直线与双曲线的位置关系
- 格式:ppt
- 大小:358.50 KB
- 文档页数:11
直线与双曲线的位置关系及中点弦问题1.直线与双曲线的位置关系的判断设直线)0(:≠+=m m kx y l ,双曲线)0,0(12222>>=-b a by a x 联立解得 02)(222222222=----b a m a mkx a x k a b若0222=-k a b 即ab k ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点; 若0222≠-k a b 即ab k ±≠, ))((4)2(222222222b a m a k a b mk a -----=∆0>∆⇒直线与双曲线相交,有两个交点;0=∆⇒直线与双曲线相切,有一个交点;0<∆⇒直线与双曲线相离,无交点;直线与双曲线有一个公共点是直线与双曲线相切的必要不充分条件。
2.直线与圆锥曲线相交的弦长公式设直线l :y =kx +n ,圆锥曲线:F (x ,y )=0,它们的交点为P 1 (x 1,y 1),P 2 (x 2,y 2),且由⎩⎨⎧+==nkx y y x F 0),(,消去y →ax 2+bx +c =0(a≠0),Δ=b 2 -4ac 。
设),(),,(2211y x B y x A ,则弦长公式为:则2122124)(1||x x x x kAB -++= 若联立消去x 得y 的一元二次方程:)0(02≠=++a c by ay设),(),,(2211y x B y x A ,则2122124)(11||y y y y k AB -++= 焦点弦长:||PF e d=(点P 是圆锥曲线上的任意一点,F 是焦点,d 是P 到相应于焦点F 的准线的距离,e 是离心率)。
【例1】过点P 与双曲线221725x y -=有且只有一个公共点的直线有几条,分别求出它们的方程。
解析:若直线的斜率不存在时,则x =,满足条件;若直线的斜率存在时,设直线的方程为5(y k x -=则5y kx =+-217x =, ∴22257(5725x kx -+-=⨯,222(257)72(5(57250k x kx --⨯-+--⨯=,当k =时,方程无解,不满足条件;当k =21075⨯⨯=方程有一解,满足条件;当2257k ≠时,令222[14(54(257)[(5165]0k k ∆=-----=,化简得:k 无解,所以不满足条件;所以满足条件的直线有两条x =10y x =+。
直线和双曲线的位置关系从近两年的高考试题来看,与椭圆相比,高考对双曲线的要求较低,重点考查双曲线的定义、标准方程、图形及几何性质等基础知识,题型大多为选择题、填空题,考查双曲线的定义、几何性质、基本运算能力,有时也会出现在解答题(如2011年高考江西卷理科第20题),难度为中等偏高,考查灵活运用数形结合、函数方程的思想、等价转化的思想,考查逻辑推理能力、分析问题解决问题的能力. 一、要点精讲1.直线和双曲线的位置关系有三种:相交、相切、相离.设双曲线方程()0,012222>>=-b a by a x ,直线Ax +By +C =0,将直线方程与双曲线方程联立,消去y 得到关于x 的方程mx 2+nx +p =0,(1)若m ≠0,当Δ>0时,直线与双曲线有两个交点;当Δ=0时,直线与双曲线只有一个公共点;当Δ<0时,直线与双曲线无公共点.(2)若m =0,则直线与双曲线只有一个公共点,此时直线与双曲线的渐近线平行. 2.弦长公式:设直线b kx y +=交双曲线于()111,y x P ,()222,y x P ,则()21221222121411x x x x k kx x P P -+⋅+=+-=, 或()()04111121221222121≠-+⋅+=+-=k y y y y kk y y P P .二、基础自测 1.经过点⎪⎭⎫⎝⎛2,21P 且与双曲线1422=-y x 仅有一个公共点的直线有() (A) 4条(B) 3条(C) 2条(D) 1条2.直线y= kx 与双曲线16422=-y x 不可能()(A )相交(B )只有一个交点(C )相离(D )有两个公共点3.过双曲线的一个焦点且与双曲线的实轴垂直的弦叫做双曲线的通径,则双曲线191622=-x y 的通径长是(A)49(B)29(C) 9(D) 10 4.若一直线l 平行于双曲线的一条渐近线,则l 与双曲线的公共点个数为.解:与双曲线渐近线平行的直线与双曲线有且只有一个公共点,应注意直线与双曲线不是相切 5.经过双曲线822=-y x 的右焦点且斜率为2的直线被双曲线截得的线段的长是.6.直线l 在双曲线12322=-y x 上截得的弦长为4,且l 的斜率为2,求直线l 的方程.三、典例精析题型一:直线与双曲线的位置关系1.