最新2017-2018年中考数学第一部分考点研究第四章三角形第五节相似三角形含位似试题
- 格式:doc
- 大小:28.00 KB
- 文档页数:1
2017中考数学相似三角形的7个考点
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心
考核要求:知道重心的定义并初步应用。
考点6:向量的有关概念
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算。
第四篇图形的性质专题17 三角形及其性质☞解读考点算与证明☞2年中考【2017年题组】一、选择题1.(2017内蒙古包头市)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【答案】A.【解析】若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.2.(2017广西河池市)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【答案】A.【解析】试题分析:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.考点:1.三角形的面积;2.三角形的角平分线、中线和高;3.应用题.3.(2017贵州省遵义市)如图,△ABC的面积是12,点D,E,F,G 分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4。
5B.5C.5.5D.6【答案】A.【解析】考点:1.三角形中位线定理;2.三角形的面积.4.(2017南宁)如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°【答案】B.【解析】试题分析:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选B.考点:三角形内角和定理.5.(2017南宁)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE ∥BC D.∠DAE=∠EAC【答案】D.【解析】考点:1.作图—复杂作图;2.平行线的判定与性质;3.三角形的外角性质.6.(2017广西贵港市)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.14B.12C.34D.1【答案】B.【解析】试题分析:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)=24=12,故选B.考点:1.列表法与树状图法;2.三角形三边关系;3.概率及其应用.7.(2017江苏省扬州市)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6B.7C.11D.12【答案】C.【解析】试题分析:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.考点:三角形三边关系.8.(2017四川省雅安市)一个等腰三角形的边长是6,腰长是一元二次方程27120x x-+=的一根,则此三角形的周长是()A.12B.13C.14D.12或14【答案】C.【解析】考点:1.解一元二次方程﹣因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.9.(2017四川省巴中市)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【答案】D.【解析】试题分析:设一份为x,三内角分别为x,2x,3x,根据内角和定理得:x+2x+3x=180°,解得:x=30°,∴三内角分别为30°,60°,90°,则这个三角形为直角三角形,故选D.考点:1.三角形内角和定理;2.实数.10.(2017德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121B.362C.364D.729【答案】C.【解析】考点:1.三角形中位线定理;2.规律型:图形的变化类.二、填空题11.(2017四川省广安市)如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△ADE的面积是.【答案】6.【解析】试题分析:∵D、E分别为AC、AB的中点,∴AD=12AC=4,DE=12BC=3,DE∥BC,∴∠ADE=∠C=90°,∴△ADE的面积=12×AD×DE=6,故答案为:6.考点:三角形中位线定理.12.(2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=13DM.当AM⊥BM时,则BC的长为.【答案】8.【解析】考点:1.三角形中位线定理;2.等腰三角形的判定与性质.13.(2017贵州省黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE 的度数是.【答案】40°.【解析】AD,试题分析:∵P是对角线BD的中点,E是AB的中点,∴EP=12BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,同理,FP=12故答案为:40°.考点:三角形中位线定理.14.(2017黑龙江省绥化市)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2112n .