第二学期八年级数学提高班练习五NRDC巩固基础
- 格式:doc
- 大小:48.00 KB
- 文档页数:2
八年级下:初二数学提高班讲义14:期末综合测试一、填空题(2分×14=28分)1、已知一次函数221)(--=x x f ,则=)2(f . 2、与直线x y 2=平行且截距是5-的直线的表达式为 .3、已知函数132+=x y ,如果函数值5>y ,那么相应的自变量x 的取值范围是 . 4、将函数52+=x y 的图像沿y 轴翻折,与翻折后的图像对应的函数解析式为 .5、用换元法解方程2511322=-+-x x x x 时,若设y x x =-12,则原方程可化为整式方程是 . 6、如果关于x 的方程x k x =-25有实数根2x =,那么k = .7、用20cm 长的绳子围成一个等腰三角形,设它的底边长y cm ,腰长为x cm ,则y 与x 之间的函数关系式为(写出自变量x 的取值范围).8、如果一个多边形的每一个内角都等于︒120,那么这个多边形的边数是 .9、四张完全相同的卡片上,分别画有线段、等边三角形、平行四边形、等腰梯形,现从中随机抽取一张,卡片上画的图形不是轴对称图形的概率是 .10、顺次联结平行四边形各边中点所得到的四边形是 .11、已知菱形两条对角线长分别为10cm 、24cm ,则该菱形的边长是 cm ;菱形的面积是 .12、在ABC ∆中,点D 是边AC 的中点,BA a =,BC b =,那么用a 、b 表示BD ,=______ .13、在梯形ABCD 中,AD ∥BC ,AB=8cm ,CD=7cm ,AD=5cm ,∠B=60°,则BC= ______ cm14、在直角坐标系中,点A 、B 、C 的坐标分别为)3,0(A 、)3,5(B 、)0,4(C ,在x 轴上有一点D ,使A 、B 、C 、D 四点组成的四边形是平行四边形,则点D 的个数为 .二、选择题((3分×4=12分)15、如果一次函数b kx y -=的图像经过第一、二、三象限,那么k 的取值范围是( )(A)0,0>>b k ; (B) 0,0<>b k ; (C) 0,0><b k ; (D) 0,0<<b k .16、下列方程中, 有实数根的是( )(A) 032=+-x ;(B )222-=-x x x ; (C )01322=++x x ; (D )0324=+x .17.下列命题中,假命题的是 ( )(A )对角线互相平分的四边形是平行四边形; (B )对角线互相垂直平分的四边形都是菱形;(C )对角线相等的平行四边形是矩形; (D )对角线互相垂直的平行四边形是正方形.18、已知点C 是线段AB 的黄金分割点,AC 为较长线段的长,则下列结论中,错误的是( )(A )215-=BC AC ;(B )215+=BC AC ; (C )253-=AB BC ; (D )215-=AB AC .三、简答题:(6分×5=30分)19.解方程:441212-=--x x . 20.解方程组:⎩⎨⎧=+-=+.144,6322y xy x y x21.(1)如图1,已知向量a 、b ,求作:a +b 、a b - ;(2)如图2,在四边形ABCD 中,填空: ++=___ ;- = .22、已知0432≠==z y x ,求代数式22x y z x y z+++-的值. a b 图1 A B C D 图2 OO FE C D B A23、如图,AB ∥CD ∥EF ,AF 与BE 交于O 点,若AF =26,BO =3,OC =2,CE =8,求DF 和OD 的长四、解答题(3分×7=21分)24、某中学在庆祝“六一”儿童节期间举办“2009,我读过的图书”展示活动.已知下列信息:(1)甲班提供图书320本,(2)乙班提供图书310本,(3)乙班有30名学生,(4)这两个班人均提供图书比甲班人均提供图书多1本.依据上述信息,你可以确定甲班的学生人数吗?若可以,请给出解答过程;若不可以,请简述理由.25、已知一条直线b kx y +=在y 轴上的截距为2,它与x 轴、y 轴的交点分别为A 、B ,且△ABO 的面积为4.(1)求点A 的坐标;OA B E DF C(2)若0 k ,在直角坐标平面内有一点D ,使四边形ABOD 是一个梯形,且AD ∥BO ,其面积又等于20,试求点D 的坐标.26、如图,梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,∠ACB=30°,EF 是梯形ABCD 的中位线; 求证:BD=EF五、综合题(9分)27、如图,正方形ABCD 的边长为4,点E 在边AB 上,(点E 与点A 、B 不重合)过点A 作AF ⊥DE ,垂足AB E D FC G为G ,AF 与边BC 交于点F ;(1)求证:AF=DE ;(2)联结DE 、EF ,设AE=x ,△DEF 的面积是y ,写出y 关于x 的函数解析式,并写出定义域;(3)如果△DEF 的面积为132,求FG 的长; (4)求当△DEF 的面积取到最大时,AE 的长为多少?。
浙教版八年级数学下册2.3 一元二次方程的应用基础巩固训练一、单选题1.某种品牌运动服经过两次降价,每件零售价由a元降为b元,已知两次降价的百分率相同,求每次降价的百分率,设每次降价的百分率为x,下面所列的方程中正确的是().A. a(1+x)2=bB. a(1-x)2=bC. a(1-2x)2=bD. a(1-x2)=b2.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A. 10(1+x)2=16.9B. 10(1+2x)=16.9C. 10(1﹣x)2=16.9D. 10(1﹣2x)=16.93.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是( )A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250-15004.教育部发布的统计数据显示,近年来越来越多的出国留学人员学成后选择回国发展,留学回国与出国留学人数“逆差”逐渐缩小.2014年各类留学回国人员总数为36.48万人,而2016年各类留学回国人员总数为43.25万人.如果设2014年到2016年各类留学回国人员总数的年平均增长率为x,那么根据题意可列出关于x的方程为().A. B.C. D.5.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式( )A. 16(1+2x)=25B. 25(1-2x)=16C. 25(1-x)²=16D. 16(1+x)²=256.如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足的规律.若前n行点数和为930,则n=( )A. 29B. 30C. 31D. 327.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同.设共有x家公司参加商品交易会,则x满足的关系式为()A. x(x+1)=45B. x(x﹣1)=45C. x(x+1)=45D. x(x﹣1)=458.某市2015年国内生产总值(GDP)比2014年增长了10%,由于受到国际金融危机的影响,预计2016年比2015年增长6%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A. 10%+6%=x%B. (1+10%)(1+6%)=2(1+x%)C. (1+10%)(1+6%)=(1+x%)2D. 10%+6%=2•x%二、填空题9.为提高学生足球水平,某市将开展足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排28场比赛,应邀请________多少个球队参赛?10.若一个数的平方等于这个数的3倍,则这个数为________ .11.某种药品经过两次降价,由每盒元调至元,若设平均每次降价的百分率为,则由题意可列方程为________.12.电流通过导线时会产生热量,设电流是I(安培),导线电阻为R(欧姆),t秒产生的热量为Q(焦),根据物理公式Q=I2Rt,如果导线的电阻为5欧姆,2秒时间导线产生60焦热量,则电流I的值是________ 安培.13.如图,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15m,一面利用旧墙,其余三面用篱笆围,篱笆长为24m,若围成的花圃面积为40m2时,平行于墙的BC边长为________m.三、解答题14.参加足球联赛的每两队之间都要进行一场比赛,共要比赛28场,共有多少个队参加足球联赛?15.已知:如图所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?16.如图,某学校有一块长为30米,宽为10米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道.(1)若设计人行通道的宽度为2米,那么修建的两块矩形绿地的面积共为多少平方米?(2)若要修建的两块矩形绿地的面积共为216平方米,求人行通道的宽度.17.践行“低碳生活,绿色出行”理念,自行车成为人们喜爱的交通工具。
