生制下凡不属于当期的费用,即使款项已在当期支付,也并不作为当期费用B权责发生制下凡不属于当期的收入,即使款项已在当期收取,也并不作为当期收入C收付实现制的会计基础是企业会计结算的主要依据D权责发生制的会计基础,在企业会计核算中发挥了统驭作用3。
将企业持续经营的生产经营活动划分为一个连续的长短相同的期间,体现的会计基本假设是()A会计分期B货币计量C持续经营D会计主体4。
货款已经收到,但销售并未实现,则企业应当不确认销售商品收入,这一做法是()A可比性信息质量的要求B谨慎性信息质量的要求C收付实现制基础的要求D权责发生制基础的要求5。
下列各项中,不属于会计中期的是()A月度B季度C年度D半年度6。
形成权责发生制和收付实现制不同的记账基础,进而出现应收、应付、预收、预付、折旧摊销等会计处理方法所依据的会计基本假设是()A会计主体B持续经营C会计分期D货币计量7.界定从事会计工作和提供会计信息的空间范围是会计基前提是()A会计职能B会计主体C会计内容D会计对象8。
企业本月收到上月赊销产品款20000元,本月销售产品40000元,收到货款30000元,余款尚未收到按权责发生制原则,本月实现的产品销售收入为()元A20000 B30000 C40000 D600009.A公司1月份发生下列支出,预付本季度全年保险费2400,支付上年第四季度借款利息3000元(已预提),支付本月办公费800元,计入本月费用的是()元A1000 B6200 C3200 D38010。
企业为应收账款计提坏账准备,主要体现的会计信息质量要求是()A谨慎性B可比性C可靠性D重要性11.通常情况下,最关心偿债能回复力和支付利息能力的财务报表使用者是()A企业的债权人B企业职工C企业股东D税务机关12。
人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版习题1.2(第24页)练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞U ,因为对定义域内每一个x 都有22()11()()x x f x f x x x-++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3(第39页)1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-, 由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x=-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为xm ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题(第44页)A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320xx -+=的解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P POcm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==I 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a=时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a=,而B A ⊆,则11a =-,或11a =,得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭I ,即{(0,0)}A B =I ;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭I,即A C =∅I ;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭I; 则39()(){(0,0),(,)}55A B B C =-IU I .6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞U .7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---,即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x=, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数; (2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.解:由(){1,3}U A B =U ð,得{2,4,5,6,7,8,9}A B =U ,集合A B U 里除去()U A B I ð,得集合B , 所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. .5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩ 由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。
1.2充分条件与必要条件A组1.“四边形是平行四边形”是“四边形是正方形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由“四边形是平行四边形”不一定得出“四边形是正方形”,但当“四边形是正方形”时必有“四边形是平行四边形”,故“四边形是平行四边形”是“四边形是正方形”的必要不充分条件.答案:B2.“x≤2或x≥5”是“x2-7x+10>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:x2-7x+10>0,解得x>5或x<2.∴“x≤2或x≥5”是“x2-7x+10>0”的必要不充分条件.故选B.答案:B3.“a=2”是“直线ax+2y=0平行于直线x+y=1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:若a=2,则ax+2y=0即为x+y=0与直线x+y=1平行,反之若ax+2y=0与x+y=1平行,则-=-1,a=2,故选C.答案:C4.给出下列3个结论:①x2>4是x3<-8的必要不充分条件;②在△ABC中,AB2+AC2=BC2是△ABC 为直角三角形的充要条件;③若a,b∈R,则“a2+b2≠0”是“a,b不全为0”的充要条件.其中正确的是()A.①②B.②③C.①③D.①②③解析:由x2>4可得x>2或x<-2,而由x3<-8可得x<-2,所以x2>4是x3<-8的必要不充分条件,①正确;在△ABC中,若AB2+AC2=BC2,则△ABC一定为直角三角形,反之不成立,AB2+AC2=BC2是△ABC为直角三角形的充分不必要条件,故②不正确;容易判断③正确.答案:C5.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:当φ=π时,y=sin(2x+π)=-sin 2x,此时曲线过原点;而当曲线过原点时,φ=kπ,k∈Z.答案:A6.指数函数f(x)=(3-a)x是单调递增函数的充要条件是.解析:由指数函数的性质可得,要使该函数为增函数,只要3-a>1,即a<2.