计算机视觉08 4.2边缘以及边特征提取
- 格式:ppt
- 大小:3.12 MB
- 文档页数:51
图像边缘提取方法综述摘要图像最基本的特征是边缘,边缘是图像性区域和另一个属性区域的交接处,是区域属性发生突变的地方,是图像中不确定性最大的地方,也是图像信息最集中的地方,图像的边缘包含着丰富的信息。
因此,图像边缘提取一直以来都是图像处理与分析领域的研究热点。
本文对传统的具有代表性的各种图像边缘提取方法进行了阐述、对比和分析了各自的优缺点,为了更清楚地看出各种算法的效果,给出了一些常用算法对同一副标准测试图像进行边缘提取的实验结果。
同时,本文对现代的一些边缘检测方法如小波分析、形态学等也作了简要的介绍,重点分析了以上各种算法在图像边缘提取中的发展状况和优缺点。
最后提出了在实践中要根据待解决的问题的特点和要求决定采取何种方法。
关键词:图像处理;边缘提取;小波变换1 图像边缘提取概述人获得的绝大部分信息来源于图像信息,而在图像信息中又以边界信息最为丰富,它传递和表达着物体的空间几何信息,可以判定物体的大小、形状、类型甚至地理位置。
边缘特征是图像最基本的特征。
边缘是图像性区域和另一个属性区域的交界处,是区域性属性发生突变的地方,是图像中不确定性最大的地方,也是图像信息最集中的地方,图像的边缘包含着丰富的信息。
当把边界从目标图像中提取出来后,目标物体的信息能够更直观地展现在人们面前,对于用计算机处理目标物更为有利。
因此,数字图像的边缘检测是图像分析处理领域十分重要的基础,在工程应用中占有十分重要的地位。
图像的边缘有方向和幅值两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。
根据灰度变化的特点,常见的边缘可分为阶跃型、房顶型和凸缘型,如图1.1所示。
对于阶跃型边缘,二阶方向导数在边缘处呈零交叉,而后两种,二阶方向导数在边缘处取极值。
图1.1 边缘灰度变化的几种类型图像边缘检测的流图大致如图1.2所示:图1.2 边缘检测的流图(1)滤波。
边缘检测主要基于导数计算,但受噪声影响。
滤波器在降低噪声的同时也导致边缘强度的损失。
计算机视觉导论像处理与特征提取计算机视觉导论:图像处理与特征提取计算机视觉是研究如何使机器“看”和理解图像或视频的科学与技术。
在计算机视觉领域中,图像处理是一项基础工作,而特征提取则是其中的重要环节。
本文将介绍计算机视觉导论中的图像处理方法以及特征提取的技术原理和应用。
1. 图像处理图像处理利用计算机技术对图像进行处理、改变和增强。
它可以包括图像增强、图像恢复、图像压缩、图像分割和图像去噪等多个方面。
图像处理技术在计算机视觉中扮演着重要的角色,因为它可以有效地减少图像的噪声、增强图像的对比度,并提供更好的输入数据给其他计算机视觉算法。
1.1 图像增强图像增强是指对图像进行处理以改善其视觉效果或增强所需信息的过程。
常见的图像增强技术包括直方图均衡化、对比度拉伸和颜色平衡等。
直方图均衡化可用于增强图像的对比度,对比度拉伸可以调整图像的亮度级别,而颜色平衡则可以更好地还原图像的真实颜色。
1.2 图像恢复图像恢复是指从受损或退化的图像中恢复出原始图像的过程。
受损的图像可能会有模糊、噪声或重影等问题,因此需要采用一系列的图像处理技术来恢复原始信息。
常见的图像恢复方法包括盲解卷积、去模糊和去噪等。
1.3 图像压缩图像压缩是指通过减少图像数据的表示以减小其文件大小的过程。
图像压缩可以分为有损和无损两种方式。
在有损压缩中,我们可以根据图像的特性丢弃一些不明显的信息来减小文件大小,而无损压缩则通过压缩算法将图像数据压缩到较小的尺寸而不损失任何信息。
常见的图像压缩算法包括JPEG和PNG。
1.4 图像分割图像分割是将图像分成多个区域或对象的过程。
它可以用于检测和分离图像中的不同物体或区域。
图像分割算法可以基于灰度、颜色、纹理或边缘等特性进行。
常见的图像分割方法有阈值分割、边缘检测和区域生长等。
1.5 图像去噪图像去噪是指消除图像中的噪声以提高图像质量的过程。
