三年级奥数28巧求面积
- 格式:ppt
- 大小:643.50 KB
- 文档页数:13
四年级奥数专题:巧求面积发布时间:2011-09-16 11:39 来源:武汉巨人学校作者:小学数学部物体的表面或封闭图形的大小叫做图形的面积。
我们已经学过的图形有长方形和正方形,计算公式为:长方形的面积=长×宽;正方形的面积=边长×边长解答有关图形面积的问题时,应该注意一下两点:①将未知变成已知。
②将不规则图形变成规则图形。
1、求下图的面积(单位:厘米)(14平方厘米)分析:观察发现这是一个不规则图形,可以通过把它分割成两个规则的长方形,也可以将这个图像补成一个规则的长方形。
解答:①1×(6-2)+2×5=14(平方厘米)② 5×6-(5-1)×(6-2)= 14(平方厘米)2、一个边长为10米的正方形花坛,依次连接四边中点得到一个小正方形的喷泉,求小正方形喷泉的面积。
分析:要求小正方形的面积必须知道小正方形的边长,小正方形的边长求不出来,题目中直接告诉了我们大正方形的边长,就可以求出大正方形的面积。
我们能找到大正方形的面积和小正方形的面积的关系吗?通过分割可以发现:顺次连接大正方形各边中点所得到的小正方形的面积是大正方形面积的一半解答:10×10÷2=50(平方厘米)3、如图,大小两个正方形对应边的距离均为2厘米,如果两个正方形之间部分的面积是40平方厘米,那么小正方形的面积是多少平方厘米?分析:要求小正方形的面积就必须知道小正方形的边长,只能通大正方形来求。
把小正方形分割成四个一样的长方形,可以求出每个小长方形的面积是40÷4=10平方厘米,又知道每个小长方形的宽是2厘米,从而求出小长方形的长是10÷2=5厘米,也就可以知道小长方形的边长是5-2=3厘米。
解答:40÷4=10(平方厘米)0÷2=5(厘米)5-2=3(厘米)3×3=9(平方厘米)4、一个长方形,如果宽增加2厘米,或长增加3厘米,他们的面积都增加120平方厘米,原来长方形的面积是多少?(2400平方厘米)分析:在我们的长方形的面积计算中,要求面积往往要知道长和宽,可是这道题目中的长和宽没有直接告诉我们,需要通过已知条件来求。
三年级奥数面积问题1. 引言本文将介绍三年级奥数面积问题,主要涉及到三年级学生在数学课上研究关于面积的内容。
本文将通过一些简单的问题来说明如何计算面积,并提供一些解决这类问题的简单策略。
2. 面积的概念在开始解决面积问题之前,首先需要了解面积的概念。
面积是指一个二维图形所占据的空间大小。
常见的图形包括正方形、长方形和三角形等。
计算面积的单位通常是平方单位,如平方厘米(cm²)或平方米(m²)等。
3. 面积问题的解决策略解决面积问题的关键是理解所给图形的形状,并确定计算面积所需的参数。
下面是一些简单的解决面积问题的策略:3.1 正方形的面积正方形的面积可以通过边长的平方来计算。
例如,一个边长为5厘米的正方形的面积为25平方厘米(5 cm × 5 cm = 25 cm²)。
3.2 长方形的面积长方形的面积可以通过长乘以宽来计算。
例如,一个长为6厘米、宽为4厘米的长方形的面积为24平方厘米(6 cm × 4 cm = 24 cm²)。
3.3 三角形的面积三角形的面积可以通过底边和高的乘积再除以2来计算。
例如,一个底边为8厘米、高为6厘米的三角形的面积为24平方厘米((8 cm × 6 cm) ÷ 2 = 24 cm²)。
4. 实例问题为了更好地理解面积问题的解决策略,下面给出一些实例问题,并提供解答:4.1 问题一正方形的一条边长为10厘米,求其面积。
解答正方形的面积可以通过边长的平方来计算。
因此,正方形的面积为100平方厘米。
4.2 问题二长方形的长为12厘米,宽为8厘米,求其面积。
解答长方形的面积可以通过长乘以宽来计算。
因此,长方形的面积为96平方厘米。
4.3 问题三三角形的底边为5厘米,高为6厘米,求其面积。
解答三角形的面积可以通过底边和高的乘积再除以2来计算。
因此,三角形的面积为15平方厘米。
5. 总结通过简单的解决策略,三年级学生可以轻松地解决面积问题。
三年级巧求面积题型摘要:一、三年级奥数巧求面积概述二、长方形面积的巧求方法三、正方形面积的巧求方法四、其他多边形面积的巧求方法五、实际应用举例正文:一、三年级奥数巧求面积概述三年级奥数中的面积问题,主要涉及到长方形、正方形以及其他多边形的面积求解。
在这些题型中,巧妙地运用分割、组合等方法,可以简化计算过程,提高解题效率。
二、长方形面积的巧求方法当我们遇到求长方形面积的题目时,可以运用分割和组合的方法。
例如,给定两个长方形,长和宽分别为a、b和c、d,我们可以将它们分割成若干个正方形或长方形,然后计算这些小正方形或长方形的面积之和,从而得到原长方形的面积。
三、正方形面积的巧求方法正方形的面积公式为a,其中a为边长。
求解正方形面积的问题时,可以直接给出边长a,或者通过已知条件间接求出边长a。
例如,已知正方形的周长c,可以通过公式a=c/4求得边长a。
四、其他多边形面积的巧求方法对于其他多边形,我们可以将它们分割成若干个三角形或矩形,然后计算这些三角形的面积之和,从而得到原多边形的面积。