【解析】考点:1.三角形中位线定理;2.等腰直角三角形;3.综合题;4.规律型;5.操作型.15.(2017四川省成都市)在△ABC 中,∠A :∠B :∠C =2:3:4,则∠A 的度数为 . 【答案】40°. 【解析】试题分析:∵∠A :∠B :∠C =2:3:4,∴设∠A =2x ,∠B =3x ,∠C =4x ,∵∠A +∠B +∠C =180°,∴2x +3x +4x =180°,解得:x =20°,∴∠A 的度数为:40°.故答案为:40°. 考点:三角形内角和定理.16.(2017四川省达州市)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是 . 【答案】1<m <4. 【解析】试题分析:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD 是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵AD=DE,∠ADB=∠EDC,BD=CD,∴△ADB≌△EDC,∴EC=AB=5,在△AEC 中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<4,故答案为:1<m<4.考点:1.全等三角形的判定与性质;2.三角形三边关系.17.(2017贵州省黔西南州)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.【答案】15.【解析】考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.18.(2017四川省巴中市)若a、b、c为三角形的三边,且a、b满2--=,第三边c为奇数,则c= .9(2)0a b【答案】9.【解析】试题分析:∵a、b满足2-+-=,∴a=9,b=2,∵a、b、c为三a b9(2)0角形的三边,∴7<c<11,∵第三边c为奇数,∴c=9,故答案为:9.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.19.(2017四川省泸州市)在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为cm.【答案】45.【解析】试题分析:连接AO并延长,交BC于H,由勾股定理得,DE=22+OE OD =25,∵BD和CE分别是边AC、AB上的中线,∴BC=2DE=45,OBC=25,∵O 是△ABC的重心,∴AH是中线,又BD⊥CE,∴OH=12是△ABC的重心,∴AO=2OH=45,故答案为:45.考点:1.三角形的重心;2.勾股定理.20.(2017山东省淄博市)设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1.交于点F1,得到四边形CD1F1E1,其面积S1=13如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=1;6如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=1;10…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= ..【答案】2++n n(1)(2)【解析】考点:1.规律型:图形的变化类;2.三角形的面积;3.规律型;4.综合题.三、解答题21.(2017内蒙古呼和浩特市)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:B D=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.【答案】(1)证明见解析;(2)四边形DEMN是正方形.【解析】试题解析:(1)解:由题意得,AB=AC,∵BD,CE分别是两腰上的中线,∴AD=12AC,AE=12AB,∴AD=AE,在△ABD和△ACE中,∵AB=AC,∠A=∠A,AD=AE,∴△ABD≌△ACE(ASA),∴BD=CE;(2)四边形DEMN是正方形,证明:∵E、D分别是AB、AC的中点,∴AE=12AB,AD=12AC,ED是△ABC的中位线,∴ED∥BC,ED=1BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,2BC,∴ED∥MN,ED=MN, MN是△OBC的中位线,∴MN∥BC,MN=12∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,∵BE=CD,CE=BD,BC=CB,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的BC,∴BD⊥CE,∴四边距离与底边长相等,∴O到BC的距离=12形DEMN是正方形.考点:1.全等三角形的判定与性质;2.三角形的重心;3.等腰三角形的性质.【2016年题组】一、选择题1.(2016贵州省铜仁市)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1B. 2 C.4D.8【答案】B.【解析】考点:1.角平分线的性质;2.含30度角的直角三角形.2.(2016贵州省毕节市)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【答案】D.