大物第七章练习
- 格式:doc
- 大小:817.50 KB
- 文档页数:12
第七章7-1 (1)由RT MmpV =把p =10atm, T=(47+273)K=320K.m =0.1kg, M=32×10-3kg R =8.31J ·mol -1·K -1代入.证V =8.31×10-3m 3(2) 设漏气后,容器中的质量为m ′,则T R M m V p ''=' 3201.0853*******⨯⨯='⇒⨯'=⇒R MR M m R Mm pV )kg (151='⇒m 漏去的氧气为kg 103.3kg 301kg )1511.0(2-⨯≈=-='-=m m m ∆ 7-2 太阳内氢原子数H Sm M N =故氢原子数密度为3827303)1096.6(341067.11099.134⨯⨯⨯⨯===-ππs H S R m M VN n)(105.8329-⨯=m由P =nkT 知)(1015.11038.1105.81035.17232914K nk p T ⨯=⨯⨯⨯⨯==- 7-3 如图混合前:2221112222111O He T M m T M m RT M m pV RT M m pV =⇒⎪⎪⎭⎪⎪⎬⎫==气有对气有对 ①总内能 222111212523RT M m RT M m E E E +=+=前 ② ①代入②证1114RT M m E =前 混合后:设共同温度为T题7-2图()RT M m T T EF RT M m M m E 21210221125231,2523⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=式得又由后 ③ 又后前E E =,故由(2)(3)知)/53(8211T T T T +=7-4 (1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤≤≤=000002020)(v v v v v av v v v av f (2)由归一化条件⎰∞=01d )(v v f 得020032123d d 000v a av v a v v v a v v v =⇒==+⎰⎰(3)4d d )(00002/02/Nv v v a N v v Nf N v v v v =⎪⎪⎭⎫ ⎝⎛==⎰⎰∆ (4)从图中可看出最可几速率为v 0~2v 0各速率. (5)⎰⎰⎰+⎪⎪⎭⎫ ⎝⎛==∞0002/000d d d )(v v v v va v v v av v v vf v020911611v av ==(6)02/02/097d d d )(d )(0002121v v v v a v v av v v v f v v vf v v v v v v v v v =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛==⎰⎰⎰⎰ 7-5 氧气未用时,氧气瓶中T T p L V V ====111,atm 130,32 V RTMp V RT Mp m 11111==① 氧气输出压强降到atm 102=p 时 V RTMp V RT Mp m 22222== ② 氧气每天用的质量 000V RTMP m =③L 400,atm 100==V P设氧气用的天数为x ,则021210m m m x m m xm -=⇒-= 由(1)(2)(3)知021021)(V p Vp p m m m x -=-=)(6.932400110130天=⨯⨯-=7-6 (1))(m 1041.23001038.110325235--⨯=⨯⨯==KT p n (2)(kg)103.51002.61032262330--⨯=⨯⨯==N M μ (3))kg/m (3.1103.51041.232625=⨯⨯⨯==-μρn (4)(m)1046.31041.21193253-⨯=⨯==nl(5)认为氧气分子速率服从麦克斯韦布,故 )(m s 1046.4103230031.86.16.11-23⨯=⨯⨯==-M RT v (6)122ms 1083.43-⨯==MRTv (7)(J)1004.13001038.12522023--⨯=⨯⨯⨯==KT i ε 7-7 3112310m 1006.12371038.1104---⨯=⨯⨯⨯==∴=kT p n nkTp )(cm 1006.135-⨯= 故1cm 3中有51006.1⨯个氮气分子.m101.21006.111d 43113-⨯≈⨯==n7-8 由课本P 257-258例7-4的结论知 )l n (0pp Mg RTh =(m)1096.1)8.01ln(8.9102930031.833⨯=⨯⨯⨯=- 7-9 (1) (J)1021.63001038.123232123--⨯=⨯⨯⨯==KT t (2)看作理想气体,则3132310101030028.16.16.1---⨯⨯⨯==μKTv 12ms 1003.1--⨯=7-10 (J)5.373930031.82323=⨯⨯===RT N E 平动平动ε (J)249330031.8122=⨯⨯===RT N E 转动转动ε内能(J)1023.630031.825253⨯=⨯⨯==RT E7-11 (1)由KTpn nKT p =⇒=∵是等温等压 ∴ 1:1:21=n n (2) MRT v 6.1=是等温,∴4:1322::1221====M M v v7-12317233102.33001038.11033.1---⨯=⨯⨯⨯==m KT P n m)(8.71033.110923001038.1d 2320232=⨯⨯⨯⨯⨯⨯==---ππλpKT7-13 (1)8000021042.56.1d 2⨯=⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫===z M RT v KT p n v n z π(2)由公式MTRK p M RTKT p v n z 222d 26.1d 2d 2πππ===知 z 与T 和P 有关,由于T 不变,故z 只与P 有关.则1854000071.01042.510013.11033.1::--=⨯⨯⨯⨯='='⇒'='s z p p z p p z z 7-14 (1)如图MRT v 32=∴A c A c T T v v ::22=又 C B →等温过程,故C B T T =. 