在计算过程中,可以运用海伦公式(用于求解三角形面积)和矩形面积公式等。
五、实际应用举例下面我们通过一个实际例子来演示如何运用这些方法求解面积问题。
已知两个长方形,长和宽分别为1025厘米和1628厘米,原来每个长方形的面积是8540平方厘米。
我们可以将这两个长方形拼接成一个新长方形,周长增加的是2个长。
求这个新长方形的面积。
解:首先计算新长方形的长和宽。
由于周长增加的是2个长,所以新长方形的长为1628+1025=2653厘米。
新长方形的宽为1025厘米。
然后,根据长方形面积公式计算新长方形的面积:2653 × 1025 = 2733375平方厘米。
综上所述,通过巧妙地运用分割、组合等方法,我们可以轻松地求解三年级奥数中的面积问题。
学科教师辅导讲义学员编号: 年 级:三年级 课 时 数:3 学员姓名:辅导科目:奥数学科教师:授课主题 第28讲-面积计算授课类型T 同步课堂 P 实战演练S 归纳总结教学目标① 熟悉掌握基本图形面积的求法。
② 熟悉运用分解、平移、合并等技巧成基本图形,利用长方形、正方形面积计算公式求解。
③ 能够分析图形的特点,提高几何图形的观察能力和思维转换能力。
授课日期及时段T (Textbook-Based )——同步课堂解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
例1、人民路小学操场长90米,宽45米。
改造后,长增加10米,宽增加5米。
现在操场面积比原来增加了多少平方米?【解析】用操场现在的面积减去操场原来的面积,就得到增加的面积。
操场现在的面积是(90+10)×(45+5)=5000平方米, 操场原来的面积是90×45=4050平方米。
所以,现在的面积比原来增加5000-4050=950平方米。
例2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。
这个长方形原来的面积是多少平方米?【解析】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。
知识梳理典例分析所以,这个长方形原来的面积是12×9=108平方米。
例3、下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。
【解析】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。
而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。
知识要点简单求面积【例 1】 4个相同的长方形和一个小正方形拼成一个面积是100平方厘米的大正方形,已知小正方形的面积是36平方厘米,问长方形的长和宽各是多少厘米?【分析】 1001010=⨯,3666=⨯,大正方形的边长为10厘米,小正方形的边长为6厘米,长方形的宽为:(106)22-÷=(厘米),长为:628+=(厘米)【例 2】 如图,一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米?我们已经学会了计算正方形、长方形的周长和面积,运用这些基础的知识,可以解决一些较复杂的面积计算.由长方形、正方形引出的问题形式多样,要解决这些问题,关键要能够合理地切拼,要做到这一点,就需要我们开动脑筋,细心观察,掌握图形特点,找出分割与切拼的方法,达到解决问题的目的.1. 掌握巧妙的解题方法.2. 了解“等量代换”的思想.3. 培养学生灵活运用的能力.巧求面积75【分析】 阴影部分的宽是752-= (厘米),长是523-= (厘米),面积是236⨯= (平方厘米).【例 3】 一个长方形周长是80厘米,它是由3个完全相同的小正方形拼成的,那么每个小正方形的面积是多少平方厘米?【分析】 小正方形的边长:80810÷=厘米,每个小正方形的面积:1010100⨯=平方厘米。
面积增减【例 4】 一块长方形铁板,长15分米,宽l2分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?【分析】 如图,铁板面积比原来减少多少平方分米,就是求阴影部分的面积,用原长方形的面积减去空白部分的面积.1512(152)(122)⨯--⨯-=180130- =50(平方分米)2221512【例 5】 一块长方形地长是80米,宽是45米,如果把宽增加5米,要使原来的面积不变,长应减少多少米?【分析】 808045(455)8-⨯÷+= (米).【例 6】 人民路小学操场原来长80米,宽55米,改造后长增加20米,宽减少5米.现在操场的面积比原来增加多少?【分析】 (8020)(555)8055600+⨯--⨯= (平方米).【例 7】 有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?【分析】 根据题意,可以用下图表示增减变化的情况,从图中可以看出,原来长方形的长为(2720680)(6050)340+÷-= (米),宽为6803405052÷+= (米)。