【解析】试题分析:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选D.考点:1.线段垂直平分线的性质;2.角平分线的性质.3.(2016广西河池市)下列长度的三条线段不能组成三角形的是()A.5,5,10B.4,5,6C.4,4,4 D.3,4,5【答案】A.【解析】考点:三角形三边关系.4.(2016广西百色市)三角形的内角和等于()A.90°B.180°C.300°D.360°【答案】B.【解析】试题分析:因为三角形的内角和为180度.所以B正确.故选B.考点:三角形内角和定理.5.(2016广西贵港市)在△ABC中,若∠A=95°,∠B=40°,则∠C 的度数为()A.35°B.40°C.45°D.50°【答案】C.【解析】试题分析:∵三角形的内角和是180°,又∠A=95°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.考点:三角形内角和定理.6.(2016江苏省盐城市)若a、b、c为△ABC的三边长,且满足-+-=,则c的值可以为()420a bA.5B.6C.7D.8【答案】A.【解析】试题分析:∵420-+-=,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2a b<c<4+2,2<c<6,5符合条件;故选A.考点:1.三角形三边关系;2.非负数的性质:绝对值;3.非负数的性质:算术平方根.7.(2016湖南省岳阳市)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【答案】D.【解析】考点:三角形三边关系.8.(2016贵州省安顺市)已知实数x,y满足480--=,则以x,yx y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【答案】B.【解析】试题分析:根据题意得:4080x y -=⎧⎨-=⎩,解得:48x y =⎧⎨=⎩. (1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B .考点:1.等腰三角形的性质;2.非负数的性质;3.三角形三边关系;4.分类讨论.9.(2016湖北省荆门市)已知3是关于x 的方程2(1)20xm x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .10C .11D .10或11【答案】D .【解析】考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.10.(2016湖北省襄阳市)如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30°,则∠C的度数为()A.50°B.40°C.30°D.20°【答案】C.【解析】试题分析:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.又∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.∵∠EAC=∠B+∠C,∴∠C=∠EAC﹣∠B=30°.故选C.考点:1.平行线的性质;2.角平分线的定义;3.三角形的外角性质.11.(2016湖北省鄂州市)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50°B.40°C.45°D.25°【答案】B.【解析】考点:1.平行线的性质;2.三角形内角和定理.12.(2016湖北省黄石市)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°【答案】B.【解析】试题分析:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选B.考点:1.三角形的外角性质;2.线段垂直平分线的性质.13.(2016湖南省湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【答案】C.【解析】试题分析:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.14.(2016青海省)已知等腰三角形的腰和底的长分别是一元二次方程2680x x-+=的根,则该三角形的周长为()A.8B.10C.8或10D.12【答案】B.【解析】考点:1.解一元二次方程—因式分解法;2.三角形三边关系;3.等腰三角形的性质.15.(2016宁夏)菱形ABCD的对角线AC,BD相交于点O,E,F 分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD 的面积为()A.22B2C.62D.82【答案】A.【解析】试题分析:∵E,F分别是AD,CD边上的中点,EF=2,∴AC=2EF=22,又∵BD=2,∴菱形ABCD的面积S=12×AC×BD=12×22×2=22A.考点:1.菱形的性质;2.三角形中位线定理.16.(2016广东省广州市)如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3B.4C.4.8D.5【答案】D.【解析】考点:1.线段垂直平分线的性质;2.勾股定理;3.勾股定理的逆定理;4.三角形中位线定理.17.(2016新疆)如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE=12BC B.AD AEAB ACC.