图像噪声可以是由于图像采集过程中的传感器问题、电磁辐射或图像传输过程中引入的。
特征提取方法特征提取是指从原始数据中提取出具有代表性、能够表征数据特征的一些参数或属性。
在计算机视觉、模式识别、信号处理等领域,特征提取是非常重要的一环,它直接影响着后续的数据分析、分类、识别等任务的效果。
因此,选择合适的特征提取方法对于解决实际问题具有重要意义。
一、传统特征提取方法。
1. 统计特征。
统计特征是最常见的特征提取方法之一,它包括均值、方差、偏度、峰度等统计量。
这些统计特征能够反映数据的分布情况,对于一些简单的数据分析任务具有一定的效果。
2. 边缘特征。
边缘特征是在图像处理领域常用的特征提取方法,它可以通过边缘检测算法提取出图像中的边缘信息,进而用于图像分割、目标检测等任务。
3. 频域特征。
频域特征是通过对原始信号进行傅里叶变换或小波变换,将信号从时域转换到频域,然后提取频域特征参数。
这些特征对于信号处理、音频分析等领域具有重要意义。
二、基于深度学习的特征提取方法。
1. 卷积神经网络(CNN)。
CNN是一种非常有效的特征提取方法,它可以通过卷积层、池化层等操作,自动学习到数据中的特征。
在图像识别、目标检测等任务中,CNN能够取得非常好的效果。
2. 循环神经网络(RNN)。
RNN是一种适用于序列数据的特征提取方法,它可以捕捉到数据中的时序信息,对于自然语言处理、语音识别等任务具有重要意义。
3. 自编码器。
自编码器是一种无监督学习的特征提取方法,通过将输入数据编码成隐藏层的特征表示,再解码还原成输出数据,从而学习到数据的有效特征表示。
三、特征提取方法的选择。
在实际应用中,我们需要根据具体的问题和数据特点来选择合适的特征提取方法。
对于传统的特征提取方法,适用于一些简单的数据分析任务;而基于深度学习的特征提取方法,则适用于复杂的图像、语音、文本等数据分析任务。
在选择特征提取方法时,需要综合考虑数据的特点、任务的要求以及计算资源等因素。
总结。
特征提取是数据分析中非常重要的一环,选择合适的特征提取方法对于解决实际问题具有重要意义。
图像处理中的边缘检测和特征提取方法图像处理是计算机视觉领域中的关键技术之一,而边缘检测和特征提取是图像处理中重要的基础操作。
边缘检测可以帮助我们分析图像中的轮廓和结构,而特征提取则有助于识别和分类图像。
本文将介绍边缘检测和特征提取的常见方法。
1. 边缘检测方法边缘检测是指在图像中找到不同区域之间的边缘或过渡的技术。
常用的边缘检测方法包括Sobel算子、Prewitt算子和Canny算子。
Sobel算子是一种基于梯度的边缘检测算法,通过对图像进行卷积操作,可以获取图像在水平和垂直方向上的梯度值,并计算获得边缘的强度和方向。
Prewitt算子也是一种基于梯度的边缘检测算法,类似于Sobel算子,但其卷积核的权重设置略有不同。
Prewitt算子同样可以提取图像的边缘信息。
Canny算子是一种常用且经典的边缘检测算法。
它结合了梯度信息和非极大值抑制算法,可以有效地检测到图像中的边缘,并且在边缘检测的同时还能削弱图像中的噪声信号。
这些边缘检测算法在实际应用中常常结合使用,选择合适的算法取决于具体的任务需求和图像特点。
2. 特征提取方法特征提取是指从原始图像中提取出具有代表性的特征,以便进行后续的图像分析、识别或分类等任务。
常用的特征提取方法包括纹理特征、形状特征和颜色特征。
纹理特征描述了图像中的纹理信息,常用的纹理特征包括灰度共生矩阵(GLCM)、局部二值模式(LBP)和方向梯度直方图(HOG)。
GLCM通过统计图像中像素之间的灰度变化分布来描述纹理特征,LBP通过比较像素与其邻域像素的灰度值来提取纹理特征,HOG则是通过计算图像中梯度的方向和强度来提取纹理特征。
这些纹理特征可以用于图像分类、目标检测等任务。
形状特征描述了图像中物体的形状信息,常用的形状特征包括边界描述子(BDS)、尺度不变特征变换(SIFT)和速度不变特征变换(SURF)。
BDS通过提取物体边界的特征点来描述形状特征,SIFT和SURF则是通过提取图像中的关键点和描述子来描述形状特征。