答案:a<27.已知a,b是两个命题,如果a是b的充分条件,那么¬a是¬b的条件.解析:由已知条件可知a⇒b,∴¬b⇒¬a.∴¬a是¬b的必要条件.答案:必要8.下面两个命题中,p是q的什么条件?(1)p:在△ABC中,角A,B,C的对边分别为a,b,c,b2>a2+c2,q:△ABC为钝角三角形;(2)a,b∈R,p:x>a2+b2,q:x>2ab.解(1)在△ABC中,因为b2>a2+c2,所以cos B=<0,所以B为钝角,即△ABC为钝角三角形.反之,若△ABC为钝角三角形,B可能为锐角,这时b2<a2+c2.所以p⇒q,q p,故p是q的充分不必要条件.(2)因为当a,b∈R时,有a2+b2≥2ab,所以p⇒q.反之,若x>2ab,则不一定有x>a2+b2,即p⇒q,q p,故p是q的充分不必要条件. 9.指出下列各组命题中,p是q的什么条件(用“充分不必要条件”“必要不充分条件”“充要条件”作答).(1)向量a=(x1,y1),b=(x2,y2),p:,q:a∥b;(2)p:|x|=|y|,q:x=-y;(3)p:直线l与平面α内两条平行直线垂直,q:直线l与平面α垂直;(4)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),p:f(x),g(x)均为偶函数,q:h(x)为偶函数.解(1)由向量平行公式可知p⇒q,但当b=0时,a∥b不能推出,即q p,故p是q的充分不必要条件.(2)因为|x|=|y|⇒x=±y,所以p q,但q⇒p,故p是q的必要不充分条件.(3)由线面垂直的判定定理可知:p q,但由线面垂直的定义可知:q⇒p,故p是q的必要不充分条件.(4)若f(x),g(x)均为偶函数,则h(-x)=f(-x)+g(-x)=f(x)+g(x)=h(x),所以p⇒q,但q p,故p是q的充分不必要条件.10.已知实数p:x2-4x-12≤0,q:(x-m)(x-m-1)≤0.(1)若m=2,则p是q的什么条件;(1)若q是p的充分不必要条件,求实数m的取值范围.解实数p:x2-4x-12≤0,解得-2≤x≤6,q:(x-m)(x-m-1)≤0,解得m≤x≤m+1,令A=[-2,6],B=[m,m+1],(1)若m=2,则B=[2,3],所以p是q的必要不充分条件;(2)若q是p的充分不必要条件,即B⫋A,则解得-2≤m≤5,∴m∈[-2,5].B组1.m=是直线x-y+m=0与圆x2+y2-2x-2=0相切的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由圆心(1,0)到直线x-y+m=0距离d=,得m=或m=-3,故选A.答案:A2.若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若x=4,则a=(4,3),所以|a|==5;若|a|=5,则=5,所以x=±4,故“x=4”是“|a|=5”的充分不必要条件.答案:A3.以q为公比的等比数列{a n}中,a1>0,则“a1<a3”是“q>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:在等比数列中,若a1<a3,则a1<a1q2.∵a1>0,∴q2>1,即q>1或q<-1.若q>1,则a1q2>a1,即a1<a3成立.∴“a1<a3”是“q>1”成立的必要不充分条件,故选B.答案:B4.设l,m,n均为直线,其中m,n在平面α内,则“l⊥α”是“l⊥m且l⊥n”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:因为l⊥α,m⊂α,n⊂α,所以l⊥m且l⊥n,故充分性成立;当l⊥m且l⊥n时,m,n⊂α,不一定有m与n相交,所以l⊥α不一定成立,故必要性不成立.答案:A5.“0≤m≤1”是“函数f(x)=cos x+m-1有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:令f(x)=cos x+m-1=0,得cos x=-m+1,若函数有零点,则-1≤-m+1≤1,解得0≤m≤2,因此“0≤m≤1”是“函数f(x)=cos x+m-1有零点”的充分不必要条件.答案:A6.在△ABC中,设命题p:,命题q:△ABC是等边三角形,那么命题p是命题q的条件.解析:由,得,因此b2=ac,a2=bc,c2=ab,可得a=b=c,故△ABC是等边三角形;反之,若△ABC是等边三角形,则一定有.故命题p是命题q的充要条件.答案:充要7.给出下列命题:①“a>b”是“a2>b2”的充分不必要条件;②“lg a=lg b”是“a=b”的必要不充分条件;③若x,y∈R,则“|x|=|y|”是“x2=y2”的充要条件;④在△ABC中,“sin A>sin B”是“A>B”的充要条件.其中真命题是.(写出所有真命题的序号)解析:∵a=-2,b=-3时,a>b,而a2<b2,∴a>b对a2>b2不具备充分性,故①错误;∵lg a=lg b⇒a=b,∴具备充分性,故②错误;∵|x|=|y|⇒x2=y2,x2=y2⇒|x|=|y|,∴“|x|=|y|”是“x2=y2”的充要条件,③正确;∵在△ABC中,(1)当A,B均为锐角或一个为锐角一个为直角时,sin A>sin B⇔A>B.(2)当A,B有一个为钝角时,假设B为钝角,∵A+B<π⇒A<π-B⇒sin A<sin B,与sin A>sin B矛盾,∴只能A为钝角.∴sin A>sin B⇒A>B;反过来A>B,A为钝角时,π-A>B⇒sin A>sin B,∴④正确.答案:③④8.已知数列{a n}的前n项和S n=p n+q(p≠0且p≠1),求证:数列{a n}为等比数列的充要条件为q=-1.证明充分性:当q=-1时,a1=p-1,当n≥2时,a n=S n-S n-1=(p-1),当n=1时也成立.于是=p(p≠0且p≠1),即数列{a n}为等比数列.必要性:当n=1时,a1=S1=p+q.当n≥2时,a n=S n-S n-1=p n-1(p-1),因为p≠0且p≠1,所以=p.因为{a n}为等比数列,所以=p,即=p,即p-1=p+q,故q=-1.综上所述,q=-1是数列{a n}为等比数列的充要条件.。
1.求下列函数的反函数: ⑴11xy x-=+; 【解】从11x y x -=+解出x ,得11yx y-=+,对换变量,x y 得11x y x -=+, 即得11x y x -=+的反函数就是自身11xy x-=+。
⑵212xxy =+;【解】从212x x y =+解出x ,得21xy y =-,即得2log 1y x y=-, 对换变量,x y 得2log 1xy x=-, 即得212xxy =+的反函数就是自身2log 1x y x =-。
⑶114114xy x-+=++。
【解】从114114xy x-+=++解出x ,得1141y x y -+=+,即得211[()1]41y x y -=-+2(1)y y -=+, 对换变量,x y 得2(1)xy x -=+, 即得114114xy x-+=++的反函数是2(1)x y x -=+。
2.下列函数可以看成由哪些简单函数复合而成的? ⑴sin 3y x =;【解】以简单变量u 替换内层的复杂变量3x ,即作中间变量3u x =,使得替换后的函数成为简单函数sin y u =,于是,函数sin 3y x =可以看成由简单函数sin y u =,3u x =复合而成的。