△ADE∽△ABCD.S△ADE:S△ABC=1:2【答案】D.【解析】试题分析:∵D 、E 分别是AB .AC 的中点,∴DE ∥BC ,DE =12BC ,∴12AD AE DE ABACBC===,△ADE ∽△ABC ,∴2ΔADE ΔABC 1:()4AD SS AB ==,∴A ,B ,C 正确,D 错误;故选D .考点:1.相似三角形的判定与性质;2.三角形中位线定理. 18.(2016广西梧州市)在△ABC 中,AB =3,BC =4,AC =2,D 、E 、F 分别为AB 、BC 、AC 中点,连接DF 、FE ,则四边形DBEF 的周长是( )A .5B .7C .9D .11 【答案】B . 【解析】考点:三角形中位线定理.19.(2016陕西省)如图,在△ABC 中,∠ABC =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△A BC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10【答案】B.【解析】试题分析:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC=22+=10,∵DE是△ABC的中位线,86+=22AB BC∴DF∥BM,DE=1BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,2AC=5,∴DF=DE+EF=3+5=8.故∴∠EFC=∠ECF,∴EC=EF=12选B.考点:1.三角形中位线定理;2.等腰三角形的判定与性质;3.勾股定理.20.(2016江苏省苏州市)如图,在四边形ABCD中,∠ABC=90°,AB=BC=22,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2B.C.D.3【答案】C.【解析】考点:三角形的面积.21.(2016湖北省咸宁市)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论: ①12DE BC=;②ΔDOEΔCOB12SS =;③AD OE AB OB=;④ΔODE ΔADC 13S S = 其中正确的个数有( )A .1个B .2个C .3个D .4个 【答案】B . 【解析】故正确的是①③.故选B.考点:1.相似三角形的判定与性质;2.三角形的重心.22.(2016湖南省永州市)对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短"的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【答案】B.【解析】考点:1.圆的认识;2.线段的性质:两点之间线段最短;3.垂线段最短;4.三角形的稳定性.23.(2016内蒙古包头市)如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A3B.33C.32D.22【答案】A.【解析】试题分析:∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO 平分∠ACB,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×=180°﹣2×=60°,∴tanA=tan60°3A.考点:1.角平分线的性质;2.特殊角的三角函数值.24.(2016江苏省淮安市)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再MN的长为半径画弧,两弧交于点P,分别以点M,N为圆心,大于12作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60【答案】B.【解析】考点:角平分线的性质.25.(2016福建省厦门市)如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE【答案】B.【解析】试题分析:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵∠ADE=∠F,∠AED=∠CEF,AE=CE,∴△ADE≌△CFE(AAS),∴DE=FE.故选B.考点:1.三角形中位线定理;2.全等三角形的判定与性质。
【类型综述】函数中因动点产生的相似三角形问题一般有三个解题途径①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
