构造函数利用导数解决函数问题
- 格式:doc
- 大小:3.05 MB
- 文档页数:7
导数问题的难度较大,对同学们的数学抽象思维能力和运算能力有着较高的要求.导数与函数之间的联系紧密,所以在解答导数问题时,通常要根据已知条件来构造合适的函数模型,利用函数的图象、性质来求得问题的答案.这就是构造函数法.运用构造函数法解答导数问题的步骤为:1.仔细研究题目中给出的关系式的结构特征;2.灵活运用幂函数的求导公式(x n)′=nx n-1、指数函数的求导公式(a x)′=a x ln a(特例(e x)′=e x,(e nx)′=ne nx(n∈N*,n≥2))、对数函数的求导公式(log a x)′=1x ln a(特例(ln x)′=1x)、三角函数的求导公式(sin x)′=cos x,(cos x)′=-sin x等,对已知关系式中的部分式子进行求导或积分;3.根据导数的运算法则(u±v)′=u′±v′,(uv)′=u′v+uv′,(u v)′=u′v-uv′v2将目标式或已知关系式进行变形,并将变形、化简后的式子构造成新函数模型;4.根据导函数与函数的单调性之间的关系判断出函数的单调性;5.根据函数的单调性求函数的极值,比较函数式的大小.把导数问题转化为函数问题来求解,可以达到化繁为简、化难为易的目的.例1.已知函数f(x)是定义在(-∞,0)上的可导函数,且xf′(x)+3f(x)>0,那么不等式(x+2021)3f(x+2021)+27f(-3)>0的解集是().A.(-2024,+∞)B.(-2022,-2021)C.(-∞,-2022)D.(-2024,-2021)解:在不等式xf′(x)+3f(x)>0的两边同乘以x2,可得x3f′(x)+3x2f(x)>0,即x3f′(x)+(x3)′f(x)>0,得(x3f(x))′>0.设函数g(x)=x3f(x),则g′(x)>0,所以g(x)在(-∞,0)上单调递增.而(x+2021)3f(x+2021)+27f(-3)>0可变形为(x+2021)3f(x+2021)>(-3)3f(-3),即g(x+2021)>g(-3).可得-3<x+2021<0,解得-2024<x<-2021.故选D.先根据指数函数的求导公式(x3)′=3x2以及导数的运算法则(uv)′=u′v+uv′将xf′(x)+3f(x)>0变形,即可化简不等式;再构造出函数g(x)=x3+f(x),探讨其单调性,便可根据函数的单调性求得问题的答案.例2.已知函数f(x)是R上的可导函数,且(x-1)⋅(f′(x)-f(x))>0,f(2-x)=f(x)e2-2x,那么一定正确的是().A.f(1)<f(0)B.f(2)>ef(0)C.f(3)>e3f(0)D.f(4)<e4f(0)解:将不等式(x-1)(f′(x)-f(x))>0变形,可得(x-1)∙e x f′(x)-(e x)′f(x)(e x)2>0,即(x-1)∙(f(x)e x)′>0,设函数g(x)=f(x)e x,易知:当x>1时,g′(x)>0;当x<1时,g′(x)<0,所以函数g(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.将f(2-x)=f(x)e2-2x变形,可得f(2-x)e2-x=f(x)e x,即g(2-x)=g(x),所以函数g(x)的图象关于直线x=1对称.根据函数g(x)的单调性、对称性可得g(0)=g(2)<g(3),即f(0)e0<f(3)e3,因此e3f(0)<f(3).故选C.我们以指数函数的求导公式(a x)′=a x ln a为切入点,根据导数的运算法则(u v)′=u′v-uv′v2,构造商式函数g(x)=f(x)e x,即可根据其单调性和对称性求得问题的答案.备考指南54例3.已知函数f (x )是定义在(1,+∞)上的可导函数,对∀x ∈(1,+∞)均有f '(x )ln x >1+ln x xf (x )恒成立,则().A.12f (2)>3f (4)>f (8)B.3f (4)>12f (2)>f (8)C.f (8)>3f (4)>12f (2)D.f (8)>12f (2)>3f (4)解:在f ′(x )ln x >1+ln x xf (x )的两边同乘以x ,移项可得f ′(x )x ln x -(1+ln x )f (x )>0,再变形得f ′(x )ln x -(x ln x )′f (x )(x ln x )2>0,得(f (x )x ln x )′>0,显然该不等式对∀x ∈(1,+∞)恒成立.设函数g (x )=f (x )x ln x,则g ′(x )>0,所以函数g (x )在(1,+∞)上单调递增.所以g (2)<g (4)<g (8),即f (2)2ln 2<f (4)4ln 4<f (8)8ln 8,变形得f (2)2ln 2<f (4)8ln 2<f (8)24ln 2,可得f (8)>3f (4)>12f (2).故选C.根据已知条件和对数函数的求导公式(log a x )′=1x ln a,得到(x ln x )′=1+ln x ,便可根据导数的运算法则(uv )′=u ′v +uv ′和(u v )′=u ′v -uv ′v 2,将不等式进行变形、化简,进而构造出函数g (x )=f (x )x ln x,利用函数的单调性即可解题.