由B A A B V V P P RT Mm pV ===2则A B T T 2= ∴1:2:22=A c V V(2)AAc c A c P T P T pKT ::d 22==λλπλ C B →等温过程 A C A A A C B B C C p p V p V p V p V p =⇒=⨯⇒=221:2:=∴A C7-15 (1)MRTv 73.12= )(ms 100.7102400031.873.1133--⨯=⨯⨯=(2)m 10210)31(2122101021--⨯=⨯+=+=d d d (3)325202210710401042d 2⨯⨯⨯⨯⨯⨯==-ππv n z110s 105-⨯= 7-16 (1)题7-14图MTR k p z KT pn M RT v v n z ππππ8d 28d 222=⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=== ① 又由mREMT RT M m RT M m E 3326=⇒==② 把②代入①知EmkMpKN E m kM pR z ππ3d 43d 4022== EmMpN π3d 402=(2) MRTv P 2=把②代入得mEmR EM M R V P 3232=⨯=(3)平均平动动能 0232323mN EMmR EM k kT t =⨯==ε。
⼤学物理学(课后答案)第7章第七章课后习题解答、选择题7-1处于平衡状态的⼀瓶氦⽓和⼀瓶氮⽓的分⼦数密度相同,分⼦的平均平动动能也相同,则它们[](A) 温度,压强均不相同(B)温度相同,但氦⽓压强⼤于氮⽓的压强(C)温度,压强都相同(D)温度相同,但氦⽓压强⼩于氮⽓的压强3分析:理想⽓体分⼦的平均平动动能τk= kT,仅与温度有关,因此当氦⽓和氮2⽓的平均平动动能相同时,温度也相同。
⼜由理想⽓体的压强公式p =nkT ,当两者分⼦数密度相同时,它们压强也相同。
故选( C)O7-2理想⽓体处于平衡状态,设温度为T,⽓体分⼦的⾃由度为i ,则每个⽓体分⼦所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为^kT (D)平均平动动能为^RT分析:由理想⽓体分⼦的的平均平动动能3 kT和理想⽓体分⼦的的平均动能2T⼆丄kT ,故选择(C)O27-3三个容器A、B、C中装有同种理想⽓体,其分⼦数密度n相同,⽽⽅均根1/2 1/2 1/2速率之⽐为V A : V B : V C 1:2:4 ,则其压强之⽐为P A : P B : P C[](A) 1:2:4 (B) 1:4:8 (C) 1 : 4 : 16 (D) 4:2:1分析:由分⼦⽅均根速率公式= J3RT,⼜由物态⽅程p = nkT ,所以当三容器中得分⼦数密度相同时,得p1: P2: P3 =T1 :T2 :T3 =1:4:16 O故选择(C)O7-4图7-4中两条曲线分别表⽰在相同温度下氧⽓和氢⽓分⼦的速率分布曲线。
如果(VP O和(V P 分别表⽰氧⽓和氢⽓的最概然速率,则[](A)图中a表⽰氧⽓分⼦的速率分布曲线且V P O z V P H= 4(B) 图中a表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H? =1/4(C) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O / V P H=1/4(D) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H2 =4分析:在温度相同的情况下,由最概然速率公式'..P=I j2RT及氢⽓与氧⽓的摩尔质量M H2£M o2,可知氢⽓的最概然速率⼤于氧⽓的最概然速率,故曲线a对应于氧分⼦的速率分布曲线。
第七章课后习题解答一、选择题7-1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能32k kT ε=,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。
又由理想气体的压强公式p nkT =,当两者分子数密度相同时,它们压强也相同。
故选(C )。
7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为2i kT (B) 动能为2iRT(C) 平均动能为2i kT (D) 平均平动动能为2iRT分析:由理想气体分子的的平均平动动能32k kT ε=和理想气体分子的的平均动能2ikT ε=,故选择(C )。
7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()1/21/21/222::2A B Cv v v =1:2:4,则其压强之比为A B C p :p :p[ ](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1=,又由物态方程p nkT =,所以当三容器中得分子数密度相同时,得123123::::1:4:16p p p T T T ==。
故选择(C )。
7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。
如果()2p O v 和()2p H v 分别表示氧气和氢气的最概然速率,则[ ](A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=质量22H O M M <,可知氢气的最概然速率大于氧气的最概然速率,故曲线a 对应于氧分子的速率分布曲线。