勾股定理基础巩固【巩固练习】一.选择题1.在△ABC 中,AB =12,AC =9,BC =15,则△ABC 的面积等于( )A.108B.90C.180D.542.(2015春•安顺期末)在Rt△ABC 中,AB=3,AC=4,则BC 的长为( )A .5B .C .5或D .无法确定3. 小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是( )A .12米B .10米C .8米D .6米4.Rt △ABC 中,斜边BC =2,则222AB AC BC ++的值为( )A.8B.4C.6D.无法计算5.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( )A.4B.6C.8D.1026.如图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( )A.1502cmB.2002cmC.2252cmD.无法计算 二.填空题7.在直角坐标系中,点P (-2,3)到原点的距离是_______.8.(2015•曲靖二模)如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交数轴上原点右边于一点,则这个点表示的实数是 _________ .9.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.10.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12. 如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点'B重合,则AC=cm.三.解答题13.(2015春•咸丰县期末)如图,在△ABC中,∠B=30°,∠C=45°,AC=2.求BC边上的高及△ABC的面积.14. 已知在三角形ABC中,∠C=90°,AD平分∠BAC交BC于D,CD=3,BD=5,求AC的长.15.如图,将长方形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.【答案与解析】一.选择题1.【答案】D ;【解析】△ABC 为直角三角形,面积=1129542⨯⨯=. 2.【答案】C ; 【解析】解:当AC 为直角边时,BC===5; 当AC 为斜边时,BC===. 综上所述,BC 的长为5或. 故选C .3.【答案】A ; 【解析】设旗杆的高度为x 米,则()22215x x +=+,解得12x =米. 4.【答案】A ;【解析】222228AB AC BC BC ==++.5.【答案】B ;【解析】AD =8,BD 221086-=.6.【答案】C ;【解析】面积和等于222225AC BC AB +==.二.填空题7.13()222313-+=8.【答案】;【解析】解:由勾股定理可知, ∵OB===, ∴这个点表示的实数是;, 故答案为:.9.【答案】2;【解析】走捷径是22345+=米,少走了7-5=2米.10.【答案】10;【解析】飞行距离为()2288210+-=. 11.【答案】5;【解析】可证两个三角形全等,正方形边长为22125+=.12.【答案】4;【解析】90AB E ABE '∠=∠=︒,又因为AE =CE ,所以BE '为△AEC 的垂直平分线,AC =2AB =4cm .三.解答题13.【解析】解:∵AD⊥BC,∠C=45°,∴△ACD 是等腰直角三角形,∵AD=CD.∵AC=2, ∴2AD 2=AC 2,即2AD 2=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴BD===2, ∴BC=BD+CD=2+2,∴S △ABC =BC•AD=(2+2)×2=2+2. 14.【解析】解:过D 点作DE ⊥AB 于E ,∵AD 平分∠BAC ,∠C =90°,∴DE =CD =3,易证△ACD ≌△AED ,∴AE =AC ,在Rt △ DBE 中,∵BD =5 ,DE =3,∴BE =4在Rt △ACB 中,∠C =90°设AE =AC =x ,则AB =4x +∵222AB AC BC =+∴()22248x x +=+ 解得6x =,∴AC =6.15.【解析】解:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,222AB AE BE +=,∴()22239x x +-=.解得5x =.。
八年级数学课堂巩固提升练习:四边形全章(12部分含答案)1.平行四边形的认识班级姓名座号一、填空题(每题5分)1.正方形有条对称轴.2.菱形的对角线互相 .3.如图,在正方形ABCD中,∠ABD= 度.4.已知▱ABCD中,AB=3,BC=4,那么它的周长是 .5.如果平行四边形一组邻角的度数比为1:2,那么这个四边形最大内角的度数为 .6.如果▱ABCD满足条件: ,那么这个四边形是矩形.二、选择题(每题5分)7.对角线互相平分的四边形是( ).(A)平行四边形 (B)菱形 (C)矩形 (D)正方形8.下列说法正确的是( ).(A)一组对边相等,一组对角相等的四边形是平行四边形(B)两条对角线相等的四边形是矩形(C)四条边都相等的四边形是正方形(D)四条边都相等的四边形是菱形9.平行四边形的两邻边分别为5和7,那么其对角线应( ).(A)大于2 (B)小于12 (C)大于2且小于12 (D)大于2或小于1210.如图,矩形ABCD的两条对角线交于点O,且AC=2AB,则∠AOB=( ).(A)15° (B)30° (C)60° (D)90°11.在线段、等边三角形、等腰梯形、矩形、平行四边形、菱形、正方形、圆这些图形中,既是中心对称图形又是轴对称图形的有( ).(A )3个 (B )4个 (C )5个 (D )6个12.如图,梯形ABCD 中,AD ∥BC,对角线AC 与BD 交于点O ,则图中面积相等的三角形的对数有( ). (A)1对 (B)2对 (C)3对 (D)4对BA DCABCDOCBAD O(第3题) (第10题) (第12题)三、解答题(每题10分)13.木工师傅用两条相等的长木条及两条相等的短木条制作了一个门框,你能用什么方法判断这个门框的形状恰好是一个矩形?14.请在下列括号中注明理由.如图,在菱形ABCD 中,∠BAD =2∠B ,试说明△ABC 是等边三角形.解:在菱形ABCD 中,AB =BC,AD ∥BC.∴∠B +∠BAD =180° ( ). 又∵∠BAD =2∠B( ), 可得 ∠B =60°在△ABC 中,∵AB=BC,∴∠1=∠2( ),∵∠B+∠1+∠2=180°( ),CBDA 21∴∠1=∠2=∠B=60°.(第14题) 从而AB=BC=AC ( ),即△ABC 是等边三角形.15.