计算机视觉技术中的特征提取方法简介计算机视觉技术是指通过计算机模仿人类的视觉系统,使计算机能够理解和解释视觉信息,并进行相关的决策和处理。
其中,特征提取是计算机视觉中的一个重要环节,它通过从图像或视频中提取有用、有区分度的特征,为后续的目标检测、图像识别、物体跟踪等任务提供基础。
在计算机视觉中,特征提取方法众多,可以分为传统的特征提取方法和基于深度学习的特征提取方法。
在传统的特征提取方法中,常见的有结构特征、颜色特征、纹理特征和形状特征等。
下面将对一些常用的特征提取方法进行简要介绍。
1. 结构特征结构特征主要关注图像中的物体边界、角点和区域等结构信息。
常见的结构特征包括边缘检测、角点检测和轮廓提取等。
边缘检测使用梯度信息来识别图像中的边界,常用的方法有Sobel算子、Canny算子和Laplacian算子等。
角点检测主要用于寻找图像中的角点,常用的方法有Harris角点检测和Shi-Tomasi角点检测等。
轮廓提取则是通过分析图像中的亮度变化来提取物体的外形轮廓。
2. 颜色特征颜色特征是指利用图像中的颜色信息来进行特征提取。
颜色特征在计算机视觉中被广泛应用,尤其在图像检索和图像分割等任务中。
常见的颜色特征包括颜色直方图、颜色矩和颜色空间等。
颜色直方图统计了图像中各个颜色的分布情况,常用的颜色空间有RGB、HSV和Lab等。
颜色矩则是用于描述颜色的一种统计特征,常见的颜色矩有色调矩和灰度矩等。
3. 纹理特征纹理特征用于描述图像中的纹理信息,可以帮助区分不同的纹理结构和纹理方向等。
常见的纹理特征包括灰度共生矩阵(GLCM)、局部二值模式(LBP)和高斯过程等。
灰度共生矩阵通过统计图像中不同位置像素间的灰度级别和空间关系来描述图像的纹理特征。
局部二值模式则是通过比较像素与周围像素的灰度级别来提取纹理特征。
高斯过程是一种基于统计模型的纹理特征提取方法,通过建立图像中像素间的高斯相似性来进行纹理分析。
4. 形状特征形状特征是指描述对象外形几何属性的特征。
使用计算机视觉技术实现图像匹配和配准的方法和技巧计算机视觉技术在图像匹配和配准方面起着重要的作用。
图像匹配和配准是指通过计算机对两幅或多幅图像进行比较和对齐的过程,目的是找到它们之间的相似性和重叠区域。
在计算机视觉领域中,图像匹配和配准的方法和技巧正在不断发展和改进,为各种应用提供了强大的工具。
一、图像匹配的方法和技巧1. 特征提取:图像匹配的第一步是对图像中的特征进行提取。
常用的特征包括角点、边缘、纹理等。
通过提取关键点和描述子,可以用于后续的匹配和配准过程。
2. 特征匹配:在特征提取的基础上,需要对两幅图像中的特征进行匹配。
常见的特征匹配方法包括最近邻匹配、最近邻搜索、RANSAC等。
最近邻匹配将待匹配特征点与目标图像中最相似的特征进行匹配。
3. 特征描述:对匹配到的特征进行描述是图像匹配中的关键步骤。
常用的特征描述算法有SIFT(尺度不变特征变换)、SURF(加速稳健特征)和ORB (Oriented FAST and Rotated BRIEF)等。
这些算法可以提取图像中的局部特征,并将其转化为能够容易匹配的向量表示。
4. 特征筛选:通过匹配得到的特征点可能存在误匹配和几何变化等问题。
因此,需要对匹配结果进行筛选和校正。
常用的方法包括基于几何变换模型的筛选和基于一致性检验的筛选。
5. 特征配准:匹配到的特征点可以用于图像配准,即将两幅图像进行对齐。
常用的配准方法有基于特征点的配准、基于区域的配准和基于自动的配准等。
配准过程的目标是通过对图像进行变换,使得它们在几何和视觉上尽可能地对齐。
二、图像配准的方法和技巧1. 基于特征点的配准:特征点在图像中具有明显的区分度和稳定性。
通过提取两幅图像中的特征点,并进行匹配和筛选,可以得到图像的相似变换模型,并实现图像的配准。
2. 基于区域的配准:图像的全局特征可以通过提取图像中的区域来实现。
通过提取两幅图像中的区域,并对这些区域进行匹配和筛选,可以得到图像的相似变换模型,并实现图像的配准。