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q,它的几何中间放置一个单位正电荷,求这个电荷受力的大小和偏向.解:如图可看出两2q 的电荷对单位正电荷的在感化力 将互相抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520a qπε偏向由q 指向-4q.7-2 如图,平均带电细棒,长为L,电荷线密度为λ.(1)求棒的延伸线上任一点P 的场强;(2)求经由过程棒的端点与棒垂直上任一点Q 的场强.解:(1)如图7-2 图a,在细棒上任取电荷元dq,树立如图坐标,dq =λd ξ,设棒的延伸线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为 )11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ偏向沿ξ轴正向.(2)如图7-2 图b,设经由过程棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d ydx ytg x ===,习题7-1图dqξd ξ习题7-2 图axdx习题7-2 图by代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,偏向沿x 轴负向.θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,平均散布有电荷q,求半圆中间O 处的场强. 解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ.对称剖析E y =0.θπεθλsin 420R Rd dE x =⎰⎰==πθπελ0sin 4R dE E xR02πελ= 2022R q επ=,如图,偏向沿x 轴正向.7-4 如图线电荷密度为λ1的无穷长平均带电直线与另一长度为l .线电荷密度为λ2的平均带电直线在统一平面内,二者互相垂直,求它们间的互相感化力.解:在λ2的带电线上任取一dq,λ1的带电线是无穷长,它在dq 处产生的电场强度由高斯定理轻易得到为,xE 012πελ=两线间的互相感化力为θθπελθd y dE E x x ⎰⎰-=-=0sin4x习题7-3图λ1 习题7-4图⎰⎰==x dx dF F 0212πελλ⎰=la x dx 0212πελλ,ln 2021ala +πελλ如图,偏向沿x 轴正向. 7-5 两个点电荷所带电荷之和为Q,问它们各带电荷若干时,互相感化力最大? 解:设个中一个电荷的带电量是q,另一个即为Q -q,若它们间的距离为r,它们间的互相感化力为204)(rq Q q F πε-=互相感化力最大的前提为04220=-=r qQ dq dF πε 由上式可得:Q=2q,q=Q/27-6 一半径为R 的半球壳,平均带有电荷,电荷面密度为σ,求球心处电场强度的大小. 解:将半球壳细割为诸多细环带,其上带电量为θθπσθπσd R rRd dq sin 222==dq 在o 点产生的电场据(7-10)式为304R ydqdE πε=,θcos R y =θθπεθπσπd R R dE E cos 4sin 200303⎰⎰==)(sin sin 200θθεσπd ⎰=20202sin 2πθεσ=4εσ=.如图,偏向沿y 轴负向. 7-7 设匀强电场的电场强度E 与半径为R 的半球面临称轴平行,盘算经由过程此半球面电场强度的通量.习题7-6图成为闭合曲面高斯,对此高斯曲面电通量为0, 即021=⋅+⋅=⋅⎰⎰⎰S S SS d E S d E S d E2211R E S d E S d E S S S π-=⋅-=⋅=ψ⎰⎰7-8 求半径为R,带电量为q 的空心球面的电场强度散布.解: 因为电荷散布具有球对称性,因而它所产生的电场散布也具有球对称性,与带电球面齐心的球面上各点的场强E 的大小相等,偏向沿径向.在带电球内部与外部区域分离作与带电球面齐心的高斯球面S 1与S 2.对S 1与S 2,运用高斯定理,即先盘算场强的通量,然后得出场强的散布,分离为04d 21==⋅=⎰r E S πψS E得 0=内E (r<R )24d 2επψqr E S ==⋅=⎰S Errˆ204q πε=外E (r>R) 7-9 如图所示,厚度为d 的“无穷大”平均带电平板,体电荷密度为ρ,求板表里的电场散布.解:带电平板平均带电,在厚度为d/2的等分街面上电场强度为零,取坐标原点在此街面上,树立如图坐标.对底面积为A,高度分离为x <d/2和x >d/2的高斯曲面运用高斯定理,有d ρψAxEA ==⋅=⎰S E r习题7-18图2d 2ερψd A EA S ==⋅=⎰S E)2( 202d x i d E > ερ=7-10 一半径为R 的无穷长带电圆柱,其体电荷密度为)(0R r r ≤=ρρ,ρ0为常数.求场强散布.解: 据高斯定理有⎰⎰==⋅VSdV rl E S d E ρεπ012R r ≤时:⎰'''=rr ld r r krl E 022πεπ⎰''=rr d r lk202επ=rl E π23230r lk επn e kr E 023ε=→R r >时:⎰'''=Rr ld r r krl E 022πεπ⎰''=Rr d r lk202επ=rl E π23230R lk επn e rkR E 033ε=→7-11 带电为q.半径为R 1的导体球,其外齐心肠放一金属球壳,球壳内.外半径为R 2.R 3. (1)球壳的电荷及电势散布;(2)把外球接地后再绝缘,求外球壳的电荷及球壳表里电势散布; (3)再把内球接地,求内球的电荷及外球壳的电势. 解:(1)静电均衡,球壳内概况带-q,外概况带q 电荷. 据(7-23)式的结论得:),)(111(4132101R r R R R q V ≤+-=πε );)(111(212R r R qV ≤≤+-=习题7-10图r),(432303R r R R q V ≤≤=πε).(4304R r rq V ≥=πε (2)),)(11(412101R r R R q U ≤-=πε );)(11(421202R r R R r qV ≤≤-=πε),(0323R r R V ≤≤=).(034R r V >>= (3)再把内球接地,内球的电荷及外球壳的电荷从新散布设静电均衡,内球带q /,球壳内概况带-q /,外概况带q /-q.),)((41132101R r R q q R q R q V ≤-'+'-'=πε 得:21313221R R R R R R qR R q +-='=-'=3034R qq V πε)(4)(213132021R R R R R R q R R +--πε)(32R r R ≤≤ 7-12 一平均.