如图,在▱ABCD 中,已知E 和F 分别是AB 、CD 的中点,连结AF 和CE ,试说明四边形AFCE 是平行四边形.BFE D CA(第15题)16.梯形ABCD 中,如果DC ∥AB ,AD=BC ,∠1=30°,DB ⊥AD,求∠DBC 和∠C 的度数.BA1CD(第16题)四、附加题17.尽可能多地写出正方形的识别方法(每个2分,多写多得).18.如图,李村有一口呈四边形的池塘,在它的四个角A、B、C、D处均有一棵桃树,现在村委会准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持桃树不动,并要求扩建后的池塘呈平行四边形形状,请问该村能否实现这一设想?若能,请设计并画出图形,简单描述你的画法;若不能,请说明理由.DACB(第18题)《平行四边形》单元试卷(参考答案)班级姓名座号一、填空题(每题5分)1.正方形有 4 条对称轴.2.菱形的对角线互相垂直平分 .3.如图,在正方形ABCD中,∠ABD= 45 度.4.已知▱ABCD中,AB=3,BC=4,那么它的周长是 14 .5.如果平行四边形一组邻角的度数比为1:2,那么这个四边形最大内角的度数为120°.6.如果▱ABCD满足条件:有一个内角是直角或对角线相等 ,那么这个四边形是矩形.二、选择题(每题5分)7.对角线互相平分的四边形是( A ).(A)平行四边形 (B)菱形 (C)矩形 (D)正方形8.下列说法正确的是( D ).(A)一组对边相等,一组对角相等的四边形是平行四边形(B)两条对角线相等的四边形是矩形(C)四条边都相等的四边形是正方形(D)四条边都相等的四边形是菱形9.平行四边形的两邻边分别为5和7,那么其对角线应( C ).(A)大于2 (B)小于12 (C)大于2且小于12 (D)大于2或小于1210.如图,矩形ABCD的两条对角线交于点O,且AC=2AB,则∠AOB=( C ).(A)15° (B)30° (C)60° (D)90°11.在线段、等边三角形、等腰梯形、矩形、平行四边形、菱形、正方形、圆这些图形中,既是中心对称图形又是轴对称图形的有( C ).(A)3个(B)4个(C)5个(D)6个12.如图,梯形ABCD中,AD∥BC,对角线AC与BD交于点O,则图中面积相等的三角形的对数有( C ).(A)1对 (B)2对 (C)3对 (D)4对BA DCABCDOCBAD O(第3题) (第10题) (第12题)三、解答题(每题10分)13.木工师傅用两条相等的长木条及两条相等的短木条制作了一个门框,你能用什么方法判断这个门框的形状恰好是一个矩形?答:可以通过量角度,只要有一个角是直角,就能断定是矩形;还可以通过量对角线,若对角线相等,则是矩形.14.请在下列括号中注明理由.如图,在菱形ABCD 中,∠BAD =2∠B ,试说明△ABC 是等边三角形.解:在菱形ABCD 中,AB =BC,AD ∥BC.∴∠B +∠BAD =180° (两直线平行,同旁内角互补). 又∵∠BAD =2∠B(已知), 可得 ∠B =60°在△ABC 中,∵AB=BC,∴∠1=∠2(等边对等角), ∵∠B+∠1+∠2=180°(三角形的内角和等于180°),(第14题) ∴∠1=∠2=∠B=60°.从而AB=BC=AC (等角对等边),即△ABC 是等边三角形.15.如图,在▱ABCD 中,已知E 和F 分别是AB 、CD 的中点,连结AF 和CE ,试说明四边形AFCE 是平行四边形. 解:∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD(平行四边形的对边平行且相等). ∵E 和F 分别是AB 、CD 的中点(已知),CBDA 21BFE D CA(第15题) 即AE=21AB,CF=21CD. ∴AE ∥CF,AE=CF.∴四边形AFCE 是平行四边形(一组对边平行且相等的四边形是平行四边形).16.梯形ABCD 中,如果DC ∥AB ,AD=BC ,∠1=30°,DB ⊥AD,求∠DBC 和∠C 的度数.解:在△ABD 中,∵DB ⊥AD,即∠ADB=90°(已知),∴∠A=90°-∠1=60°(直角三角形的两锐角互余). 在梯形ABCD 中,(第16题) ∵DC ∥AB ,AD=BC ,(已知),∴∠ABC=∠A=60°(等腰梯形同一底上的两个角相等).∴∠DBC=∠ABC -∠1=60°-30°=30°.又∵∠C+∠ABC=180°(两直线平行,同旁内角互补),∴∠C =180°-∠ABC=180°-60°=120°.四、附加题17.尽可能多地写出正方形的识别方法(每个2分,多写多得). 解:1.有一个内角是直角并且有一组邻边相等的平行四边形是正方形。
2019年最新数学初二巩固训练(人教版)2019年最新数学初二巩固训练(人教版)要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。
对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。
长期坚持,不断训练,幼儿说话胆量也在不断提高。
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。
有的孩子说“乌云跑得飞快。
”我加以肯定说“这是乌云滚滚。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】【巩固练习】 一.选择题1.下列说法中,不正确的是( ).A .在21y x =+中,y 是x 的正比例函数B .在12y x =-中,y 是x 的正比例函数 C .在xy =3中,y 是1x的正比例函数D .正方形的边长与周长为正比例关系2. 1P (1x ,1y ),2P (2x ,2y )是正比例函数y x =-图象上的两点,则下列判断正确的是( )A .1y >2yB .1y <2yC .当1x <2x 时,1y >2yD .当1x <2x 时,1y <2y 3.(2014秋•松江区校级期中)在水管放水的过程中,放水的时间x (分)与流出的水量y (立方米)是两个变量.已知水管每分钟流出的水量是0.2立方米,放水的过程共持续10分钟,则y 关于x 的函数图象是( )A .B .C .D .4.(2016•丽水)在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A .M (2,﹣3),N (﹣4,6) B .M (﹣2,3),N (4,6) C .M (﹣2,﹣3),N (4,﹣6) D .M (2,3),N (﹣4,6) 5. 正比例函数2y k x =-(k ≠0),下列结论正确的是( ) A .y >0 B .y 随x 的增大而增大 C .y <0 D .y 随x 的增大而减小6. 已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( ) A.1 B.2 C.3 D.4二.填空题 7.(2015春•山西校级月考)已知y 与x+1成正比例,且x=1时,y=2.则x=﹣1时,y 的值是 . 8.如图所示,直线1l 、2l 、3l 的解析式分别为1y ax =,2y bx =,3y cx =,则a 、b 、c 三个数的大小关系是________.9. 若函数()239y a x a =-+-是正比例函数,则a =________,图象过第______象限.10. 已知函数(k 为常数)为正比例函数,则k =____.此函数图象经过第______象限;y 随x 的增大而__________.11.(2016春•晋江市期末)在正比例函数y=(k ﹣2)x 中,y 随x 的增大而增大,则k 的取值范围是 . 12. 已知点A (1,-2),若A ,B 两点关于x 轴对称,则B 点的坐标为______,若点(3,n )在函数2y x =-的图象上,则n =_______. 三.解答题13. 已知5y +与34x +成正比例,当1x =时,2y =,(1)求y 与x 的函数关系式; (2)求当1x =-时的函数值;(3)如果y 的取值范围是05y ≤≤,求x 的取值范围。