⑵2sin x y e =;【解】以简单变量u 替换内层的复杂变量2sin x ,即作中间变量2sin u x =,使得替换后的函数成为简单函数u y e =;这时,中间变量22sin (sin )u x x ==仍为复合函数,再以简单变量v 替换内层的复杂变量sin x ,即作第二中间变量sin v x =,使得替换后的函数成为简单函数2u v =,于是,函数2sin x y e =可以看成由简单函数uy e =,2u v =,sin v x =复合而成的。
⑶ln(ln(ln ))y x =;【解】以简单变量u 替换内层的复杂变量ln(ln )x ,即作中间变量ln(ln )u x =,使得替换后的函数成为简单函数ln y u =;这时,中间变量ln(ln )u x =仍为复合函数,再以简单变量v 替换内层的复杂变量ln x ,即作第二中间变量ln v x =,使得替换后的函数成为简单函数ln u v =,于是,函数ln(ln(ln ))y x =可以看成由简单函数ln y u =,ln u v =,ln v x =复合而成的。
算法第四版习题答案1.2/** 1.2.1 编写一个Point2D的用例,从命令行接受一个整数N。
在单位正方形内生成N个随机点,然后计算两点之间的最近距离*/public class testPoint2D {public testPoint2D() {// TODO Auto-generated constructor stub}public static void drawbox(double bw, double bh){StdDraw.setPenRadius(0.005);StdDraw.setPenColor(StdDraw.RED);Interval1D xinterval = new Interval1D(0, bw);Interval1D yinterval = new Interval1D(0, bh);Interval2D box = new Interval2D(xinterval, yinterval);box.draw();}public static Point2D[] drawpoint(int N){Point2D[] p=new Point2D[N];for(int i=0;i<N;i++){double x=Math.random();double y=Math.random();p[i]=new Point2D(x, y) ;p[i].draw();}return p;}public static double findmindist(Point2D[] p){Point2D p1=p[0];Point2D p2=p[1];double mindist =p[0].distanceTo(p[1]);StdDraw.setPenRadius(0.002);StdDraw.setPenColor(StdDraw.RED);int n=p.length ;for(int i=1;i<n-1;i++)for(int j=i+1;j<n;j++){double temp=p[i].distanceTo(p[j]);if(temp<mindist){ mindist=temp;p1=p[i];p2=p[j];}}p1.drawTo(p2);StdOut.print("min dist="+mindist +p1.toString()+p2.toString());return mindist;}public static void main(String[] args) {int N=StdIn.readInt();//读取画点的数量//StdDraw.setXscale(0,1 );//StdDraw.setYscale(0,1);drawbox(1,1);//画出一个单位大小的正方形StdDraw.setPenRadius(0.01);StdDraw.setPenColor(StdDraw.BLACK);//drawpoint(N);//画出N个点double min=findmindist(drawpoint(N));}}/** 编写一个Interval1D的用例,从命令行接受一个整数N。
2 电力电子器件(6)第1章习题第2部分:简答题1. 什么是电力电子技术?答:电力电子技术是应用于电力领域的电子技术,使用电力电子器件对电能进行变换和控制的技术。
2. 电能变换电路的有什么特点?机械式开关为什么不适于做电能变换电路中的开关?答:电能变换电路在输入与输出之间将电压、电流、频率、相位、相数中的一相加以变换。
电能变换电路中理想开关应满足切换时开关时间为零,使用寿命长,而机械开关不能满足这些要求。
3. 电力电子变换电路包括哪几大类?答:交流变直流——整流;直流变交流——逆变;直流变直流——斩波;交流变交流——交流调压、变频。
第2章习题(1)第2部分:简答题1.电力电子器件是如何定义和分类的?同处理信息的电子器件相比,它的特点是什么?答:电力电子器件是指可直接用于处理电能的主电路中,实现电能变换或控制的电子器件。
按照控制程度:不控型器件,半控型器件,全控型器件。
按驱动电路:电流驱动型,电压驱动型。
特点:处理的功率大,器件处于开关状态,需要信息电子电路来控制,需要安装散热片。
2.使晶闸管导通的条件是什么?答:两个条件缺一不可:(1)晶闸管阳极与阴极之间施加正向阳极电压。
(2)晶闸管门极和阴极之间必须加上适当的正向脉冲电压和电流。
3.维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:维持晶闸管导通的条件是流过晶闸管的电流大于维持电流。
欲使之关断,只需将流过晶间管的电流减小到其维持电流以下,可采用阳极电压反向、减小阳极电压或增大回路阻抗等方式。
第2章习题(1)第3部分:计算题1.晶闸管在单相正弦有效值电压220V时工作,若考虑晶闸管的安全裕量,其电压定额应选多大?解:晶闸管所承受的正、反向电压最大值为输入正弦交流电源电压的峰值311V;(注:电压峰值=1.414*有效值)取晶闸管的安全裕量为2倍,则晶闸管额定电压不低于:2×311V=622V。
2.流经晶闸管的电流波形如题图1-41所示,其电流最大值为Im。
第2节物质的酸碱性一.选择题(2020春•西湖区期末)推理是学习科学的重要方法,以下推理成立的是()A.碳酸能使紫色石蕊试液变红,所以能使紫色石蕊试液变红的一定是碳酸B.单质是由同种元素组成的,所以由同种元素组成的物质一定是单质C.物质M在纯氧中燃烧后产生二氧化碳和水,所以M一定含碳和氢元素D.离子是带电的微粒,所以带电荷的微粒一定是离子(2019秋•常州期末)以下溶液中,导电性最弱的是()A.蔗糖溶液B.氯化钠溶液C.硫酸溶液D.氢氧化钠溶液(2019秋•高州市期末)今年5月,我市各县区进行初中理化实验技能考查,在化学实验中小芳向一无色溶液中滴加紫色石蕊溶液,溶液呈蓝色。
以下结论正确的选项是()A.该溶液显中性B.该溶液一定是一种碱的溶液C.该溶液能使无色酚献试液变红色D.该溶液是一种酸溶液(2018秋•河口区期末)李明同学在做家庭小实验时观察到,将紫甘蓝汁液加入到不同物质中会呈现不同颜色,并记录如下:苹果汁显酸性,那么在苹果汁中加入紫甘蓝汁液最有可能显示的颜色是()A.蓝紫色B.红色C.绿色D.蓝色(2018秋•北仑区期末)把以下物质放入水中,能使紫色石蕊试液变蓝的是()A. Cu (0H) 2B. Na20C. NaClD. CuO(2018秋•姑苏区期末)以下物质中含有大量自由移动离子的是()A.稀盐酸B.氯化钠晶体C.酒精D.石墨(2018秋•平谷区期末)以下物质能使紫色石蕊试液变红的是()A. C02B. 02C. NaClD. Ca (OH)2(2018秋•市中区期末)花青素遇酸性溶液变红色,遇碱性溶液变蓝色。