半径为R 的带电球体中,消失一个球形空腔,空腔的半径r(2r<R),试证实球形空腔中随意率性点的电场强度为匀强电场,其偏向沿带电球体球心O 指向球形空腔球心O /. 证实:运用补缺法,此空腔可视为同电荷密度的一个完全的半径为R 的大球和一个半径为r 与大球电荷密度异号完全的小球构成,两球在腔内随意率性点P 产生的电场分离据〔例7-7〕成果为03ερ11r E =, 03ερ22r E -= E =E 1+E 2=03ερ1r 03ερ2r - o o '=3ερ上式是恒矢量,得证.习题7-12图7-13 一平均带电的平面圆环,内.外半径分离为R 1.R 2,且电荷面密度为σ.一质子被加快器加快后,自圆环轴线上的P 点沿轴线射向圆心O.若质子到达O 点时的速度正好为零,试求质子位于P 点时的动能E K .(已知质子的带电量为e,疏忽重力的影响,OP=L )解:圆环中间的电势为⎰=210042R R r rdr V πεπσ )(2120R R -=εσ圆环轴线上p 点的电势为⎰+=2122042R R P Lr rdrV πεπσ)(22221222022021L R L R L r R R +-+=+=εσεσ质子到达O 点时的速度正好为零有k P E E E +=0p k E E E -=→0 p k eV eV E -=0=210()2e R R σε=-02e σε-210(2e R R σε=- 7-14 有一半径为R 的带电球面,带电量为Q,球面外沿直径偏向上放置一平均带电细线,线电荷密度为λ,长度为L (L>R ),细线近端离球心的距离为L.设球和细线上的电荷散布固定,试求细线在电场中的电势能.解:在带电细线中任取一长度为dr 的线元,其上所带的电荷元为dq=λdr,据(7-23)式带电球面在电荷元处产生的电势为rQ V 04πε=电荷元的电势能为: rdrQ dW 04πελ=细线在带电球面的电场中的电势能为:习题7-13图r习题7-14图===⎰⎰LLr dr Q dW W 204πελ2ln 40πελQ*7-15 半径为R 的平均带电圆盘,带电量为Q.过盘心垂直于盘面的轴线上一点P 到盘心的距离为L.试求P 点的电势并运用电场强度与电势的梯度关系求电场强度.解:P 到盘心的距离为L,p 点的电势为⎰+=RP Lr rdrV 022042πεπσ)(222220220L L R L r R -+=+=εσεσ 圆盘轴线上随意率性点的电势为⎰+=Rxr rdrx V 022042)(πεπσ)(22222200220x x R RQ x r R -+=+=πεεσ运用电场强度与电势的梯度关系得:i x R xR Q i dx dV x E)1(2)(22220+-=-=πε P 到盘心的距离为L,p 点的电场强度为:i L R LR Q L E)1(2)(22220+-=πε7-16 两个齐心球面的半径分离为R 1和R 2,各自带有电荷Q 1和Q 2.求:(1)各区城电势散布,并画出散布曲线;(2)两球面间的电势差为若干?解:(1)据(7-23)式的结论得各区城电势散布为),( )(411221101R r R Q R Q V ≤+=πε );( )1(41212102R r R R r Q V ≤≤+=πε ).( 420213R r rQ Q V ≥+=πε(2)两球面间的电势差为p习题7-15图习题7-16图==⎰dr rQ V R R 21201124πε )11(42101R R Q -πε 7-17 一半径为R 的无穷长带电圆柱,其内部的电荷平均散布,电荷体密度为ρ,若取棒概况为零电势,求空间电势散布并画出电势散布曲线. 解: 据高斯定理有R r ≤时:22ερππl r rl E S d E S==⋅⎰ n e r E 02ερ=→ R r =时,V=0,则 R r ≤时:⎰=R r rdr V 02ερ)(4220r R -=ερR r >时:022ερππlR rl E S d E S==⋅⎰ n e r R E 022ερ=→ ⎰=Rrr dr R V 022ερrR R ln 202ερ= 空间电势散布并画出电势散布曲线大致如图.7-18 两根很长的同轴圆柱面半径分离为R 1.R 2,带有等量异号的电荷,两者的电势差为U,求:(1)圆柱面单位长度带有若干电荷?(2)两圆柱面之间的电场强度.解:设圆柱面单位长度带电量为λ,则两圆柱面之间的电场强度大小为E λ=习题7-10图r由上式可得:120ln 2R R U=πελ 所以n e r E 02πελ=)( ln 2112R r R e rR R Un <<⋅= 7-19 在一次典范的闪电中,两个放电点间的电势差约为109V,被迁徙的电荷约为 30库仑,假如释放出来的能量都用来使00C 的冰熔化成00C 的水,则可熔化若干冰?(冰的熔 ×105J ﹒kg -1)解:两个放电点间的电势差约为109V,被迁徙的电荷约为30库仑,其电势能为J W p 91030⨯=上式释放出来的能量可熔化冰的质量为:=⨯⨯=∆591034.31030m ×104kg 7-20 在玻尔的氢原子模子中,电子沿半径为a 的玻尔轨道上绕原子核作圆周活动.(1)若把电子从原子中拉出来须要战胜电场力作若干功?(2)电子在玻尔轨道上活动的总能量为若干?解:电子沿半径为a 的玻尔轨道上绕原子核作圆周活动,其电势能为aeeW p 04πε-=(1)把电子从原子中拉出来须要战胜电场力作功为:ae W W p 024πε=-=外(2)电子在玻尔轨道上活动的总能量为:k p E W W +=221mv W p += →a v m a e 22024=πε 2mv ae 024πε=221mv E k =∴ae 028πε=电子的总能量为:221mv W W p +=a e 024πε-=a e 028πε+ae 028πε-=第八章 静电场中的导体与电介质8-1 点电荷+q 处在导体球壳的中间,壳的表里半径分离为R l 和R 2,试求,电场强度和电势的散布.解:静电均衡时,球壳的内球面带-q.外球壳带q 电荷 在r<R 1的区域内rr q ˆ4E 201πε=,)111(42101R R r qU +-=πε 在R 1<r<R 2的区域内,02=E .,4202R q U πε=在r>R 2的区域内:.ˆ4E 203r r πεq=.403rq U πε= 8-2 把一厚度为d 的无穷大金属板置于电场强度为E 0的匀强电场中,E 0与板面垂直,试求金属板两概况的电荷面密度.