【方法揭秘】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A =∠D ,探求△ABC 与△DEF 相似,只要把夹∠A 和∠D 的两边表示出来,按照对应边成比例,分和两种情况列方程.AB DE ACDF AB DF AC DE 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A 、B 两点的坐标,怎样求A 、B 两点间的距离呢?我们以AB 为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB 的长了.水平距离BC 的长就是A 、B 两点间的水平距离,等于A 、B 两点的横坐标相减;竖直距离AC 就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1【典例分析】例1 如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连结PQ,设运动时间为t秒.2(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.思路点拨1.在△APQ中,∠A=45°,夹∠A的两条边AP、AQ都可以用t表示,分两种情况讨论直角三角形APQ.2.先用含t的式子表示点P、Q的坐标,进而表示点E、F的坐标,根据PE=QF列方程就好了.3.△MBQ与△BOP都是直角三角形,根据直角边对应成比例分两种情况讨论.满分解答图2 图3(3)如图4,因为PE//QF,当EF//PQ时,四边形EPQF是平行四边形.所以EP=FQ.所以y E-y P=y F-y Q.因为x P=t,x Q=3-t,所以y E=3-t,y Q=t,y F=-(3-t)2+2(3-t)+3=-t2+4t.因为y E-y P=y F-y Q,解方程3-t=(-t2+4t)-t,得t=1,或t=3(舍去).所以点F的坐标为(2, 3).图4 图5(4)由y=-x2+2x+3=-(x-1)2+4,得M(1, 4).考点伸展第(3)题也可以用坐标平移的方法:由P(t, 0),E(t, 3-t),Q(3-t, t),按照P→E方向,将点Q 向上平移,得F(3-t, 3).再将F(3-t, 3)代入y=-x2+2x+3,得t=1,或t=3.例2 二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S 与点P的横坐标x之间的函数关系式及S的最大值;(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?图1 图2思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP,△APC可以割补为:△AOP与△COP的和,再减去△AOC.3.讨论△ACD与△OBC相似,先确定△ACD是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD 存在两种情况.满分解答图3 图4 图5(3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F .由y =m(x +3)(x -1)=m(x +1)2-4m ,得D(-1,-4m).在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m .①如图4,当∠ACD =90°时,.所以.解得m =1.OA OC ECED 331m m 此时,.所以.所以△CDA ∽△OBC .3CA OC CD ED 3OCOB CAOC CD OB考点伸展第(2)题还可以这样割补:如图6,过点P 作x 轴的垂线与AC 交于点H .由直线AC :y =-2x -6,可得H(x,-2x -6).又因为P(x, 2x 2+4x -6),所以HP =-2x 2-6x .因为△PAH 与△PCH 有公共底边HP ,高的和为A 、C 两点间的水平距离3,所以S =S △APC =S △APH +S △CPH=(-2x 2-6x)=.3223273()24x 例3如图1,在平面直角坐标系中,双曲线(k ≠0)与直线y =x +2都经过点A(2, m).(1)求k 与m 的值;(2)此双曲线又经过点B(n, 2),过点B 的直线BC 与直线y =x +2平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;(3)在(2)的条件下,设直线y =x +2与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.。
第四章 图形的相似7相似三角形的性质第2课时 相似三角形中的周长和面积之比素材一新课导入设计情景导入 置疑导入 归纳导入 复习导入 类比导入 悬念激趣情景导入 如图4-7-29,在比例尺为1∶500的地图上,测得一个三角形地块的周长为12 cm ,面积为6 cm 2,求这个地块的实际周长及面积.图4-7-29问题1 在这个情境中,地图上的三角形地块与实际地块是什么关系?1∶500表示什么含义?问题2 要解决这个问题,需要什么知识?问题3 你能对这个地块的实际周长与面积作出估计吗? 问题4 如何说明你的猜想是否正确呢? [说明与建议] 说明:学生们在一个开放的环境中思考生活中遇到的实际问题,亲身经历和感受数学知识来源于生活中的过程.建议:小组交流、总结,学生可能会得到周长之比等于比例尺,面积之比等于比例尺的平方的猜想,通过小组合作,初步验证猜想,引出新知.复习导入 复习比例线段的性质(基本性质、合比性质、等比性质):①如果a b =43,那么a +b b =__73__,a -b b =__13__;②如果a b =c d =e f =57,那么a +c +e b +d +f =__57__;③在四边形ABCD 和四边形EFGH 中,已知AB EF =BC FG =CD GH =DA HE =23,四边形ABCD 的周长是60cm ,求四边形EFGH 的周长.[说明与建议] 说明:通过复习比例的性质,尤其是等比性质,让学生感受多边形的周长比与相似比的关系.引导学生思考问题,自然地过渡到新课的学习上来.建议:重点是让学生动手、动脑,探究相似形周长之比与相似比之间的关系.