边缘特征提取边缘检测(Edge Detection)是指图像处理和计算机视觉领域的重要基础技术,是从原始图像中提取更容易自然区分的边缘特征的过程。
通常,它可以在灰度图像中应用,也可以将其用于彩色图像的处理,它的目的是形成一张有明显边缘的图像,一般来说,用于检测边缘的函数只有两步:空间强度求差和非极大值抑制。
以下是边缘检测的主要方法:1. Sobel边缘检测:Sobel算子是一种基于空间滤波和梯度计算的边缘检测算法,其结构简单,但同时它也是最为高效的边缘检测技术。
其核心思想就是通过用权重数值滤波矩阵对图像进行处理,其矩阵滤波效果主要是一个水平方向和垂直方向,每一个矩阵滤波都是相对应图像的差分,在这样的情况下,在一幅图中,边缘的轮廓就能够更容易地突出边缘区域,从而进行边缘检测。
2. Canny边缘检测:Canny算子也是一种基于梯度计算的边缘检测算法,Canny算子中所用的是一个多阶梯度,Canny算子能更好的保留边缘的直线性,即使在边缘很模糊的情况下依然能够有很好的效果。
其处理图像的流程主要分为五步:去噪,求梯度,非极大值抑制,双阈值,滤波处理。
3. 综合滤波边缘检测:综合滤波是将多个滤波器联合起来,运用空间频率分别和方向滤波器,以及锐化和平滑,消除搞错等能够得到更加清晰的边缘,并且基本不会出现假脉冲。
此外,针对强度差异比较大时,综合滤波也能够很好的保留局部的边缘特征,避免掉了噪声的干扰。
4. LoG边缘检测:Laplacian of Gaussian(LoG)是由图像处理历史上著名的Gaussian平滑处理后的求Laplac的技术,它的目的在于得到更优秀的边缘检测效果。
LoG算子先会进行高斯变换,然后在原图上进行求Laplac求差操作,最后再进行非极大值抑制,其结果是一副有明显边缘的图像,尤其能更受更噪声较大的环境。
以上就是图像处理领域的边缘检测的几种主要的技术,它们中的每一种都有自己的应用场景,比如Sobel可以用于低频环境,Canny可以用于色彩边缘,综合滤波能用于强度差异比较大的图像,LoG则更适用于噪声比较严重的图像等等。
如何利用计算机视觉技术实现图像特征提取计算机视觉技术的发展已经取得了很大的突破,使得我们能够从图像中提取出有用的特征信息。
图像特征提取是计算机视觉领域中的一个重要研究方向,它对于图像识别、图像搜索、图像检索等应用具有重要意义。
本文将介绍如何利用计算机视觉技术实现图像特征提取。
首先,图像特征提取是指从图像中提取出对于任务具有鉴别性的信息,常见的图像特征包括颜色、纹理、形状等。
计算机视觉技术通过对图像进行数字化处理和分析,将图像中的特征转化为计算机可以处理的数据形式。
一种常用的图像特征提取方法是利用直方图统计图像中的颜色信息。
颜色是图像中最直观的特征之一,可以通过统计图像中每个像素的颜色数目来确定图像的颜色分布。
通过计算图像的颜色直方图,我们可以得到描述图像颜色特征的数据。
例如,在图像检索任务中,可以利用颜色直方图来比较图像之间的相似度,从而实现图像的搜索。
除了颜色特征,纹理特征也是图像特征提取的重要内容之一。
纹理是指图像中的一些局部区域所呈现出的细节信息。
纹理特征可以通过计算图像中像素的灰度值差异或者局部方向梯度来进行描述。
常用的纹理特征提取方法包括灰度共生矩阵和局部二值模式。
利用这些方法,我们可以从图像中提取出纹理特征,并用于图像分类、图像分割等任务中。
此外,形状特征也是图像特征提取的重要内容。
形状特征是指图像中物体的轮廓形状信息。
在计算机视觉领域中,常用的形状特征提取方法包括边缘检测、角点检测、轮廓拟合等。
通过这些方法,我们可以从图像中提取出物体的形状特征,并用于目标识别、目标跟踪等任务中。
除了上述提到的方法,近年来深度学习技术在图像特征提取中也取得了重要的进展。
深度学习是一种以人工神经网络为基础的机器学习方法,它可以自动学习图像中的特征表示。
通过深度学习网络,我们可以将图像输入网络中进行处理,并得到一组有判别能力的特征表示。
这种方法不需要手动设计特征提取算法,能够更好地适应不同的任务和图像数据。