全等三角形全章复习与巩固(基础)【巩固练习】一.选择题1. 如图所示,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.52. 在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A. ∠AB. ∠BC. ∠CD. ∠B或∠C3. 如图,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC4. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等5. 如图,点C、D分别在∠AOB的边OA、OB上,若在线段CD上求一点P,使它到OA,OB的距离相等,则P点是().A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点6.在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,BC=EF,AC=DF;(2)AB=DE,∠B=∠E,BC=EF;(3)∠B=∠E,BC=EF,∠C=∠F;(4)AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()组.A.1组 B.2组 C.3组 D.4组7. 如果两个锐角三角形有两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )A. 相等B.不相等C.互补D.相等或互补8. △ABC 中,∠BAC =90° AD ⊥BC ,AE 平分∠BAC ,∠B =2∠C ,∠DAE 的度数是( )A.45°B.20°C.、30°D.15°二.填空题9. 已知'''ABC A B C △≌△,若△ABC 的面积为10 2cm ,则'''A B C △的面积为________2cm ,若'''A B C △的周长为16cm ,则△ABC 的周长为________cm .10. △ABC 和△ADC 中,下列三个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC .将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________.11. 如图,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则的面积为____.12. 下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是_____.13. 如右图,在△ABC中,∠C=90°,BD平分∠CBA交AC于点D.若AB=a,CD=b,则△ADB的面积为______________ .14.如图,已知AB⊥BD,AB∥ED,AB=ED,要说明ΔABC≌ΔEDC,若以“SAS”为依据,还要添加的条件为______________;若添加条件AC=EC,则可以用_______公理(或定理)判定全等.15. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.16. 在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,DE⊥AB于E.若AB=20cm,则△DBE的周长为_________.三.解答题17. 已知:如图,CB=DE,∠B=∠E,∠BAE=∠CAD.求证:∠ACD=∠ADC.18.已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB 于D.求证: AC=AD19. 如图(1),AB⊥BD于点B,ED⊥BD于点D,点C是BD上一点.且BC=DE,CD=AB.(1)试判断AC与CE的位置关系,并说明理由;(2)如图(2),若把△CDE沿直线BD向左平移,使△CDE的顶点C与B重合,此时第(1)问中AC与BE的位置关系还成立吗?(注意字母的变化)20. 已知如图所示,PA=PB,∠1+∠2=180°,求证:OP平分∠AOB.【答案与解析】一.选择题1. 【答案】B;【解析】根据全等三角形对应边相等,EC=AC-AE=5-2=3;2. 【答案】A;【解析】如果选B或者C的话,三角形内角和就会超过180°.3. 【答案】C;【解析】∠EAF=∠BAC,∠EAC=∠EAF-∠CAF=∠BAC-∠CAF=∠BAF.4. 【答案】D;【解析】A项应为全等三角形对应边上的高相等;B项如果腰不相等不能证明全等;C项直角三角形至少要有一边相等.5. 【答案】D;【解析】角平分线上的点到角两边的距离相等.6. 【答案】C ;【解析】(1)(2)(3)能使两个三角形全等.7. 【答案】A ;【解析】高线可以看成为直角三角形的一条直角边,进而用HL 定理判定全等.8. 【答案】D ;【解析】由题意可得∠B =∠DAC =60°,∠C =30°,所以∠DAE =60°-45°=15°.二.填空题9. 【答案】10,16;【解析】全等三角形面积相等,周长相等.10.【答案】①②③;11.【答案】8;【解析】1162BD h =g ,h =4,1482AE ⨯=. 12.【答案】①③【解析】②不正确是因为存在两个全等的三角形与某一个三角形不全等的情况.13.【答案】ab 21; 【解析】由角平分线的性质,D 点到AB 的距离等于CD =b ,所以△ADB 的面积为ab 21. 14.【答案】BC =DC ,HL ;15.【答案】45°;【解析】Rt △BDH ≌Rt △ADC ,BD =AD.16.【答案】20cm ;【解析】BC =AC =AE ,△DBE 的周长等于AB.三.解答题17.【解析】证明:∵∠BAE =∠CAD ,∴∠BAE -∠CAE =∠CAD -∠CAE ,即∠BAC =∠EAD .在△ABC 和△AED 中,BAC EAD B E BC ED ∠∠⎧⎪∠∠⎨⎪⎩=,=,=, ∴△ABC ≌△AED . (AAS )∴AC =AD .∴∠ACD =∠ADC .18.【解析】证明:∵AC⊥BC,CE⊥AB∴∠CAB +∠1=∠CAB +∠3=90°,∴∠1=∠3又∵FD∥BC∴∠2=∠3,∴∠1=∠2在△CAF 与△DAF 中CAF=DAF 1=2AF=AF ∠∠⎧⎪∠∠⎨⎪⎩∴△CAF 与△DAF (AAS )∴AC =AD.19.【解析】证明:(1)AC ⊥CE .理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°,∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°,∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.20.【解析】证明:如图所示,过点P 作PE ⊥AO ,PF ⊥OB ,垂足分别为E 、F .∵∠2+∠1=180°,又∵∠2+∠PBO =180°,∴∠1=∠PBO.在△AEP和△BFP中,∴△AEP≌△BFP(AAS).∴PE=PF(全等三角形对应边相等).∴OP平分∠AOB(到角两边距离相等的点在这个角的平分线上).。