以下哪种调味品可以使花青素变红色()A.食盐B.白醋C.味精D.香油(2018秋•韩城市期末)逻辑推理是一种重要的化学思维方法,以下推理正确的是()A.酸性溶液能使紫色石蕊试液变红,能使紫色石蕊试液变红的一定是酸性溶液B.洗洁精除去餐具上的油污利用了乳化原理,那么汽油除去衣服上的油渍也利用了乳化原理C.阳离子都是带正电荷的粒子,带正电荷的粒子一定是阳离子D.氧化物中都含有氧元素,那么含有氧元素的化合物一定是氧化物(2018秋•唐山期末)以下说法不正确的选项是()A.有一种溶液能使无色的酚醐试液变红,那么该溶液呈碱性B.有一种溶液能使紫色的石蕊试液变蓝,那么该溶液呈碱性C.有一种溶液不能使无色的酚酥试液变色,那么该溶液呈酸性D.有一种溶液能使紫色的石蕊试液变红,那么该溶液呈酸性(2018秋•铁西区期末)小明设计了如图装置探究“微粒是不断运动的一段时间后,可观察到的无色酚麟试液变红,那么物质A是()A无色酚酎试液A.浓氨水B.浓盐酸C.石灰水D.双氧水(2017秋•温州期末)紫甘蓝是群众爱吃的蔬菜,含有丰富的花青素。
统计学一、单项选择题1.要了解50个学生的学习情况,则总体单位是()A、50个学生B、每一个学生C、50各学生的学习成绩D、每一个学生成绩2.一个总体单位()A、只能有一个标志B、只能有一个指标C、可以有多个标志D、只能有一个指标3.统计认识的过程是()A、从质到量B、从量到质C、从质开始到量,再到质与量的结合D、从量开始到质,再到量与质的结合4.对某市高等学校的科研所进行调查,则统计总体是()A、某市所有的高等学校B、某一高等学校的科研所C、某一高等学校D、某市所有高等学校的科研所5.某高校在校学生数为10000人,若要研究该校在校学生规模是否适度,这里的“在校学生数为10000人”是()A、指标B、变量C、标志D、标志值6.某企业几个工人的工资分别为1500元、l650元,1800元和2000元,这几个数字是()A、标志B、标志值C、指标D、变量7.下列指标中属于数量指标的是()A、利润额B、劳动生产率C、人口密度D、资金利税率8.某企业有500名职工,将500名职工的月工资总额除以500之后求出该企业的月平均工资,这是()A、对500个变量求平均B、对500个变量值求平均C、对500个标志求平均D、对500个指标求平均9、下列属于离散变量的是()A、厂房面积B、职工人数C、销售额D、原材料消耗额10.下列各项中哪项属于存量()A、存款余额B、存款发生额C、出生人数D、人口自然增长量二、多项选择题1、在全国人口普查中()A、每个人是总体单位B、女性是品质标志C、年龄是数量标志D、人口平均寿命是数量标志E、全国人口数是总体2、下列标志中,属于品质标志的有()A、利润率B、产品品种C、男性D、产值E、统计人员技术职务3、下列统计指标中,属于数量指标的有()A、全国总人口B、社会总产值C、平均工资D、全国钢产量E、计划完成程度4、下列指标中属于离散指标的有()A、商业企业单位数B、商品总销售额C、职工人数D、商品库存额E、商店经营商品品种数5、下列标志中,属于数量标志的有()A、职务B、出勤人数C、产品产量D、八级工资制E、文化程度6、下列各项中,属于统计指标的有()A、某人的身高B、我国某年的钢铁产量C、某设备的使用年限D、某职工某年的工资收入E、2008年我国的人均国内生产总值三、综合题要调查某大型汽车制造公司职工的情况时,试指出总体、总体单位,并举出若干个品质标志、数量标志、数量指标和质量指标的例子。
习题 1.21. 解:因为对2的任一向量(21,x x ),按对应规则都有2中惟一确定的向量与之对应,所以是2的一个变换.(1) 关于x 轴的对称变换; (2) 关于y 轴的对称变换; (3) 关于原点的对称变换; (4) 到x 轴的投影变换; (5) 到y 轴的投影变换.2. 解: (1) 不是.因为(2211ααk k +)=2211ααk k ++β≠k 1(1α)+k 2)()()(22112βαβαα+++=k k=2211ααk k ++)(21k k +β(2) 不是.因为(2211ααk k +)=β≠k 1(1α)+k 2βα)()(212k k +=(3) 不是.因为取 x =(1 , 0 , 0 ) , 1≠k 时,(k x )=(k 2,0, 0)≠k( x )= k (1, 0, 0)=(k , 0, 0)(4) 是.因为 设x =(321,,x x x ) , y =(321,,y y y )(k 1x +k 2y )=112(x k ),,2(),,1322121322y y y y y k x x x x +-++-=k 1(x )+k 2( y )(5) 是.因为()()(2211x f k x f k +)=)1()1(2211+++x f k x f k=k 1(f 1(x ))+k 2))((2x f(6) 是.因为()()(2211x f k x f k +)=)()(022011x f k x f k += k 1(f 1(x ))+k 2))((2x f(7) 不是.因为 设x =(321,,x x x ) , y =(321,,y y y )(k 1x +k 2y )= ()0),sin(),cos(22211211y k x k y k x k ++≠k 1(x )+k 2( y )=)0,sin ,(cos )0,sin ,(cos 212211y y k x x k + =()0,sin sin ,cos cos 22211211y k x k y k x k ++ .3. 解:1(α+β)=1[()]()11222221,,y x y x y x y x --+=++()()=-+-=1212,,y y x x 1(α)+1(β)1(k α)=1(k (x 1, x 2))()()kx x k kx kx =-=-=1212,,1(α)所以1是线性变换.同理可证2也是线性变换.(1+2)(α)= (1+2)[(x 1, x 2)]=1[(x 1, x 2)]+2[(x 1, x 2)]),(),(),(21212112x x x x x x x x --+=-+-=12(α)=1[2(α)]=1[( x 1, -x 2)]=(- x 2, -x 1)21(α)=2[1(α)]=2[( x 2, -x 1)]=( x 2, x 1) .4. 证:(1)因()()()C B A B A C B A +-+=+()()=-+-=BC CB AC CA (A )+(B )()()()()=-=-=AC CA k C kA kA C kA k(A )故是线性变换.(2)(A )B +A(B ) ()()BC CB A B AC CA -+-==-=ABCCAB (AB )5. 解:令 ()3,,R c b a c cb a a ∈↔⎥⎦⎤⎢⎣⎡+ 即可.6. 证:设()[]n x p x f ∈,则(12-21)(f(x))=1[2(f(x))]-2[1(f(x))]=1[xf(x)]-2[f(x)]()()()()x f x f x x f x x f ='-'+=故12-21是恒等变换.7. 