知识点归纳计算机视觉中的特征提取与目标跟踪计算机视觉(Computer Vision)是人工智能领域的重要分支,旨在让计算机具备类似人类视觉的能力,从图像或者视频中提取并理解有用的信息。
在计算机视觉中,特征提取和目标跟踪是两个核心的知识点,本文将对它们进行归纳和总结。
一、特征提取特征提取是计算机视觉中的基础工作,它是从原始图像数据中提取出具有代表性和可区分性的特征的过程。
这些特征能够反映图像的结构、纹理、形状等信息,为后续的图像处理和分析提供基础。
1. 图像特征的种类在计算机视觉中,常见的图像特征包括颜色特征、纹理特征、形状特征和边缘特征等。
颜色特征可以通过提取图像中的颜色直方图或者颜色矩来表示;纹理特征可通过灰度共生矩阵、小波变换等方法来获取;形状特征则主要通过边缘检测和边缘提取得到;边缘特征通常可以通过Canny算子等方法获得。
2. 特征提取的方法为了获取图像的特征,计算机视觉领域提出了多种特征提取的方法。
其中,常用的方法有滤波器方法、兴趣点检测和描述子方法等。
滤波器方法基于图像上的像素点进行滤波操作,常用的滤波器包括高斯滤波器和边缘检测滤波器;兴趣点检测和描述子方法则通过检测图像上的关键点,并提取这些关键点的描述子来表示图像的特征。
二、目标跟踪目标跟踪是计算机视觉中的一个重要任务,其目标是在视频序列中追踪一个或多个感兴趣的目标。
目标跟踪在实际应用中有着广泛的应用,如视频监控、人脸识别等领域。
1. 目标跟踪的挑战目标跟踪面临着许多挑战,如目标的外观变化、遮挡、相似目标的干扰等。
为了应对这些挑战,计算机视觉领域提出了多种目标跟踪算法。
常用的算法有基于模板匹配的方法、基于关联滤波器的方法、基于学习的方法等。
2. 目标跟踪的算法模板匹配是一种简单却常用的目标跟踪算法,它通过将目标物体的模板与图像序列逐帧进行匹配,从而实现跟踪的目的。
关联滤波器是另一种常见的目标跟踪算法,它通过训练一个滤波器来表示目标物体的外观模型,然后在后续的帧中实时地进行目标跟踪。
计算机视觉:视觉特征提取、识别与理解计算机视觉是一种类似于人类视觉的信息处理技术,它通过计算机对图形、图像或视频数据进行处理和分析,以实现对物体、场景和人的识别、理解和处理。
计算机视觉是人工智能的一个分支,它与机器学习、模式识别和数据挖掘等技术密切相关。
视觉特征提取是计算机视觉中最重要的一部分,它代表了计算机视觉信息处理的核心部分。
视觉特征提取是通过对图像、图形或视频数据进行轮廓、边缘、特征点等分析,提取出代表目标特征的信息。
在视觉特征提取过程中,采取不同的算法,如金字塔算法、局部相似性算法等,不同算法的特征提取方式不同,其生效效果和处理速度各有不同。
视觉特征识别与理解是计算机视觉的另一个重要领域。
对于计算机来说,为了实现算法计算图像信息的目标,需要通过视觉特征识别来区分不同目标。
视觉特征识别可以采用人工智能和机器学习等技术,在大量实例数据的基础上进行训练。
通过训练集中的分类、标记和注释等信息,计算机可以识别出复杂的视觉特征并进行标识和分类。
视觉特征识别的算法主要包括SVM、Boost和深度学习等。
其中,深度学习算法目前是视觉特征识别的最热门技术,它采用多个神经网络组合,可以从原始图像中自动学习特征,通过对分类任务建立不同的层次结构,可以更好地实现视觉特征识别任务。
对于计算机视觉来说,比较重要的一个领域是图像处理,该领域是对数据进行预处理和分析的过程。
图像处理算法的目标是进行图像增强、矫正和修复,以消除图像中的噪音,并提高图像的质量和可视性。
另外,针对不同的计算机视觉应用,还可以采用不同的技术进行视觉特征提取、识别和理解。
例如,对于人脸识别领域,可以使用Haar级联分类器来检测和识别人脸,而在物体识别领域,则可以采用分层次的模型来实现对物体的识别和分类。
综上所述,计算机视觉在不断的发展和进步,目前已经在许多领域中得到了应用。
随着计算机视觉技术的不断成熟和进一步发展,相信将来计算机视觉将成为一种有效的解决方案,可被应用于自动驾驶、智能机器人、智能医疗和安防等领域。