师:这确实是一种方法,老师刚刚在下面还看到有同学有不同做法,请你来说下你的思路。
生2:我是用大长方形的面积减去蓝色正方形的面积,再减去绿色正方形的面积,剩下的就是红色长方形的面积。
师:非常好,这也是一种很好的方法,你能具体说说具体的算法吗?生2: 大长方形的面积是6×10=60(平方厘米),蓝色正方形的面积是6×6=36 (平方厘米),绿色正方形的面积是4×4=16(平方厘米)师:那红色长方形的面积是多少呢?生2:60-36-16=8(平方厘米)。
师:这样求出来的答案也是8平方厘米。
这样做的同学举手示意一下。
师:看来也有很多同学是这么想的。
其实两种方法都是可以的。
同学们的思维真是活跃啊。
我们一起看下答案算对了吗。
板书:方法一:(10-6)×(6-4)=8(平方厘米)方法二:6×10-6×6-4×4=8(平方厘米)答:红色部分面积是8平方厘米。
师:刚刚我们解决了例题3,两种方法大家都会了吗?生:会了。
师:很好,很多题目我们可以从不同角度去思考。
我相信下面的练习3肯定也难不倒同学们。
大家自己动手做一做吧。
练习3:(5分)由两个完全相同的图形组成的图形(如图),计算下列图的面积。
分析:将图形进行平移、剪拼后可以发现这个图形的面积是一个边长为6厘米的大正方形减去一个边长为2厘米的小正方形的面积。
板书:6×6-2×2=32(平方厘米)答:这个图的面积是32平方厘米。
(二)例题4:(12分)一块长方形草地,长是38米,宽是28米,中间有两条宽2米的小路可以通过,这块草地的绿化面积是多少平方米?讲解重点:这个题目有2中方法,一个是用平移法,将两条小路移到一边,求空白小长方形的面积,就是绿化面积;或者可以求出两条小路的面积之和,要注意的是中间有一块2×2的地被重复计算了一次,要减掉。
再用草地面积减去小路面积,师:题目中要我们求这块草地的绿化面积是多少平方米,你们会怎么思考?生1:像上一个题目一样,我们可以用平移法把两条小路移到一边,中间就是绿化面积。
巧求周长和面积-授课学案学生姓名:授课教师:班主任:科目:三年级奥数上课时间: 2012 年月日时—时跟踪上次授课情况上次授课回顾○完全掌握○基本掌握○部分掌握○没有掌握作业完成情况○全部完成○基本完成○部分完成○没有完成本次授课内容授课标题巧求周长和面积学习目标重点难点例题与方法例1.有一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形拼也一个正方形。
拼成的正方形的周长是多少分米?例2.两个大小相同的正方形拼成一个长方形后,周长比原来的两个正方形周长的和减少6厘米。
原来一个正方形的周长是多少厘米?例3.求图3和图4的周长和面积。
(单位:米)图3 图4例4.图7是一座厂房的平面图,求这座厂房平面图的周长。
例5.图9是个多边形,图中每个角都是直角,它的周长是多少?例6.一个正方形被分成3个大小、形状完全不一样的长方形(如图10),每个小长方形的周长都是24厘米,求这个正方形的周长。
图10例7.图11是由四个一样大的长方形和一个周长是4分米的小正方形拼成的一个边长是11分米的大正方形。
每个长方形的长和宽各是多少?周长是多少?图例8.一根铁丝长12厘米,能围成几种长和宽都是整厘米数的长方形,每咱长方形的长和宽各是几厘米?围成的正方形的边长是几厘米?例9. 有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是30平方厘米,求这个大长方形的周长。
练习与思考1.把一个长10厘米,宽5厘米的长方形,分成两个大小一样的正方形,每个正方形的周长是多少?2.用一个长8厘米,宽4厘米的长方形与7个边长4厘米的正方形,拼成一个大正方形。
拼成的大正方形的周长是多少?3.图14是一座楼房的平面图,这座楼房平面图的周长是多少米?4.有两个相同的长方形,长7厘米,宽3厘米,把它们按图(16)的样子重叠在一起,这个图形的周长是多少厘米?5.一块长方形布,周长是18米,长比宽多1米,这块布的长是几厘米?宽是几米?6.用4个一样大的长方形和一个小正方形,拼成一个边长是16分米的大正方形(如图18),每个长方形的周长是多少?例题与方法例1.一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪(如图1),草坪的面积是多项式少平方米?例2.图2是由6个相等的三角形拼成的图形,求这个图形的面积。
三年级奥数 巧求图形面积思维聚焦求正方形和长方形面积的公式是:正方形的面积二a x a (a 为边长), 长方形的面积=a x b (a 为长,b 为宽)。
利用这两个公式可以计算出各种各样的直角多边形的面积。
对一些图,我 们无法直接求出它的面积,但是通过将它分割或切补成几块,其中每一块都是 正方形或长方形,分别计算出各块面积再求和或差,就得出整个图形的面积。
形的面积等于多少平方米?n .5 _分析:我们不能直接求出它的面积,但是可以将此图形分割成若 -------------------- 习3 干个长方形。