证:设2V ∈α,则2211e k e k +=α,由于2(e 1)+ 2(e 2)=2(e 1+e 2)=e '1+e '22(e 1)-2(e 2)=2(e 1-e 2)=e '1-e '2所以,2(e 1)=e '1,2(e 2)= e '2 于是1(α)=k11(e 1)+k21(e 2)2211e k e k '+'= = k12(e 1)+k22(e 2)=2(α)故1=2.8. 解:(1) 因为j i ,在xoy 平面上,其投影不变,故有(i )=i ,(j)=j ,又k 垂直xoy 平面,则0)(=k , 得((i ),(j ),(k ))=(i ,j ,k ) 000010001所求矩阵为A = 000010001 .(2) 因为,001)(γβαα++==i,010)(γβαβ++==j ,,011)(γβαγ++=+=j i所以, 所求矩阵为 A = 000110101 .(3) 由的定义知, (i )= ((1 ,0 ,0 ))= ( 2 ,0 ,1)(j )= ((0 ,1, 0 ))= ( -1, 1 , 0)(k )=((0 ,0 ,1))= ( 0 ,1 , 0)有 ((i ),(j ),(k ))=(),,k j i 0111012- 所求矩阵为 A = 0111012- . (4) 据题设: )())(('t f t f = 则)(1x =(bt e at cos )'=bt be bt ae at at sin cos -=21bx ax - )(2x =( bt e at sin )' =12bx ax +)(3x =( bt te at cos )'=431bx ax x -+ )(4x =(bt te at sin )' =342bx ax x ++)(5x =(bt e t at cos 212)' =653bx ax x -+)(6x = ( bt t sin 212 )' =564bx ax x ++于是( )(1x , )(2x , )(3x , )(4x , )(5x , )(6x )()D x x x x x x 654321,,,,,= ,所求矩阵为D =ab baa bbaa bba---00000010000100001000019. 解:(1) (123,,e e e )=(321,,e e e ) 001010100 =(321,,e e e )C所求矩阵为 B=C 1-AC = 111213212223313233a a a a a a a a a (2) (321,,e ke e )=(321,,e e e ) 10000001k =(321,,e e e )C所求矩阵为B=C1-AC =333231232221131211akaakaakaakaa(3) (3221,,eeee+)=(321,,eee)1111=(321,,eee)C 所求矩阵为B=C1-AC=33323231132312221211222113121211aaaaaaaaaaaaaaaa+----++10. 解:由定义知()()31121,0,2εεε+==212)0,1,1()(εεε+-=-=()()23,1,0εε==所以,所求矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-11112.11. 解:因为()()21121,2εεε'+'==()()1231,3εε'==()()2131,1εεε'+'-=-=所以,所求矩阵为⎥⎦⎤⎢⎣⎡-11132.12. 解: (1η,2η,3η)=(321,,εεε) 111101011--(321,,εεε)=(1η,2η,3η) 111101011--1-= (1η,2η,3η) CB=C 1-AC = 11110111-- 021011101- 111101011--1-= 12121211---- .13. 解:(1) (1η,2η,3η) = (321,,e e e ) C , 过渡矩阵为C=(321,,e e e )1-(1η,2η,3η)= 1011101211- 111122221---- = 252112323123232--- (2) ()(1e ,)(2e ,)(3e )=(1η,2η,3η) = (321,,e e e ) C故在基{}i e 下的矩阵就是 C . (3) (()1η,(2η),(3η) ) = (1η,2η,3η) = (321,,e e e ) C=()(1e ,)(2e ,)(3e ) C = (1η,2η,3η) C故在基{}i η下的矩阵仍为C . 14. 解:(1) 由于()211111100cE aE c a E +=⎥⎦⎤⎢⎣⎡=()221212100cE aE c a E +=⎥⎦⎤⎢⎣⎡=()211121100dE bE d b E +=⎥⎦⎤⎢⎣⎡=()221222100dE bE d b E +=⎥⎦⎤⎢⎣⎡= 故1在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=d cd c b a b a A 000000001 类似地,可得2在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=d b c a d b c a A 000000002. 由于3=12,所以3在该基下的矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==2222213d bd cd bccd ad c ac bd b ad abbc abaca A A A同理,可得4在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a c a c b a b a A 0200022000204 (2)由于由简单基E 11,E 12,E 21,E 22改变为给定基E 1,E 2,E 3,E 4的过渡矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=001110011000001C 于是,4在给定基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==-a b ca b c c c a b b a C A C B 002202204115. 解: (1)将题给关系式写成矩阵形式为(()1e ,(2e ),(3e ) ) ()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110011101,,423312121321εεε 即()()()B e e e 3211321321,423312121110011101,,,,εεεεεε=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-由于()()C e e e 321321,,,,=εεε,所以有(=),,321εεε()()BC C e e e 321321,,,,εεε=故在基(II )下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==256355123BC A (2)因为(=)1ε()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001,,001,,321321A εεεεεε ()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=953,,001,,321321e e e CA e e e所以()1ε在基(I )下的坐标为(3,5,9).16. 