悬念激趣 某城区施工队在道路拓宽施工时遇到这样一个问题:马路旁边原有一个面积为100平方米、周长为80米的三角形绿化地,由于马路拓宽,绿化地被削去了一个角,变成了一个梯形,如图4-7-30,原绿化地一边AB 的长由原来的20米缩短成12米.则被削去的部分面积有多大?它的周长是多少?图4-7-30[说明与建议] 说明:联系生活实际,提出问题,引发学生探究的积极性,设置悬念,从而激发学生的求知欲.通过思考,让学生带着问题学习新课,同时教师引出新课.建议:在学生操作时,教师要引导学生进行思考、分析,为进一步学习积累数学活动经验.素材二教材母题挖掘110页例2如图4-7-31,将△ABC沿BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半.已知BC=2,求△ABC平移的距离.图4-7-31【模型建立】根据相似三角形的性质——相似三角形的周长比等于相似比,面积比等于相似比的平方,可以解决图形中的周长与面积问题,简化计算与证明过程.对学生的要求是能准确找出相似的两个三角形,再利用性质求解.【变式变形】1.如图4-7-32,△ABC∽△A′B′C′,它们的周长分别为60 cm和72 cm,且AB=15 cm,B′C′=24 cm,求BC,AC,A′B′,A′C′的长.图4-7-32[答案:BC=20 cm,AC=25 cm,A′B′=18 cm,A′C′=30 cm]2.如图4-7-33,在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,△ABC的周长是24,面积是48,求△DEF的周长和面积.图4-7-33[答案:△DEF的周长为12,面积为12]3.如图4-7-34所示,在ABCD中,AE∶EB=1∶2,且S△AEF=6 cm2.(1)求△AEF与△CDF的周长比;(2)求△CDF 的面积.图4-7-34[答案:(1)1∶3 (2)54 cm 2]4.如图4-7-35,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E.若AB =10,BC =6,DE =2,求四边形DEBC 的面积.图4-7-35[答案:643]素材三考情考向分析[命题角度1] 利用相似三角形的性质求周长比相似三角形的周长比等于相似比,有了边长的关系,就可以求出周长比.例 [湘西中考] 如图4-7-36,在ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 的延长线于点F ,则△EDF 与△BCF 的周长比是(A )图4-7-36A .1∶2B .1∶3C .1∶4D .1∶5[命题角度2] 利用相似三角形的性质求面积比灵活运用相似三角形的面积比等于相似比的平方进行解题.例 [南京中考] 若△ABC∽△A′B′C′,相似比为1∶2,则△ABC 与△A′B′C′的面积比为(C )A .1∶2B .2∶1C .1∶4D .4∶1[命题角度3] 利用相似三角形的性质求相似比相似三角形的面积之比等于相似比的平方.反过来,当已知两个相似三角形面积之间的关系时,也可以求出相似比.例 [滨州中考] 如图4-7-37,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则ADAB的值是多少?图4-7-37[答案:22]素材四教材习题答案P110随堂练习判断正误:(1)如果把一个三角形三边的长同时扩大为原来的10倍,那么它的周长也扩大为原来的10倍;( )(2)如果把一个三角形的面积扩大为原来的9倍,那么它三边的长都扩大为原来的9倍.( )[答案] (1)√(2)×P110习题4.121.如图,在方格纸上有△A1B1C1和△A2B2C2,这两个三角形是否相似?如果相似,△A1B1C1与△A2B2C2的周长比和面积比分别是多少?解:相似,周长比为2∶1 ;面积比为4∶1.2.如图,在△ABC和△DEF中,G,H分别是边BC和EF的中点,已知AB=2DE,AC=2DF,∠BAC=∠EDF.(1)中线AG与DH的比是多少?(2)△ABC与△DEF的面积比是多少?解:(1)2∶1 (2)4∶1.3.如图,Rt△ABC∽Rt△EFG,EF=2AB,BD和FH分别是它们的中线,△BDC与△FHG是否相似?如果相似,试确定其周长比和面积比.解:相似;周长比为1∶2,面积比为1∶4.4.一块三角形土地的一边长为120 m,在地图上量得它的对应边长为0.06 m,这边上的高为0.04 m,求这块地的实际面积.解:4800 m2.5.小明同学把一幅矩形图放大欣赏,经测量其中一条边由10 cm变成了40 cm,那么这次放大的比例是多少? 这幅画的面积发生了怎样的变化?解:放大的比例是1∶4,这幅画的面积变为原来的16倍.6.一个小风筝与一个大风筝形状相同,它们的形状如图所示,其中对角线AC ⊥BD .已知它们的对应边之比为1∶3,小风筝两条对角线的长分别为12 cm 和14 cm.(1)小风筝的面积是多少?(2)如果在大风筝内装设一个连接对角顶点的十字交叉形的支撑架,那么至少需要多长的材料?(不计损耗)(3)大风筝要用彩色纸覆盖,而彩色纸是从一张刚好覆盖整个风筝的矩形彩色纸(如图中虚线所示)裁剪下来的,那么从四个角裁剪下来废弃不用的彩色纸的面积是多少?解:(1) 设AC 和BD 的交点是O ,风筝面积=△ABD 的面积+△BCD 的面积=12×BD ×AO + 12×BD ×CO =12×BD ×(AO +CO )= 12×BD ×AC =12×12×14=84(cm 2).(2) 3× (AC +BD )=3×(12+14)=78(cm).