解:静电均衡时,金属板内的电场为0,金属板概况上电荷面密度与紧邻处的电场成正比 所以有,001E εσ-=.002E εσ=8-3 一无穷长圆柱形导体,半径为a ,单位长度带有电荷量λ1,其外有一共轴的无穷长导体圆简,表里半径分离为b 和c,单位长度带有电荷量λ2,求(1)圆筒表里概况上每单位长度的电荷量;(2)求电场强度的散布.解:(1)由静电均衡前提,圆筒表里概况上每单位长度的电荷量为;,21λλλ+-(2)在r<a 的区域内:E=0R 2R 1习题 8-1图q-q qE 0E 0习题 8-2图σ1 σ2在a<rb 的区域内:E r012πελ=e n在r>b 的区域内:E r0212πελλ+=e n8-4 三个平行金属板A.B 和C,面积都是200cm 2,A.B 相距,A.C 相距,B.C 两板都接地,如图所示.假如A 板带正电×10-7C,略去边沿效应(1)求B 板和C 板上感应电荷各为若干?(2)以地为电势零点,求A 板的电势.解:(1)设A 板两侧的电荷为q 1.q 2,由电荷守恒 道理和静电均衡前提,有A q q q =+21(1) 1q qB -=,2q qC -=(2)依题意V AB =V AC ,即101d S q ε=202d Sq ε112122q q d dq ==→代入(1)(2)式得 q 1=×10-7C,q 2×10-7C,q B ×10-7C,q C =-q 2×10-7C,(2)101d S q U A ε==202d S q ε==⨯⨯⨯⨯⨯⨯----312471021085810200102.×103V 8-5 半径为R 1=l.0cm 的导体球带电量为×10-10C ,球外有一个表里半径分离为R 2=和R 3=的齐心导体球壳,壳带有电量Q=11×10-10C ,如图所示,求(1)两球的电势;(2)用导线将两球衔接起来时两球的电势;(3)外球接地时,两球电势各为若干?(以地为电势零点)解:静电均衡时,球壳的内球面带-q.外球壳带q+Q 电荷 (1))(4132101R Qq R q R q U ++-=πε代入数据 )41113111(101085.814.34100.1212101++-⨯⨯⨯⨯⨯=---UA BC习题 8-4图d 1d 2q+Q=×102V2024R Qq U πε+=4)111(101085.814.34100.121210+⨯⨯⨯⨯⨯=---=×102V(2)用导线将两球衔接起来时两球的电势为2024R Q q U πε+=4)111(101085.814.34100.121210+⨯⨯⨯⨯⨯=---=×102V (3)外球接地时,两球电势各为)(412101R q R q U -=πε)3111(101085.814.34100.1212101-⨯⨯⨯⨯⨯=---U =60V 02=U8-6 证实:两平行放置的无穷大带电的平行平面金属板A 和B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小等,符号雷同.假如两金属板的面积同为100cm 2,带电量分离为Q A =6×10-8 C 和Q B =4×10-8C,略去边沿效应,求两个板的四个概况上的电面密度.证:设A 板带电量为Q A .两侧的电荷为q 1.q 2, B 板板带电量为Q B.两侧的电荷为q 3.q 4.由电荷守恒有A Q q q =+21(1)B Q q q =+43(2)在A 板与B 板内部取两场点,金属板内部的电场为零有020122εεS q S q -0220403=--εεS qS q ,得04321=---q q q q (3) 020122εεS q S q +0220403=-+εεS qS q ,得04321=-++q q q q (4) 联立上面4个方程得:241B A Q Q q q +==,232BA Q Q q q -=-= 即相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小等,符号2习题 8-6图q 1 q 4雷同,本题得证.假如两金属板的面积同为100cm 2,带电量分离为Q A =6×10-8 C 和Q B =4×10-8C,则=⨯⨯⨯+==--844110101002)46(σσ×10-6C/m 2, =⨯⨯⨯-=-=--843210101002)46(σσ×10-6C/m 2 8-7 半径为R 的金属球离地面很远,并用细导线与地相联,在与球心相距离为D=3R 处有一点电荷+q,试求金属球上的感应电荷.解:设金属球上的感应电荷为Q,金属球接地 电势为零,即04400=+DQ Rq πεπε3Rq q Q D =-=-8-8 一平行板电容器,南北极板为雷同的矩形,宽为a,长为b,间距为d,今将一厚度为t .宽度为a 的金属板平行地向电容器内拔出,略去边沿效应,求拔出金属板后的电容量与金属板拔出深度x 的关系.解:设如图左边电容为C 1,右边电容为C 2d x b a C )(01-=εtd ax C -=02ε阁下电容并联,总电容即金属板后的电容量与金属板拔出深度x 的关系,为d x b a C C C )(021-=+=εtd ax-+0ε=)(0td txb d a -+ε 8-9 收音机里的可变电容器如图(a )所示,个中共有n 块金属片,相邻两片的距离均为d,奇数片联在一路固定不动(叫定片)偶数片联在起而可一同迁移转变(叫动片)每片的外形如图(b )所示.求当动片转到使两组片重叠部分的角度为θ时,电容器的电容.解:当动片转到使两组片重叠部分的角度t习题 8-8图为θ时,电容器的电容的有用面积为1802)(2122⨯-=θπr r S 360)(2122θπr r -=此构造相当有n-1的电容并联,总电容为dS n C 0)1(ε-==d r r n 360)()1(21220--θπε8-10 半径都为a 的两根平行长直导线相距为d (d>>a ),(1)设两直导线每单位长度上分离带电十λ和一λ求两直导线的电势差;(2)求此导线组每单位长度的电容.