解:(1)取[]2x p 的简单基1,x ,x 2,则有()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==101110102,,1,,1,,202321x x A x x f f f 从简单基改变到基f 1,f 2,f 3和g 1,g 2,g 3的过渡阵分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5222101011C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2101010112C 故有(g 1, g 2, g 3)=(1, x, x 2 )C =()211321,,C C f f f -()()21101232121102,,,,1C C A C g g g C C A x x ---== 即在基(II )下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==--110211*********C C A C A (2)因为()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-321,,321,,1123212C g g g x x x f ()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=032,,321g g g 所以(f(x))=()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-032,,032,,321321A g g g g g g()23211354,,x x g g g +--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-= .17. 证:设在给定基下的矩阵为()ij a A =,并设C 为从旧基到新基的过渡矩阵,由于在任一组基下的矩阵相同,则有AC C A 1-=,即AC=CA ,根据“A 与一切满秩矩阵可变换”性质,即可定出A 必为数量矩阵()常数k kI A ,=.18. 解:由基321,,ηηη到基321,,εεε的过渡矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=3103161213121211C 故 {}i ε在基下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==-46846453106111C B C B .那么,+,,, (+ )在基{}i ε下的矩阵分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+2644241011151061B A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=601272122126061AB , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=123414026215291361BA , ()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=+3612078611442549675181B A B .19. 证:设有可逆方阵P 与Q ,使 B=P 1-AP , D=Q 1-CQ 则DB O O =CQ Q AP P 11--OO =11--OO QCA O OQP O=QP O O 1-CA O OQP O O即 CA O O 与 DB O O 相似.20. 证:设1r rankA =,2r rankB =,则A ,B 的行向量的极大无关组中分别含有21,r r 个行向量,设分别为11,,r αα 和21,,r ββ ,则A 的每个行向量均可由11,,r αα 线性表示,B 的每个行向量均可由21,,r ββ 线性表示.又可A+B 的每个行向量是A 与B 的相应行向量的和,故A+B 的每个行向量均可由11,,r αα ,21,,r ββ 线性表示.因此A+B 的行向量组的极大无关组中所含向量的个数不超过21r r +,即()rankB rankA B A rank +≤+.21. 证:设()n B r rankA βββ,,,,21 ==,则()()0,,,,,,2121===n n A A A A AB ββββββ ,所以θβ=1A ,θβ=2A ,…,θβ=n A .这就说明B 的列向量n βββ,,,21 都是以A 为系数矩阵的齐次方程组的解.由于r r a n kA =,所以解空间的维数为r n -,从而知nββ,,1 的极大无关组所含向量的个数r n -≤,即r n rankB -≤,因此有n r n r rankB rankA =-+≤+ .22. 证:设A ,B 为同一数域上的n m ⨯与g n ⨯阶矩阵,显然,方程组BX=θ的解向量X 也满足方程组()θ=X AB ,记{}θ==BX X U , (){}θ==X AB X V则V U ⊂,于是dinV AB rank n rankB n U =-≤-=)(dim 即()rankB AB rank ≤.又由于()()()T T T A B rank AB rank AB rank ==rankA rankA T =≤ 因此 (){}r a n k B r a n k A AB rank ,min ≤.23. 证:由上题知,()rankA A A rank T ≤,现在只需证明()rankA A A rank T ≥即可.考虑线性方程组θ=AX A T ,设()T n x x x X ,,,21 =是方程组的一组解,将θ=AX A T 两边左乘X T ,得θ=AX A X T T ,即()θ=AX AX T ,所以θ=AX ,即{}{}00=⊂=AX X AX A X T .于是()rankA n A A rank n T -≤-即有()rankA A A rank T ≤,故有()rankA A A rank T = ,并且有()()rankA rankA A A rank A A rank T T TTT ===即有()()T T AA rank A A rank rankA ==.注:对复矩阵A ,上式不一定成立.例如⎥⎦⎤⎢⎣⎡-=11i i A ,1=rankA .由于 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=00001111ii ii A A T 故()0=A A rank T .此时,相应的关系式应为()()A A rank AA rank rankA **== .24. 证:必要性.由上题已证得,充分性只要在AX=θ两边左乘A T 即可.25. 