【巩固练习】一.选择题1. 下列式子变形是因式分解的是( )A .()25656x x x x -+=-+B .()()25623x x x x -+=--C .()()22356x x x x --=-+D .()()25623x x x x -+=++2. 已知:△ABC 的三边长分别为a b c 、、,那么代数式2222b c ac a -+-的值( )A.大于零B.等于零C.小于零 D 不能确定3.已知31216x x -+有一个因式是4x +,把它分解因式后应当是( )A .2(4)(2)x x +-B .2(4)(1)x x x +++C .2(4)(2)x x ++D .2(4)(1)x x x +-+4.若()()2x a x b x px q ++=++,且0p >,0q <,那么a b ,必须满足条件( ). A.a b ,都是正数B. a b ,异号,且正数的绝对值较大C.a b ,都是负数D. a b ,异号,且负数的绝对值较大 5.(2016•张家港市期末)把2288x y xy y -+分解因式,正确的是( )A .()2244x y xy y -+B .()2244y x x -+ C .()222y x - D .()222y x + 6.将下述多项式分解后,有相同因式1x -的多项式有 ( ) ①; ②; ③; ④; ⑤; ⑥ A .2个 B .3个 C .4个 D .5个7. 已知()()()()1931131713171123x x x x -----可因式分解成()()8ax b x c ++,其中,,a b c 均为整数,则a b c ++=( )A .-12B .-32C .38D .728. 将3223x x y xy y --+分组分解,下列的分组方法不恰当的是( )A. 3223()()x x y xy y -+-+B. 3223()()x xy x y y -+-+C. 3322()()x y x y xy ++--D. 3223()x x y xy y --+二.填空题9.(2016•诸城市一模)因式分解:()222416x x +-= . 10. 分解因式:()()229a b a b +--=_____________.11.已知2226100m m n n ++-+=,则mn = .12.分解因式:()()223a a a +-+=__________.13.若32213x x x k --+有一个因式为21x +,则k 的值应当是_________.14.把多项式22ac bc a b -+-分解因式的结果是__________.15.已知5,3a b ab +==,则32232a b a b ab -+= .16.分解因式:(1)4254x x -+=________;(2)3322a m a m am +--=________. 三.解答题17.求证:791381279--能被45整除.18.(2015春•焦作校级期中)已知x 2+x=1,求x 4+x 3﹣2x 2﹣x+2015的值.19.(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为:________.(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出22252a ab b ++因式分解的结果,画出你的拼图.20.下面是某同学对多项式()()642422+-+-x x x x +4进行因式分解的过程:解:设y x x =-42原式=()()264y y +++ (第一步)=2816y y ++ (第二步)=()24+y (第三步)=()2244+-x x (第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的( )A .提取公因式 B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?______________(填彻底或不彻底)若不彻底,请直接写出因式分解的最后结果_______________.(3)请你模仿以上方法尝试对多项式()()122222++--x x x x 进行因式分解.【答案与解析】一.选择题1. 【答案】B ;【解析】A.()25656x x x x -+=-+右边不是整式积的形式,故不是分解因式,故本选项错误;B.()()25623x x x x -+=--是整式积的形式,故是分解因式,故本选项正确; C.()()22356x x x x --=-+是整式的乘法,故不是分解因式,故本选项错误; D.()()25623x x x x -+=--,故本选项错误. 2. 【答案】C ;【解析】()()()222222a ac c b a c b a c b a c b -+-=--=-+--,因为a b c 、、为三角形三边长,所以0,0a b c a b c +->--<,所以原式小于零.3. 【答案】A【解析】代入答案检验.4. 【答案】B ;【解析】由题意00a b ab +><,,所以选B.5. 【答案】C ;【解析】2288x y xy y -+()2244y x x =-+()222y x =- 6. 【答案】C ;【解析】①,③,⑤,⑥分解后有因式1x -.7.【答案】A;【解析】原式=()()()()131719311123131788x x x x x ---+=--,∵可以分解成()()8ax b x c ++,∴13,17,8a b c ==-=-∴a b c ++=-12.8. 【答案】D ;【解析】A 、B 各组提公因式后,又有公因式可提取分解,所以分组合理,C 第一组运用立方和公式,第二组提取公因式后,有公因式x y +,所以分组合理,D 第一组提取公因式后与第二组无公因式且又不符公式,所以分解不恰当.二.填空题9. 【答案】()()2222x x +-;【解析】()222416x x +-=()()224444x x x x +-++=()()2222x x +-10.【答案】()()422a b a b ++;【解析】()()()()()()22933a b a b a b a b a b a b +--=++-+--⎡⎤⎡⎤⎣⎦⎣⎦=()()4224a b a b ++=()()422a b a b ++.11.【答案】-3;【解析】()()22222610130,1,3m m n n m n m n ++-+=++-==-=.12.【答案】()()14a a -+;【解析】()()223a a a +-+=234a a +-=()()14a a -+.13.【答案】-6;【解析】由题意,当12x =-时,322130x x x k --+=,解得k =-6.14.【答案】()()a b a b c -++;【解析】22ac bc a b -+-=()()()c a b a b a b -++-=()()a b a b c -++.15.【答案】39;【解析】原式=()()()2224353439ab a b ab a b ab ⎡⎤-=+-=⨯-⨯=⎣⎦.16.【答案】()()()()1122x x x x +-+-;()()2a m a m -+;【解析】()()()()()()422254141122x x x x x x x x -+=--=+-+-;()()332222a m a m am a a m m a m +--=---()()()()222a m a m a m a m =--=-+.三.解答题 17.【解析】证明:原式=1499132827269939333-⨯-=--=()2623331--=262435345⨯=⨯.所以能被45整除.18.【解析】解:∵x 2+x=1,∴x 2=1﹣x ,x 2﹣1=﹣x ,∴x 4+x 3﹣2x 2﹣x+2015=x 2(x 2﹣1)+x 3﹣x 2﹣x+2015=x 2(﹣x )+x 3﹣x 2﹣x+2015=﹣(x 2+x )+2015=﹣1+2015=2014.即x 4+x 3﹣2x 2﹣x+2015=2014.19.【解析】解:(1)①长方形的面积=221a a ++;长方形的面积=()21a +;②()22211a a a ++=+;(2)①如图,可推导出()2222a ab b a b ++=+;②()()2225222a ab b a b a b ++=++.20.【解析】解:(1)C ;(2)不彻底;()42x -;(3)设22x x y -=,原式=()22121y y y y ++=++()()()22421211y x x x =+=-+=-.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】【巩固练习】 一.选择题1. 如图,□ABCD 中,AB=3cm ,AD=4cm ,DE 平分∠ADC 交BC 边于点E ,则BE 的长等于( ) A.2cm B.1cm C.1.5cm D.3cm2.