(3) 彩纸面积=12×14×3×3,容易看出裁下的面积是彩纸的一半, 故废弃部分面积=3×3×12×14×12=756(cm 2).7.如图,在△ABC 中,点D ,E 分别在边AB 和AC 上,且DE ∥BC . (1)若AD ∶DB =1∶1,则S △ADE ∶S 四边形DBCE 等于多少?(2)若S △ADE =S 四边形DBCE ,则DE ∶BC ,AD ∶DB 各等于多少?解:(1)1∶3.(2)DE ∶BC =1∶2,AD ∶DB =1∶(2-1).素材五图书增值练习 专题一 相似三角形性质的综合运用1.已知两个相似三角形对应高的比为3∶10,且这两个三角形的周长差为560cm ,求它们的周长.2.如图,Rt△ABC到Rt△DEF是一个相似变换,AC与DF的长度之比是3∶2.(1)DE与AB的长度之比是多少?(2)已知Rt△ABC的周长是12cm,面积是6cm2,求Rt△DEF的周长与面积.3.如图所示,已知平行四边形ABCD中,E是AB延长线上一点,DE交BC于点F,BE∶AB=2∶3,S△BEF=4,求S△CDF.专题二相似多边形的性质4.如图,一般书本的纸张是在原纸张多次对开得到.矩形ABCD沿EF对开后,再把矩形EFCD 沿MN对开,依此类推.若各种开本的矩形都相似,那么AB∶AD等于.5.已知两个相似多边形的周长比为1∶2,它们的面积和为25,则较大多边形的面积是.6.如图,梯形ABCD中,AD∥BC,E是AB上的一点,EF∥BC,并且EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,若AD=4,BC=9,求AE∶EB.【知识要点】1.相似三角形对应高的比、对应角平分线的比、对应中线的比,都等于相似比.2.相似三角形的周长比等于相似比,面积比等于相似比的平方.3.相似多边形的周长比等于相似比,面积比等于相似比的平方.【温馨提示】1.应用性质时,抓住关键词“对应”,找准对应边.2.不要误认为相似三角形面积的比等于相似比.3.由线段的比求面积的比,或由面积的比求线段的比时,应分两种情况:(1)两个图形是否相似,若是相似图形,则面积比等于相似比的平方;(2)两个图形不相似时,常会出现底在同一条直线上,有同一条高,那么两个三角形面积比等于对应底的比.【方法技巧】1.利用相似三角形性质是求线段长度,角的度数,周长,面积及线段的比等问题的依据.2.等底等高的两三角形面积相等,这个规律在求三角形面积中经常用到.3.应用相似三角形(多边形)的性质,常与三角形(多边形)相似的判定相结合.4.相似多边形的定义是判定多边形相似的主要依据,也是多边形相似的重要性质.参考答案:1.解:设一个三角形周长为C cm,则另一个三角形周长为(C+560)cm,则C∶(C+560)=3∶10,∴C=240,C+560=800,即它们的周长分别为240cm,800cm.2.解:(1)由相似变换可得:DE∶AB=DF∶AC=2∶3;(2)∵AC∶DF=3∶2,∴△DEF的周长∶△ABC的周长=2∶3,S△DEF:S△ABC=4∶9.∵直角三角形ABC的周长是12cm,面积是6cm2,∴△DEF的周长为8cm,S△DEF=cm2.3.解:∵四边形ABCD是平行四边形,∴AE∥DC,∴△BEF∽△CDF.∵AB=DC,BE∶AB=2∶3,∴BE∶DC=2∶3,∴S△DCF=()2•S△BEF=×4=9.4.[解析]∵矩形ABCD∽矩形BFEA,∴AB∶BF=AD∶AB,∴AD•BF=AB•AB.又∵BF=AD,∴AD2=AB2,则==.5.20 [解析]根据相似多边形周长的比等于相似比,而面积的比等于相似比的平方,即可求得面积的比值,依据面积和为25,就可求得两个多边形的面积.设两个多边形中较小的多边形的面积是x,则较大的面积是4x.根据题意得:x+4x=25,解得x=5.因而较大多边形的面积20.6.解:∵梯形AEFD∽梯形EBCF,∴==.又∵AD=4,BC=9,∴EF2=AD•BC=4×9=36.∵EF>0,∴EF=6,∴==,即=.【知识要点】1.几种特殊四边形的性质和判定:(1)特殊平行四边形具有一般平行四边形的一切性质,需要注重各自图形的特殊性质.(2)判别菱形:①说明是平行四边形+邻边相等; ②说明是平行四边形+对角线垂直;③四条边相等。
2018中考数学知识点:相似三角形
新一轮中考复习备考周期正式开始,中考网为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018中考数学知识点:相似三角形》,仅供参考!
相似三角形
所谓的相似三角形,就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。
三角对应相等,三边对应成比例的两个三角形叫做相似三角形。
相似三角形的判定方法有:
平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似,
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似,如果两个三角形的三组对应边的比相等,那么这两个三角形相似,
直角三角形相似判定定理1:斜边与一条直角边对应成比例的两直角三角形相似。
直角三角形相似判定定理2:直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
射影定理
相似三角形的性质
1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方。