证:(1)因为n rankA =,故n m ≥,不妨设A 的前n 行线性无关,且构成的n 阶满秩方阵为A 1,后n m -行构成的矩阵为A 2,则⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=B A B A B A A AB 2121所以()()rankB B A rank AB rank =≥1,但()r a n k BAB rank ≤,故()r a n k BAB rank =.(2) 同理可证.26. 解:(1)⎥⎦⎤⎢⎣⎡=0011A , ⎥⎦⎤⎢⎣⎡--=0011B ; (2)⎥⎦⎤⎢⎣⎡=0001A , ⎥⎦⎤⎢⎣⎡=0020B ; (3)⎥⎦⎤⎢⎣⎡=0001A , ⎥⎦⎤⎢⎣⎡=1000B .27. 证:因为()()()n m rankB rankA AB rank rankC ,min ,min ≤≤=,但n m >,故m 阶方阵C 的秩m n <≤,所以C 是降秩的.28. 解:先求矩阵A 的特征值和特征向量为 121==λλ, ()T 20,6,31-=α 23-=λ, ()T 1,0,02=α故的特征值和特征向量为121==λλ, ()3212063e e e k +-,0≠k 23-=λ, 3ke , 0≠k .29. 解:(1)121==λλ,()T 1,0,11=α,()T 0,1,02=α,13-=λ,()T 1,0,13-=α.(2)1=λ,()T2,1,31-=α,i143,2±=λ,().10,1432,1463,2Ti i -±-±=α(3)121==λλ,()T 20,6,31-=α,23-=λ,()T 1,0,02=α; (4)2321===λλλ,()T 0,0,1,11=α,()T 0,1,0,12=α,()T 1,0,0,13=α,24-=λ,()T 1,1,1,14---=α.以上分别求出了在不同基下所对应矩阵A 的特征值和特征向量,则类似于上题的方法,可求出不同基下所对应的特征值和特征向量.30. 解:(1),(2),(4)为非亏损矩阵(单纯矩阵),其变换矩阵P 分别为(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010101; (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+---+101021432143211461463i i i i ; (4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---110101010011111.31. 证 : 设在给定基下的矩阵为A ,则()n i A i ni i ,,2,100det 1=≠⇔≠=∏=λλ32. 证:设r rankA =,则存在满秩矩阵P 与Q ,使得()0,r I diag PAQ =,故有()C I diag BP PAQQ PABP r 0,111==--- 其中()ij C BQ Q C ==--11, 这说明AB 与diag (0,r I )相似.另一方面,有()0,111r I C d i a g P A Q BP Q BAQ Q ==---,说明BA 与()0,r I Cdiag 相似.不难验证有()()()()0,det 0,det r r I Cdig I C I diag I -=-λλ 故AB 与BA 有相同的特征多项式,因此有相同的特征值和迹.33. 证:设A 的任一特征值为λ,λ的对应于λ的特征子空间记为λV .对λV 中任意向量Z 有BZ Z B BAZ ABZ λλ===故λV BZ ∈,因此λV 为线性变换()BZ Z =的不变子空间,即()BZ Z =为λV 中的线性变换,此线性变换的特征向量即为B 的特征向量,但它又属于λV ,由λV 的定义知它又是A 的特征向量,即A 与B 有公共的特征向量.34. 证:设A 的特征值为i λ,则A 2的特征值为2i λ,由12=i λ有1±=i λ,若所有1=i λ,则A+I 为满秩矩阵,故由(A+I )(A-I )=A 2-I 2=0,有A=I .35. 证:不失一般性,设B 非奇异,有AB=B -1(BA )B 即AB 与BA 相似,所以它们有相同的特征多项式.36. 证:设A 为n 阶方阵,具其秩为r ,由于A 2=A ,知A 的列向量都是A 的对应于特征值1的特征向量.因γ=rankA ,故特征值1的几何重复度为r ,其代数重复度至少为r .又θ=AX 的基础解系中的向量个数为r n -,即A 的特征值0的几何重复度为r n -,其代数重复度不小于r n -.由于一个n 阶矩阵的特征值的代数重复度之和恰为n ,故特征值1和0的代数重复度分别为r 和r n -.可见A 除了1和0外无其它特征值,而1和0的几何重复度之和为n ,故A 为非亏损矩阵,所以A 相似()0,r I diag .37. 证:用反证法.若A 可相似于对角矩阵,对角元素即为A 的特征值,且至少有一个不为0.但是,由于λαα=A ,于是θαλα==k k A ,因为θα≠,所以0=k λ,故0=λ,即A 的特征值都等于0,矛盾.38. 证:由X AX λ=,有()X k kX A λ=,X X A k k λ=,从而有()()X f X A f λ=,即X 也是()A f 的特征向量.显然()A f 的特征值为()λf ,即为λ的多项式.39. 解:取3中的自然基321,,εεε,计算得(1ε)=(0 , -2 ,-2 ) , (2ε)=(-2 , 3 ,-1 ) , (3ε)=(-2 , -1 ,3 )则在基321,,εεε下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=31213222A而A的特征值为2,4321-===λλλ,与之对应的特征向量为()TX0,2,11-=,()TX2,0,12-=,()TX1,1,23=,则有()2,4,41-=Λ=-diagACC,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=112211C.由()321,,ααα=(321,,εεε)C求得3R的另一组基为()0,2,12211-=+-=εεα,()2,0,12312-=+-=εεα,()1,1,223213=++=εεεα,显然在该基下的矩阵为对角阵Λ.40. 解:(1)因为()21xx+=,()21xx+=,()xx+=12,所以在基1,x,x2下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111A.(2)由于A原特征值为121-==λλ,23=λ,相应的特征向量为()TX01,11-=,()TX1,12-=,()TX11,13=,存在可逆阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1111111C,使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==-2111AACC,故所求的基321,,eee为()()()2223211,1,1,,1,,xxxxCxxeee+++-+-==.41. 