在口ABCD 中,AB =3cm ,AD =4cm ,∠A =120°,则口ABCD 的面积是( ) cm ². A.33 B.36C.315D.3123.(2015春•平顶山期末)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F是对角线AC 上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF 是平行四边形的有( )A .0个B .1个C .2个D .3个4. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角是否都为直角D .测量其中三个角是否都为直角 5.正方形具备而菱形不具备的性质是( )A. 对角线相等;B. 对角线互相垂直;C. 每条对角线平分一组对角;D. 对角线互相平分.6. 如图所示,口ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC ,交AD 于点E ,则△DCE 的周长为( ).A .4 cmB .6 cmC .8 cmD .10 cm7. 矩形对角线相交成钝角120°,短边长为2.8cm ,则对角线的长为( )A .2.8cmB .1.4cmC .5.6cmD .11.2cm8. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点,且OE =a ,则菱形ABCD 的周长为( )A .16aB .12aC .8aD .4a二.填空题9.如图,若口ABCD与口EBCF关于B,C所在直线对称,∠ABE=90°,则∠F=______.10.矩形的两条对角线所夹的锐角为60 ,较短的边长为12,则对角线长为__________. 11.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为______.12.(2015•惠安县二模)如图,在△ABC中,AB=AC=5,D是BC边上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是.13.如图, 有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角形的直角顶点落在点A,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是 _________.cm,对角线AC=4cm,则菱形的边长是______cm.14.已知菱形ABCD的面积是12215.菱形ABCD中,AE垂直平分BC,垂足为E,AB=4cm.那么,菱形ABCD的面积是________,对角线BD的长是_________.16. 如图,在矩形ABCD中,对角线AC、BD交于点O,若∠AOD=120°,AB=1,则AC= ,BC= .三.解答题17.(2014春•华龙区校级月考)已知,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,求四边形EFGH的周长.18. 如图,在口ABCD中,AC、BD交于点O,AE⊥BC于E,EO交AD于F,求证:四边形AECF是矩形.19.如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.20. 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.【答案与解析】 一.选择题 1.【答案】B ; 2.【答案】B ;【解析】由勾股定理,可算出平行四边形的高为332,故面积为334632⨯=. 3.【答案】B ;【解析】解:由平行四边形的判定方法可知:若是四边形的对角线互相平分,可证明这个四边形是平行四边形,②不能证明对角线互相平分. 故选B .4.【答案】D ;5.【答案】A ;6.【答案】C ;【解析】 因为口ABCD 的周长为16 cm ,AD =BC ,AB =CD ,所以AD +CD =12×16=8(cm ).因为O 为AC 的中点,又因为OE ⊥AC 于点O ,所以AE =EC ,所以△DCE 的周长为DC +DE +CE =DC +DE +AE =DC +AD =8(cm ).7.【答案】C ; 8.【答案】C ;【解析】OE =a ,则AD =2a ,菱形周长为4×2a =8a . 二.填空题 9.【答案】45; 10.【答案】24; 11.【答案】).2,22(+;【解析】过D 作DH ⊥OC 于H ,则CH =DH 2,所以D 的坐标为).2,22(+ 12.【答案】10;【解析】解:∵AB=AC=5,∴∠B=∠C,由DF∥AC,得∠FDB=∠C=∠B, ∴FD=FB,同理,得DE=EC .∴四边形AFDE 的周长=AF+AE+FD+DE =AF+FB+AE+EC =AB+AC =5+5=10.故答案为10.13.【答案】16;【解析】证△ABE ≌△ADF ,四边形AECF 的面积为正方形ABCD 的面积. 14.13 【解析】设BD =x ,1412,62x x ⨯==222313+cm;43cm;15.【答案】832cm,【解析】由题意知△ABC为等边三角形,AE=23,面积为832BD=2AE=43cm .16.【答案】2;3.三.解答题17.【解析】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.18.【解析】证明:∵四边形ABCD是平行四边形.∴ AD∥BC,BO=DO,∴∠1=∠2,又∵∠FOD=∠EOB∴△DOF≌△BOE,∴ DF=BE,∴ AD-DF=BC-BE,即AF=EC,又∵ AF∥EC,∴四边形AECF是平行四边形.又∵ AE⊥BC,所以∠AEC=90°,∴四边形AECF是矩形.19.【解析】证明:∵DF⊥AE于F,∴∠DFE=90°在矩形ABCD中,∠C=90°,∴∠DFE=∠C,在矩形ABCD中,AD∥BC∴∠ADE=∠DEC,∵AE=AD,∴∠ADE=∠AED,∴∠AED=∠DEC,又∵DE是公共边,∴△DFE≌△DCE,∴DF=DC.20.【解析】证明:(1)∵四边形ABCD是正方形,∴AB=AD ,∠B=∠D=90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE=DF .(2)四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA =∠DCA =45°,BC =DC . ∵BE=DF ,∴BC -BE =DC -DF. 即CE =CF . ∴OE =OF .∵OM =OA ,∴四边形AEMF 是平行四边形. ∵AE =AF ,∴平行四边形AEMF 是菱形.中考数学知识点代数式 一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