过双曲线2x 2-y 2-2=0的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线有() A .4条 B .3条 C .2条 D .1条解:过双曲线右焦点作直线l 交双曲线于A 、B 两点,若l ⊥x 轴,则|AB|=4;若l 经过顶点,此时|AB|=2,因此当l 与双曲线两支各交于一点A 、B 时,满足|AB|=4的直线有两条,故选B. 2、若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是() A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0D.⎝⎛⎭⎫-153,-1解:直线与双曲线右支相切时,k =-153,直线y =kx +2过定点(0,2),当k =-1时,直线与双曲线渐近 线平行,顺时针旋转直线y =-x +2时,直线与双曲线右支有两个交点,∴-153<k<-1.3、过点P 与双曲线221725x y -=有且只有一个公共点的直线有几条,分别求出它们的方程。
直线与双曲线的位置关系一、直线与双曲线的位置关系的判断 (1)根据图像交点个数来判断 相交:相离: 相切:(特殊情况)相交于一个交点的情况,直线和__________平行时,直线和双曲线相交于一点. 2代数法:根据直线和双曲线方程的公共解个数来判断位置关系 设直)0(:≠+=m m kx y l ,双曲线)0,0(12222>>=-b a by ax联立2222(0)1y kx m m y x ab =+≠⎧⎪⎨-=⎪⎩消去y 得 02)(222222222=----ba m a mkx a x k a b(1)若0222=-k a b 即a b k ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点; (2)若0222≠-k a b 即ab k ±≠,))((4)2(222222222b a m a k a b mk a -----=∆0>∆⇒直线与双曲线相交,有两个交点; 0=∆⇒直线与双曲线相切,有一个交点; 0<∆⇒直线与双曲线相离,无交点;直线与双曲线有一个公共点是直线与双曲线相切的 条件。
直线l 与双曲线相交于两点时,若相交于同侧(两个交点在一支上)的条件为0x x >⎧⎨>⎩;若相交于异侧(两个交点在不同支上)的条件为120x x >⎧⎨<⎩二、涉及直线与双曲线相交弦的问题: 设直线l :y =kx +n 和圆锥曲线:)0,0(12222>>=-b a by ax 相交于两点,它们的交点为),(),,(2211y x B y x A且由⎩⎨⎧+==nkx y y x F 0),(,消去y →ax 2+bx +c =0(a≠0),Δ=b 2 -4ac 。
则弦长公式为:则2122124)(1||x x x x kAB -++=例1.已知直线y=kx-1与双曲线x 2-y 2=4,试讨论实数k 的取值范围,使直线与双曲线(1)没有公共点; (2)有两个公共点;(3)只有一个公共点;(4)交于异支两点;(5)与左支交于两点.例2 过双曲线22136yx-=的右焦点作倾斜角为30°的直线,交双曲线于A 、B 两点,求|AB|.三.中点弦问题例3.以P (1,8)为中点作双曲线为y 2-4x 2=4的一条弦AB ,求直线AB 的方程。
直线和双曲线的位置关系一、知识点直线和双曲线的位置关系有三种:相交、相切、相离. 设双曲线方程()0,012222>>=-b a by a x ,直线Ax +By +C =0, 将直线方程与双曲线方程联立,消去y 得到关于x 的方程mx 2+nx +p =0,(1)若m ≠0,当Δ>0时,直线与双曲线有两个交点;当Δ=0时,直线与双曲线只有一个公共点;当Δ<0时,直线与双曲线无公共点.(2)若m =0,则直线与双曲线只有一个公共点,此时直线与双曲线的渐近线平行.二、例题已知直线y=kx-1与双曲线x 2-y 2=4,① 若直线与双曲线只有一个公共点,求k 的取值范围.② 若直线与双曲线右支有两个公共点,求k 的取值范围.③ 若直线与双曲线左支有两个公共点,求k 的取值范围.④ 若直线与双曲线左、右各一个公共点,求k 的取值范围.三、习题1.经过点⎪⎭⎫ ⎝⎛2,21P 且与双曲线1422=-y x 仅有一个公共点的直线有( ) (A) 4条 (B) 3条 (C) 2条 (D) 1条2.直线y= kx 与双曲线16422=-y x 不可能( )(A )相交 (B )只有一个交点 (C )相离 (D )有两个公共点3. 若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( )A.⎝⎛⎭⎫-153,153B.⎝⎛⎭⎫0,153C.⎝⎛⎭⎫-153,0D.⎝⎛⎭⎫-153,-14.过点P 与双曲线221725x y -=有且只有一个公共点的直线有几条,分别求出它们的方程。
5.直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点,当a 为何值时,A 、B 在双曲线的同一支上?当a 为何值时,A 、B 分别在双曲线的两支上?。