解:(1)对任意的V∈βα,及Rlk∈,,有()()()()()BBlBBkBlklkBlkTTTTTTββααβαβαβα-+-=+-+=+=k ((α))+l ((β))故是线性变换. (2)取V 的简单基⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=0100,0010,1001321A A A 由于(),01101⎥⎦⎤⎢⎣⎡-=A ⎥⎦⎤⎢⎣⎡-=0110)(2A ,⎥⎦⎤⎢⎣⎡-=0110)(3A , 所以在基321,,A A A 下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111111000R R 的特征值为2,0321===λλλ,对应的线性无关的特征向量为(1,1,0)T ,(0,1,1)T ,(0,1,-1)T ,令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110111001C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ200 则有Λ=-RC C 1,由(B 1,B 2,B 3)=(A 1,A 2,A 3)C 求得V 的另一组基为⎥⎦⎤⎢⎣⎡-=+=1011211A A B ,⎥⎦⎤⎢⎣⎡=+=0110322A A B ,⎥⎦⎤⎢⎣⎡-=-=0110323A A B,在该基下的矩阵为Λ.42. 证:(1)取n的一组基n e e e ,,,21 ,设1(n e e e ,,,21 )=(n e e e ,,,21 )A2(n e e e ,,,21 )=(n e e e ,,,21 )B则有 (12)(n e e e ,,,21 )=(n e e e ,,,21 )(AB ) (1+2)(n e e e ,,,21 )=(n e e e ,,,21 )(A+B )由12=1+2,可得AB=A+B ,从而有B T A T =A T +B T .若1是1的特征值,则 1也是A 的特征值,从而1也是A T 的特征值,设A T 对应于特征值1的特征向量为β,即()0≠=βββT A ,由(B T A T )β=(A T +B T )β,可得B T β=β+B T β,即β=0,这与β是A T 的特征向量矛盾,故1不是1的特征值.(2)因1有几个不同的特征值,所以1有n 个线性无关的特征向量.记1的对应于特征值n λλλ,,,21 的线性无关的特征向量为X 1,X 2,…,X n ,即1i i i X X λ= (i =1,2,…,n ),则X 1,X 2,…,X n 作为n的基时,1的矩阵A =diag (n λλλ,,,21 ).再由AB=A+B 及1≠i λ知()⎪⎪⎭⎫ ⎝⎛---=-=-1,,1,122111n n d i a g A I A B λλλλλλ 即1与2在该基X 1,X 2,…,X n 下的矩阵都为对角阵.43. 证:对任意0λαV ∈,有1(αλα0)∈.由于1(2(α))=2(1(α))=2(λα)所以2()0λαV ∈, 故0λV 是2的不变子空间.44. 解:(1) (4'3'2''1,,,e e e e )=( 4321,,,e e e e )C=(4321,,,e e e e ) 211111000320001---∴ B=C 1-AC =242134040168101042699631-----(2) 先求核θ(1-) . 设η=)(1θ-在基{}i ε下的坐标为(4321,,,x x x x ),(θη=)在此基下的坐标为(0,0,0,0),于是A 4321x x xx =000此时A 的秩为2,解之,得基础解系 )1,0,2,1(,)0,1,23,2(21--=--=ξξ, 作 421232112,232e e e e e e +--=+--=ηη . 显然,21,ηη为核θ(1-)的一组基,故核由21,ηη所张成,即θ(1-)=Span (21,ηη) .再求值域(4) . 由于 ((e 1),(e 2),(e 3),(e 4)) = (4321,,,e e e e ) A 而A 的秩为2,所以(e 1),(e 2),(e 3),(e 4)的秩也为2,且(e 1),(e 2)线性无关,故组成(4)的基,从而(4)=Span ((e 1),(e 2)) .(3) 由(2)知21,ηη是核θ(1-)的一组基,易知2121,,,ηηe e 为4的一组基,由于有(2121,,,ηηe e )=(4321,,,e e e e )100100223101201---- = (4321,,,e e e e ) D所以在此基下的矩阵为B=D 1-AD=022021001290025-(4) (2)知(e 1),(e 2)是值域 (4)的一组基,又知(e 1),(e 2),43,e e 为4的一组基,有((e1),(e2),43,e e )=(4321,,,e e e e )10221210210001-- =(4321,,,e e e e ) T所以在此基下的矩阵为B=T 1-A T = 000002231291225 .45. 证:取3中的自然基321,,εεε,因为(+ )(1ε)=(1ε)+ (1ε)=(1,0,0)+(0,0,1)=(1,0,1)同理有(+ )(2ε)=(2,0,0), (+ )(3ε) =(1,1,0)这表明+ 将基321,,εεε变换成3中的另一组基1e =(1,0,1),2e =(2,0,0),3e =(1,1,0)(易证它们线性无关). 又因(+ )(3)是3的子空间,而321,,e e e 是(+ )(3)的最大无关组,故这个子空间的维数为3,再由习题1.1中第22题的结果知(+ )(3)=3(此时取V 2=3).46. 解:因为2[(321,,a a a )]=([(321,,a a a )])=()[]21,,0a a =(0,0,1a )所以2的像子空间为R (2)(){}R a a ∈=,0,0核子空间为N (2)(){}R a a a a ∈=2232,,,0因此,dimR (2)=1,其一组基为(0,0,1);dim N (2)=2,其一组基为(0,1,0),(0,0,1).47. 证 :(1)由的定义容易验证满足可加性和齐次性,所以它为线性变换.又因2[(n x x x ,,,21 )]=[()()2111,,,0,0],,,0--=n n x x x x ,…推知n[()()0,,0,0],,,21 ==n x x x ,即nϑ=(零变换).(2)若[()()()0,,0,0,,,0],,,1121 ==-n n x x x x x ,则1x =2x =…=1-n x =0即()θ1-为由一切形如(0,0,…,n x )的向量构成的子空间,它是一维子空间,则(0,…,0,1)是它的基.又由维数关系dim (V)+dim1-(θ)=n便得 (V) 的维数等于 n-1 .48. 证 :(1)必要性.若(V)= (V),对任V ∈α,则∈)(α (V )=(V) ,故存在V ∈β,使 =)(α)(β ,=)(α2)(β= )(β= )(α ,由α的任意性有= .同理可证= .充分性.若= ,=, 对任(∈)α(V )V ⊂,=)(α)(α= ()(α)∈ (V ) , 故(V)⊂ (V) ;同理可证 (V) ⊂(V).(2)必要性.若()=-θ1)(1θ-,对任V ∈β,作-β)(β,因(-β)(β)=)(β-2)(β=)(β-)(β=θ ,所以,-β)(β∈()θ1- =)(1θ- ,则 (-β)(β)= θ ,故=)(β )(β,由β的任意性有 = . 同理,通过作β- )(β , 可得=.充分性.若= , =, 对任 ∈α()θ1-,由=)(α=)(α ()(α)= (θ)=θ ,故()⊂-θ1)(1θ-;同理,由任∈β)(1θ- ,可得()⊂-θ1)(1θ-.。