【巩固练习】 一.选择题1. 在△ABC 中,若1,2,122+==-=n c n b n a ,则△ABC 是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°3.(2015春•西华县期末)下列满足条件的三角形中,不是直角三角形的是( ) A .三内角之比为1:2:3 B.三边长的平方之比为1:2:3 C .三边长之比为3:4:5 D.三内角之比为3:4:5 4.若等腰三角形两边长分别为4和6,则底边上的高等于( ) A.7 B.7或41 C.24 D.24或7 5. 若三角形的三边长分别等于26、、2,则此三角形的面积为( )A.22B.2C.32D.36.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则AC +BC 等于( )A.5B.135C.1313D.597. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( ) A.()()2222221,4,1a m b m c m =-==+ B.()()222221,4,1a m b m c m =-==+ C.()()222221,2,1a m b m c m =-==+ D.()()2222221,2,1a m b m c m =-==+8. 如图,已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为( )A.21717B. C. D.3二.填空题9. 如图,平面上A、B两点处有甲、乙两只蚂蚁,它们都发现C处有食物,已知点C在A的东南方向,在B的西南方向.甲、乙两只蚂蚁同时从A、B两地出发爬向C处,速度都是30cm/min.结果甲蚂蚁用了2 min,乙蚂蚁2分40秒到达C处分享食物,两只蚂蚁原来所处地点相距_______cm.10.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.11.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.12.△ABC中,AB=AC=13,若AB边上的高CD=5,则BC=______.13.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm,如果从点A开始经过四个侧面缠绕n圈到达点B,那么所用细线最短需要_____cm.14.(2014春•监利县期末)小明把一根70cm长的木棒放到一个长宽高分别为30cm,40cm,50cm的木箱中,他能放进去吗?答:(选填“能”或“不能”).15. 已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________.16. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,BC=________.三.解答题17.如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB=4,AC=3,32BDCD,求:△ABC的面积.18.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.19.(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.20. 如图1,四根长度一定....的木条,其中AB =6cm ,CD =15cm ,将这四根木条用小钉绞合在一起,构成一个四边形ABCD (在A 、B 、C 、D 四点处是可以活动的).现固定AB 边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置. 位置一:当点D 在BA 的延长线上时,点C 在线段AD 上(如图2); 位置二:当点C 在AB 的延长线上时,∠C =90°.(1)在图2中,若设BC 的长为x ,请用x 的代数式表示AD 的长; (2)在图3中画出位置二的准确..图形;(各木条长度需符合题目要求) (3)利用图2、图3求图1的四边形ABCD 中,BC 、AD 边的长.【答案与解析】 一.选择题 1.【答案】D ;【解析】因为()()2222221111c a n n n n -=++-+-+=422n b =,所以222c a b -=,222a b c +=,由勾股定理的逆定理可知:△ABC 是直角三角形.2.【答案】C ;【解析】连接AC ,计算AC =BC =,AB =,根据勾股定理的逆定理,△ABC 是等腰直角三角形,∴∠ABC =45°. 3.【答案】D ;【解析】解:A 、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形,故正确;B 、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;C 、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;D 、因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确. 故选D .4.【答案】D ;【解析】底边可能是4,也可能是6,故由勾股定理,底边上的高为24或7. 5.【答案】B ; 【解析】因为()()222226+=,所以此三角形为直角三角形,面积为12222⨯⨯=.6.【答案】B ;【解析】()222222AC BC AC BC AC BC AB AB CD +=++⋅=+⋅=169+2×13×6=325. 7.【答案】B ;【解析】()()22141m m m -+=+.8.【答案】C ;【解析】如图,过D 点作DE ⊥BC 于E,则DE =AB ,AD =BE ,EC =BC -BE =3,在Rt △CDE中,DE =,延长AB 至F ,使AB =BF ,连接DF ,交BC 于P 点,连接AP ,这时候PA +PD 取最小值,∵AD ∥BC ,B 是AF 中点,∴BP =.在Rt△ABP 中,AP =.∵∴=二.填空题 9.【答案】100;【解析】依题知AC =60cm ,BC =80cm ,∴ AB 22226080AC BC +=+100cm .10.【答案】6;【解析】延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为直角三角形. 11.【答案】3;【解析】设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程. 12.【答案】26或526【解析】当△ABC 为锐角三角形时,2225126BC CD BD =+=+=;当△ABC 为钝角三角形时,2222525526BC CD BD =+=+=.13.【答案】10;22916n +;【解析】最短绕一圈,需要()226313110cm ++++=,绕n 圈需要()222682916n n +=+.14.【答案】能;【解析】解:可设放入长方体盒子中的最大长度是xcm , 根据题意,得x 2=502+402+302=5000, 702=4900,因为4900<5000, 所以能放进去.15.【答案】(3,4);(2,4);(8,4)【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以()134p ,,同理,以D 为以O 为等腰三角形的顶点,可求出()()232,4,8,4P P =.如图所示.16.【答案】261;【解析】延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12 在△ACM 中22251213+= 即222CM AM AC +=∴ ∠AMC =90°在Rt △DCM 中22225661CD CM DM =+=+= ∴ BC =2CD =261.三.解答题17.【解析】 解:∵32BD CD =,设BD =3x ,则CD =2x ,由AE =AF ,BE =BD ,CF =CD , 即AF =3-2x ,AE =4-3x ,∴ 3-2x =4-3x ,解得x =1.∴ BC =3x +2x =5又∵ 222345+=,即222AC AB BC += ∴ △ABC 是直角三角形,∠A =90°. ∴ 1143622ABC S AB AC ==⨯⨯=△ 18.【解析】解:在Rt △ABC 中,∠ACB =90°,AC =8,BC =6由勾股定理得:AB =10,扩充部分为Rt △ACD ,扩充成等腰△ABD ,应分以下三种情况.①如图1,当AB =AD =10时,可求CD =CB =6得△ABD 的周长为32m .图1②如图2,当AB =BD =10时,可求CD =4图2由勾股定理得:54=AD ,得△ABD 的周长为(2045)m +. ③如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,图3由勾股定理得:325=x ,得△ABD 的周长为803m 19.