下面两种较简单的方法,图形都被分割成三个长方 3 4形。
根据这两种不同的分割方法,都可以计算出图形的的面积。
__________________解: 5X 2+ (5 + 3) X 3+ (5 + 3 + 4) X 2=58(米 2);2或 5X (2 + 3+ 2) + 3X (2 + 3) + 4X 2 = 58(米)。
上面的方法是通过将图形分割成若干个长方形,然后求图形面积的。
实际上,我们也可以将图形“添补”成一个大长方形 (见下图),然 后利用大长方形与两个小长方形的面积之差,求出图形的面积 (5 + 3+ 4) X (2 + 3+ 2)-2 X 3-(2 + 3) X 4 = 58(米 2); 或(5 + 3+ 4) X (2 + 3 + 2)-2 X (3 + 4)-3 X 4= 58(米2)。
由例1看出,计算直角多边形面积,主要是利用“分割”和“添补”的方法,将图形演 变为多个长方形的和或差,然后计算出图形的面积。
其中“分割”是最基本、最常用的方法。
例1、下图中的每个数字分别表示所对应的线段的长度 (单位:米)。
这个图E_555+3+45+3M练习:1、右图是一幢楼房的平面图形,它的面积是_______________ 平方米.(单位:米)2、求下面图形的面积。
(单位:厘米)434 34'33、求下面图形的面积。
巧求面积知识要点我们已经学会了计算正方形、长方形的周长和面积,运用这些基础的知识,可以解决一些较复杂的面积计算.由长方形、正方形引出的问题形式多样,要解决这些问题,关键要能够合理地切拼,要做到这一点,就需要我们开动脑筋,细心观察,掌握图形特点,找出分割与切拼的方法,达到解决问题的目的.1.掌握巧妙的解题方法.2.了解“等量代换”的思想.3.培养学生灵活运用的能力.简单求面积【例 1】4个相同的长方形和一个小正方形拼成一个面积是100平方厘米的大正方形,已知小正方形的面积是36平方厘米,问长方形的长和宽各是多少厘米?【例 2】如图,一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米?75【例 3】一个长方形周长是80厘米,它是由3个完全相同的小正方形拼成的,那么每个小正方形的面积是多少平方厘米?面积增减【例 4】一块长方形铁板,长15分米,宽l2分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?【例 5】一块长方形地长是80米,宽是45米,如果把宽增加5米,要使原来的面积不变,长应减少多少米?【例 6】人民路小学操场原来长80米,宽55米,改造后长增加20米,宽减少5米.现在操场的面积比原来增加多少?【例 7】有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?【例 8】一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积?【例 9】一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新正方形的面积比原正方形大120平方厘米.求原正方形的面积?等量代换【例 10】7个完全相同的长方形拼成了图中阴影部分,图中空白部分的面积是多少平方厘米?24【例 11】若干同样大小的长方形小纸片摆成了如图所示的图形.已知小纸片的宽是12厘米,问阴影部分的总面积是多少平方厘米?【例 12】下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)366找规律【例 13】有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?… …平移【例 14】有一块菜地长37米,宽25米,菜地中间留了1米宽的路,把菜地平均分成四块,每一块地的面积是多少?37米25米1米1米【例 15】一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,红条宽都是2厘米,这条手帕白色部分的面积是多少?【例 16】(第六届小机灵杯决赛第七题)图中由若干个相同的正方形拼成,图形的周长是68厘米,这个图形的面积是多少平方厘米?【例 17】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示.如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?翻折【例 18】如图,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?旋转【例 19】已知图中大正方形的面积是22平方厘米,小正方形面积是多少平方厘米?【例 20】(第七届小机灵杯决赛第六题)图中是由5个大小不同的正方形叠放而成的,如果最小的正方形(阴影部分)的周长是8,那么最大的正方形的边长是多少?第6题【例 21】一个边长为20厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积。