解:(1)两直导线的电电场强度大小为rE 022πελ⨯= 两直导线之间的电势差为⎰=r dr V 0πελ⎰-=ad ar dr 0πελaa d -=ln 0πελ (2)求此导线组每单位长度的电容为VC λ==aa d -ln0πε8-11 如图,C 1=10μF,C 2=5μF,C 3=5μF,求(1)AB 间的电容;(2)在AB 间加上100V 电压时,求每个电容器上的电荷量和电压;(3)假如C 1被击穿,问C 3上的电荷量和电压各是若干?解:(1)AB 间的电容为20155)(321213⨯=+++=C C C C C C C =μF;(2)在AB 间加上100V 电压时,电路中的总电量就是C 3电容器上的电荷量,为C CV q q 4631073.31001073.3--⨯=⨯⨯===C C q 10151073.3642121⨯⨯=+=--(a)(b)习题 8-9图AC 1C 2 oV V 75251003=-=C V C q 46111105.2251010--⨯=⨯⨯== C V C q 462221025.125105--⨯=⨯⨯==(3)假如C 1被击穿,C 2短路,AB 间的100V 电压全加在C 3上,即V 3=100V , C 3上的电荷量为C V C q 46333100.5100105--⨯=⨯⨯==8-12 平行板电容器,南北极间距离为l.5cm ,外加电压39kV ,若空气的击穿场强为30kV/cm ,问此时电容器是否会被击穿?现将一厚度为的玻璃拔出电容器中与两板平行,若玻璃的相对介电常数为7,击穿场强为100kV/cm ,问此时电容器是否会被击穿?成果与玻璃片的地位有无关系?解:(1)未加玻璃前,南北极间的电场为cm kV cm kV E /30/265.139<==不会击穿(2)加玻璃后,南北极间的电压为3973.02.1=+EE cm kV cm kV E /30/31>=→ 空气部分会击穿,此后,玻璃中的电场为cm kV cm kV E /100/1303.039>==,玻璃部分也被击穿.成果与玻璃片的地位无关. 8-13 一平行板电容器极板面积为S ,两板间距离为d,其间充以相对介电常数分离为εr1.εr2,的两种平均电介质,每种介质各占一半体积,如图所示.若疏忽边沿效应,求此电容器的电容.解:设如图左边电容为C 1,右边电容为C 2d S C r 2/101εε= dS C r 2/202εε=阁下电容并联,总电容为V习题 8-12图习题 8-13图=+=21C C C +d S r 2/10εεdS r 2/20εε)2(210r r d S εεε+=8-14 平行板电容器南北极间充满某种介质,板间距d 为2mm,电压600V ,如武断开电源后抽出介质,则电压升高到1800V .求(1)电介质相对介电常数;(2)电介质上极化电荷面密度;(3)极化电荷产生的场强.解:设电介质抽出前后电容分离为C 与C /0022002253620050035550(1),1800,3600600(2)310/210(1) 5.3110/1800(3),910/210910/310/610/r r r r S SC C Q CU C U d d S S U V U U d d U V U V E V m d mD E E C m U VE E E E V m d mE E E V m V m V εεεεεεεσεεε---'''===='∴===='===⨯⨯∴=-=-=⨯''=+===⨯⨯'∴=-=⨯-⨯=⨯m0022002253620050035550(1),1800,3600600(2)310/210(1) 5.3110/1800(3),910/210910/310/610/r r r r S SC C Q CU C U d d S S U V U U d d U V U V E V m d mD E E C m U VE E E E V m d mE E E V m V m V εεεεεεεσεεε---'''===='∴===='===⨯⨯∴=-=-=⨯''=+===⨯⨯'∴=-=⨯-⨯=⨯m8-15 圆柱形电容器是由半径为R 1的导体圆柱和与它共轴的导体圆筒构成.圆筒的半径为R 2,电容器的长度为L,其间充满相对介电常数为εr 的电介质,设沿轴线偏向单位长度上圆柱的带电量为+λ,圆筒单位长度带电量为-λ,疏忽边沿效应.求(1)电介质中的电位移和电场强度;(2)电介质极化电荷面密度. 解:0110220122,22(1)(1),22rr r r r ds D rl lD E r r P D E P D E R R πλλλππεεελελσεσεεπεπ⋅=⋅=∴==--==-===-=⎰取同轴圆柱面为高斯面,由介质中的高斯定理可得D8-16 半径为R 的金属球被一层外半径为R /的平均电介质包裹着,设电介质的相对介电常数为εr ,金属球带电量为Q,求(1;(3)金属球的电势. 解:12122121222000012100220021(1)4,44411(2)()444(3)r r R R rr R R Q D ds D r Q D D r D D Q QE E r r Q QU E dl E dl r R R Q U E dl rU E dl E ππεεεπεεπεπεεπεπε'∞'∞'∞⋅=⋅=∴==∴=====⋅+⋅=-+''=⋅=⋅+⎰⎰⎰⎰⎰取同心高斯球面,由介质的高斯定理得介质层内的电势介质层外的电势=金属球的电势101011()44R R r Q Qdl R R R πεεπε'⋅=-+''⎰8-17 球形电容器由半径为R 1的导体球和与它齐心的导体球壳构成,球壳内半径为R 2,其间有两层平均电介质,分界面半径为r,电介质相对介电常数分离为εr1.εr2,如图所示.求(1)电容器的电容;(2)当内球带电量为+Q 时各介质概况上的约束电荷面密度. 解:习题 8-16图21221221212220102010221022011021211221221(1)4,4,441111()()444()(r r r r rR R rr r r r r r r Q D ds D r Q D D r D D Q QE E r r Q Q U E dl E dl r R R rR R r QC U R R r R R ππεεεεπεεπεεπεεπεεπεεεεεεε⋅=⋅=∴==∴====∴=⋅+⋅=-+-∴==-+-⎰⎰⎰取同心高斯球面,由介质的高斯定理得1110112211112342221222)11(1)(1),(1)44111(1),(1),(1)444r r r r r r Q Q D E R R Q Q Q r r R σεσεεππσσσεεεπππ=-=-∴=--=-=--=-8-18 一平行板电容器有两层介质(如图),εr1=4,εr2=2,厚度为d 1=,d 2=,极板面积S=40cm 2,南北极板间电压为200V .