【解析】解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m ,∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=BC ,OA=80m ,∵在Rt △AOD 中,∠AOB=30°, ∴AD=OA=×80=40m,在Rt △ABD 中,AB=50,AD=40,由勾股定理得:BD===30m ,故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响. ∵重型运输卡车的速度为18千米/小时,即=300米/分钟,∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.20.【解析】 解:(1)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变,BC =x ,∴ 在图2中,AC =BC -AB =x -6,AD =AC +CD =x +9.(2)位置二的图形见图3.(3)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变,∴ 在图3中,BC =x ,AC =AB +BC =6+x ,AD =x +9.在△ACD 中,∠C =90°由勾股定理得222AC CD AD +=. ∴ 222(6)15(9)x x ++=+.整理,得2212362251881x x x x +++=++. 化简,得6x =180. 解得 x =30. 即 BC =30. ∴ AD =39.附录资料:巩固练习】一.选择题1.(2015•潍坊模拟)下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边C.菱形的对角线互相垂直 D.对角线互相垂直的四边形是菱形2.(2016•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直3.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD的周长是( )A.4B.8C.12D.164.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.55.如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于()A.40° B.50° C.80° D.100°6.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为( )A.1B. 2C. 2D. 3二.填空题7.已知菱形的周长为40cm,两个相邻角度数之比为1∶2,则较长对角线的长为______cm.8.(2015•南充)如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为.9. 已知菱形ABCD两对角线AC = 8cm, BD = 6cm, 则菱形的高为________.10.(2016•内江)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.11. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_____.12.如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C点的坐标为_______.三.解答题13.如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB+PE 的最小值是3,求AB的值.14.如图,在平行四边形ABCD中,E、F分别为边AB,CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.15(2015春•泰安校级期中)如图,在△ABC 中,∠ABC=90°,BD 为AC 的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG=BD ,连接BG 、DF .(1)求证:BD=DF ;(2)求证:四边形BDFG 为菱形;(3)若AG=13,CF=6,求四边形BDFG 的周长.【答案与解析】一.选择题1.【答案】D ;2.【答案】D【解析】∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直; 平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D .3.【答案】D ;【解析】BC =2EF =4,周长等于4BC =16.4.【答案】B ;【解析】∵∠BCD=120°,∴∠B=60°,又∵ABCD 是菱形,∴BA=BC,∴△ABC 是等边三角形,故可得△ABC 的周长=3AB=15.5.【答案】C ;【解析】∵四边形ABCD 是菱形,∴∠BAC=12∠BAD,CB∥AD,∵∠BAC=50°,∴∠BAD =100°,∵CB∥AD,∴∠ABC+∠BAD=180°,∴∠ABC=180°-100°=80°.6.【答案】D ;【解析】∠DAF =∠FAO =∠OAE =30°,所以2BE =CE =AE ,3BE =3,BC 3=3.二.填空题7.【答案】3【解析】由题意,菱形相邻内角为60°和120°,较长对角线为222105103-=8.【答案】1:;【解析】如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为cm,∴BE==1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴OB==(cm),∴BD=2OB=2cm,∴AC:BD=1:.9.【答案】245cm;【解析】菱形的边长为5,面积为168242⨯⨯=,则高为245cm.10.【答案】.【解析】∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.11.【答案】60;【解析】因为菱形的对角线互相垂直及互相平分就可以在Rt△AOB中利用勾股定理求出OB=12,BD=2OB=24,DE=2OC=10,BE=2BC=26,△BDE的周长为60.12.【答案】(3,4);【解析】过B点作BD⊥OA于D,过C点作CE⊥OA于E,BD=4,OA=x,AD=8-x,()22284x x=-+,解得5x=,所以OE=AD=8-5=3,C点坐标为(3,4).三.解答题13.【解析】解:∵∠ABC=120°∴∠BCD=∠BAD=60°;∵菱形ABCD 中, AB =AD ∴△ABD 是等边三角形;又∵E 是AB 边的中点, B 关于AC 的对称点是D ,DE ⊥AB 连接DE ,DE 与AC 交于P ,PB =PD ;DE 的长就是PB +PE 的最小值3;设AE =x ,AD =2x ,DE =()22233x x x -==,所以1x =,AB =22x =.14.【解析】四边形BFDE 是菱形,证明:∵AD⊥BD,∴△ABD 是直角三角形,且AB 是斜边,∵E 为AB 的中点,∴DE=12AB =BE , ∵四边形ABCD 是平行四边形,∴DC∥AB,DC =AB ,∵F 为DC 中点,E 为AB 中点,∴DF=12DC ,BE =12AB , ∴DF=BE ,DF∥BE,∴四边形DFBE 是平行四边形,∵DE=EB ,∴四边形BFDE 是菱形.15.【解析】证明:∵∠ABC=90°,BD 为AC 的中线,∴BD=AC ,∵AG ∥BD ,BD=FG ,∴四边形BGFD 是平行四边形,∵CF ⊥BD ,∴CF ⊥AG ,又∵点D 是AC 中点,∴DF=AC ,∴BD=DF ;(2)证明:∵BD=DF ,∴四边形BGFD 是菱形,(3)解:设GF=x ,则AF=13﹣x ,AC=2x ,∵在Rt △ACF 中,∠CFA=90°,∴AF 2+CF 2=AC 2,即(13﹣x )2+62=(2x )2,解得:x=5,∴四边形BDFG的周长=4GF=20.。