(1)求每层电介质中的能量密度;(2)盘算电容器的总能量;(3)盘算电容器的总电容.解:02112210122121122223110101122232202022020112210102121/221(1)/43350,15011() 1.110/,2211() 2.210/22(2)r r r r e r r e r r r r r r SU Q C d d S U Q C d d U V U VU E J m d U E J m d S SC C d d C S S C C d εεεεεεωεεεεωεεεεεεεεεεεε--⨯=====⨯∴==∴===⨯===⨯==++227002020*******0010212121122200 3.51022(3)2 1.7910r r r r W CU d S SC C d d C FS SC C d d εεεεεεεεεεε--=∴==⨯⨯=⨯====⨯++8-19 平板电容器的极板面积S=300cm 2南北极板相距d 1=3mm,在南北极板间有一个与地绝缘的平行金属板,其面积与极板的雷同,厚度d 1=1mm.当电容器被充电到600V 后,拆去电源,然后抽出金属板,问(1)电容器间电场强度是否变更;(2)抽出此板需作若干功?解:R 1 R 2r习题 8-17图习题 8-18图11531115322(1),600 3.010/(31)103,21.5600 3.010/3102,22SSQ CU Ud d d d U VE V m d d mSUSd d Qd UU U S d d d dU V E V m E d m Q QW W C C εεεεε--==--===⨯--⨯-''==='-'⨯'===⨯=⨯'=='00000未拆电源前,C=拆去电源并抽出金属板后,C ==C 所以电场强度没有发生变化。
大物上海交大课后答案第七章第一篇:大物上海交大课后答案第七章习题7 7-1.如图所示的弓形线框中通有电流I,求圆心O处的磁感应强度B。
解:圆弧在O点的磁感应强度:B1=ϖμ0Iθμ0I,方向:ε;=4πR6Rμ0I[sin60-sin(-60)]=00B2=直导线在O点的磁感应强度:3μ0I2πR4πRcos600,方向:⊗;∴总场强:B=μ0I2R(1-),方向⊗。
π337-2.如图所示,两个半径均为R的线圈平行共轴放置,其圆心O1、O2相距为a,在两线圈中通以电流强度均为I的同方向电流。
(1)以O1O2连线的中点O为原点,求轴线上坐标为x的任意点的磁感应强度大小;(2)试证明:当a=R时,O点处的磁场最为均匀。
解:见书中载流圆线圈轴线上的磁场,有公式:B=(1)左线圈在x处P点产生的磁感应强度:BP1=μ0IR22(R+z)2232。
μ0IR2右线圈在x处P点产生的磁感应强度:BP2ϖϖBP1和BP2方向一致,均沿轴线水平向右,∴P点磁感应强度:BP=BP1+BP2=(2)因为BP随x变化,变化率为3a2222[R+(+x)]2μ0IR2,=3a2[R2+(-x)2]22,μ0IR2⎧23-⎫a2-3a22⎨[R+(x+)]2+[R+(x-)]2⎬;22⎩⎭2dB,若此变化率在x=0处的变化最缓慢,则O点处的dx磁场最为均匀,下面讨论O点附近磁感应强度随x变化情况,即对BP的各阶导数进行讨论。
对B求一阶导数:3μ0IR2⎧⎫aa2-5aa2-5dB2222=-(x+)[R+(x+)]+(x-)[R+(x-)]⎨⎬22222dx⎩⎭dB当x=0时,=0,可见在O点,磁感应强度B有极值。
dx对B求二阶导数:ddBd2B()== 2dxdxdx⎧a2a2⎫5(x+)5(x-)⎪3μ0IR⎪11⎪⎪22--+-⎨5757⎬2aaaa⎪[R2+(x+)2]2[R2+(x+)2]2[R2+(x-)2]2[R2+(x-)2]2⎪⎪⎪⎩2222⎭2a2-R2,x=0=3μ0IR7a[R2+()2]22d2B>0,O点的磁感应强度B有极小值,可见,当a>R时,2x=0dxd2B当x=0时,dx22d2B当a<R时,dx2d2B当a=R时,dx2x=0<0,O点的磁感应强度B有极大值,=0,说明磁感应强度B在O点附近的磁场是相当均匀的,可看成匀x=0强磁场。
习题精解7-1一条无限长直导线在一处弯折成半径为R 的圆弧,如图所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O 处的磁感应强度;(2)当圆弧为1/4圆周时,圆心O 处的磁感应强度。
解(1)如图所示,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。
因为圆心O 位于直线电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。
根据比奥—萨伐尔定律,半圆弧上任一电流元在O 点产生的磁感应强度为 024IdldB R μπ=方向垂直纸面向内。
半圆弧在O 点产生的磁感应强度为 00022444RIIdl I B R R R Rπμμμπππ===⎰方向垂直纸面向里。
(2)如图(b )所示,同理,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。
因为圆心O 位于电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。
根据毕奥—萨伐尔定理,1/4圆弧上任一电流元在O 点产生的磁感应强度为 024Idl dB R μπ=方向垂直纸面向内,1/4圆弧电流在O 点产生的磁感应强度为0002224428RIIdl I R B R R Rπμμμπππ===⎰方向垂直纸面向里。
如图所示,有一被折成直角的无限长直导线有20A 电流,P 点在折线的延长线上,设a 为,试求P 点磁感应强度。
解 P 点的磁感应强度可看作由两段载流直导线AB 和BC 所产生的磁场叠加而成。
AB 段在P 点所产生的磁感应强度为零,BC 段在P 点所产生的磁感应强度为0120(cos cos )4IB r μθθπ=- 式中120,,2r a πθθπ=== 。
所以500(cos cos ) 4.010()42I B T a μπππ=-=⨯ 方向垂直纸面向里。
§7.1 磁感应强度 磁场的高斯定理 一、电场线与磁感应线的区别:
1、电场线是不闭合线,电场是有源场。
⎰=
⋅0εq S d E 0=⋅⎰
l d E 2、磁感应线是闭合线,磁场是无源场。
0=⋅⎰S d B I l d B L
∑⎰=∙0μ
二、毕奥-萨伐尔定律:
⎰⨯=204r e
l Id B r π
μ
⎪⎪⎩
⎪⎪⎨⎧
⊥⊥⨯⎰=)
,( sin 4 20r r e e B l d B l Id r Idl B 方向:大小:α
πμ
计算B
的解题步骤:
1. 取l Id ,求B d
(大小、方向);
2. 将B d
分解成y x dB dB 、 ;分析对称性;
3. 求B
的大小和方向。
载流长直导线的磁感应强度: a I B πμ20= 载流圆线圈圆心处的磁感应强度:R
I B 20μ=
运动电荷的磁场:
204r e v q B r ⨯=πμ
B
题
1. 磁场环路定理的表达式为______;它表明磁场是________场。
磁场高斯定理的表达式为______;它表明磁场的磁感应线是_______的。
2.如图,两段共心圆弧与半径构成一闭合载流回路,圆心角为θ,电流强度为I 。
求圆心处的磁感应强度。
解:
方向向内)
(444sin 42
1020
202
01202
0B B B a Idl B b Idl B r Idl r Idl dB a b -=====⎰⎰θθπμπμπμαπμ
3. 内外半径分别为a 、b 的圆环,其 匀带有面密度为σ 的电荷,圆环以角速度ω 绕通过圆环中心垂直于环面的 轴转动,求:
答案:
如图,一无限长薄平板导体,宽为a ,
通有电流I ,求和导体共面的距导体 DDD
一边距离为d 的P 点的磁感应强度。
⎰
+====
d a d
dB
B dr
ar
I dB dr dI a I r dI dB πμπμ2200
dI
μo σω(b -a)/2
三、磁通量:
穿过闭合曲面的磁通量
0cos d >=θφS B m
0cos d <=θφS B m
磁场的高斯定理:
四、安培环路定理
安培环路定理:
载流长直螺线管内的磁场: nI B 0μ= 环形螺线管内的磁场:r
NI
B πμ20=
⎰⋅=S
m S
B
d φ
习 题
1.磁感应强度B
沿闭合线L 安培环路定理为___________ 。
2.一根很长的半径为R 的圆柱形 导线均匀通有电流I ,现作一平面S ,如图,长为 ,宽为2R 。
试计算通过平面S 的磁通量。
21020
22
2020
100222m m m R m R R m ldr R Ir BdS R I
r I I Bdl R
r ldr
r
I BdS r I B I Bdl R
r φφφπμφππμπμφπμμ+====''=<====>⎰⎰⎰⎰⎰⎰
3.矩形截面的螺绕环总匝数为N , 尺寸如图所示,求螺绕环内的磁感 强度B 和通过环截面的磁通量Φm 。
五、带电粒子在磁场中的运动 洛仑兹力:
⎪⎪⎩
⎪⎪⎨⎧⨯=)
的正负注意方向:大小:q qvB F B v q (sin
θ
(qB mv R ⊥= , qB
m T π2= )
例1: 一带电粒子在磁场和电场区域留下径迹21l l ,若已知1l 半径为1R ,2l 半径为2R ,外
磁场B
均匀,CD 间电势差为U ,计算该带电
粒子的荷质比。
× × × ×
2
1
2221
22221122121BR BR U m q mv mv qU M
qBR v M qBR v qB mv R -=-==
==
六、磁场对载流导线的作用 安培定律:
计算F
的解题步骤:
1.取l I d ,求F
d (大小、方向),
2.将F
d 分解成y x F F d d 、
;分析对称性 3.积分求F
的大小和方向 B l I F L
⎰⨯=d 。
七、磁场对载流线圈的作用
1.磁矩:
单位:2m A ∙
2.磁力矩: 单位:
0=M NISB M =max
⎪⎩⎪⎨⎧=向方向:面积的正法线方大小:NIS P m m ⎪⎪⎩
⎪⎪⎨⎧---⨯=右手螺旋法则方向:大小:B P NISB M m θsin m N ∙
八、磁介质
⎰∑=⎰∑=⎰⎰∑=⎰⎰=∙∙∙∙⎪⎪
⎭
⎪⎪⎬⎫⎪⎪⎭
⎪⎪⎬⎫
∑L L r
i I
l d H I l d B B H H B q S d D S d E E
D D
E S S i q
r
安培环路定律: = 场 = 磁场强度: 磁感应强度: 磁 高斯定理:= 场 = 电 电位移矢量: 电场强度: ----------
------------------------------ μμμμμε
εεεε00
例:如图所示,正方形线圈,边长为a ,通有电流I,置于磁场中,则线圈的磁矩m P
的大小为________,方向________。
线圈所受磁力矩的 大小为________,
方向________。
a
例:如图所示,一等腰直角三角形线圈放在一无限长直导线旁,且两者共面.长直导线中通有电流I 1,三角形线圈中通
有电流 I 2,求线圈各
边受力的大小和方向。
I 1
例:半径为R的平面圆形线圈中载有电流
I2 ,另一无限长直导线AB中载有电流 I1,设 AB通过圆心,并和圆形线圈在同一平面内(如图),
习 题
1.如图,半径为R 的半圆形导
线载有电流I ,放在 B
的匀强磁场中。
求该半圆形导线所受的磁场力的大小和方向。
I
o
x
y B
2.如图所示,一平面半圆形线圈放在一无限长直导线旁,且两者共面。
长直导线和半圆形线圈中都通有电流 I 。
求(1)AB 边受的磁场力的大小和方向;(2)BCA 半圆受的磁场力的大
小和方向。
(2cos 1cos x
tg x dx x x -=+⎰)
R
R
I
C
B
A I
3.如图所示,四分之一圆弧状
的导线半径为R , 通以电流I , 处于B 的均匀磁场中。
求圆弧 状导线所受的安培力。
4.正方形线圈可绕Y 轴转动,边长为l ,通有电流I 。
现将线圈
放置在方向平行于X 轴的均匀磁场B 中。
求:(1)线圈各边所受的作用力;(2)要维持线圈在图示位置所需的外力矩。