例4.已知函数f (x )是定义在(-π2,π2)上的可导函数,且f ′(x )cos x +f (x )sin x >0恒成立,那么下列不等式不成立的是().A.2f (π3)<f (π4)B.2f (-π3)<f (-π4)C.f (0)<2f (π4) D.f (0)<2f (π3)解:将f ′(x )cos x +f (x )sin x >0变形,得f ′(x )cos x -f (x )(cos x )′(cos x )2>0,即(f (x )cos x )′>0,设g (x )=f (x )cos x,得g ′(x )>0,所以函数g (2)在(-π2,π2)上单调递增.因为-π2<-π3<-π4<0<π4<π3<π2,所以f (-π3)cos(-π3)<f (-π4)cos(-π4)<f (0)cos 0<f (π4)cos π4<f (π3)cos π3,化简得2f (-π3)<2f (-π4)<f (0)<2f (-π4)<2f (π3),所以A 选项不正确.故本题选A.由f ′(x )cos x +f (x )sin x >0的结构特征,可联想到三角函数的求导公式(cos x )′=-sin x 以及导数的运算法则(uv )′=u ′v +uv ′,将不等式进行变形、化简,便可构造出新函数g (x )=f (x )cos x.例5.设定义在R 上的函数f (x )是连续可导函数,对任意的x ∈R 都有f (x )+f (-x )=2x 2.当x ∈(0,+∞)时,f ′(x )<2x .若不等式f (2-a )-f (a )≥4-4a 成立,则实数a 的取值范围是().A.(0,1]B.[1,2)C.(-∞,1]D.[1,+∞)解:当x ∈(0,+∞)时,根据不等式f ′(x )<2x ,可得f ′(x )-2x <0,再变形得f ′(x )-(x 2)′<0,即(f (x )-x 2)′<0.设函数g (x )=f (x )-x 2,则g ′(x )<0,所以函数g (x )在(0,+∞)上单调递减.因为对任意的x ∈R 都有f (x )+f (-x )=2x 2,所以g (x )+g (-x )=f (x )-x 2+f (-x )-(-x )2=0,所以函数g (x )是R 上的奇函数.因为f (x )是连续函数,所以函数g (x )在R 上单调递减.不等式f (2-a )-f (a )≥4-4a 可变形为f (2-a )-(2-a )2≥f (a )-a 2,即g (2-a )≥g (a ).由函数g (x )的单调性可知2-a ≤a ,解得a ≥1.故选D.根据已知条件f ′(x )<2x ,可知需要利用指数函数的求导公式(x 2)′=2x 以及导数的运算法则(u ±v )′=u ′±v ′,将不等式变形并化简,进而构造函数g (x )=f (x )-x 2,分析其函数的单调性、奇偶性,即可解题.对于本题,还可以将f (x )+f (-x )=2x 2变形为f (x )-x 2+f (-x )-(-x )2=0,再根据f (x )-x 2与f (-x )-(-x )2的结构特征构造函数g (x )=f (x )-x 2.导数问题侧重于考查一些常见的求导公式与导数的四则运算法则(u ±v )′=u ′±v ′,(uv )′=u ′v +uv ′,(u v )′=u ′v -uv ′v2的灵活应用.导数问题较为复杂,同学们不仅要灵活运用导数和函数知识,还需培养数学抽象、逻辑推理以及数学运算能力,才能轻松解题.(作者单位:甘肃省河州中学教育集团附属中学)备考指南55。
微重点3 导数中的函数构造问题导数中的函数构造问题是高考考查的一个热点内容,经常以客观题出现,同构法构造函数也常在解答题中出现,通过已知等式或不等式的结构特征,构造新函数,解决比较大小、解不等式、恒成立等问题.考点一 导数型构造函数考向1 利用f (x )与x 构造例1 (2022·苏州质检)已知函数f (x )满足f (x )=f (-x ),且当x ∈(-∞,0]时,f (x )+xf ′(x )<0成立,若a =20.6·f (20.6),b =ln 2·f (ln 2),c =log 218·f ⎝⎛⎭⎫log 218,则a ,b ,c 的大小关系是( ) A .a >b >cB .c >b >aC .a >c >bD .c >a >b答案 B解析 因为f (x )=f (-x ),所以函数f (x )是偶函数,令g (x )=x ·f (x ),则g (x )是奇函数,g ′(x )=f (x )+x ·f ′(x ),当x ∈(-∞,0]时,f (x )+xf ′(x )<0成立,所以g (x )在x ∈(-∞,0]上单调递减,又g (x )在R 上是连续函数,且是奇函数,所以g (x )在R 上单调递减,则a =g (20.6),b =g (ln 2),c =g ⎝⎛⎭⎫log 218, 因为20.6>1,0<ln 2<1,log 218=-3<0, 所以log 218<0<ln 2<1<20.6, 所以c >b >a .规律方法 (1)出现nf (x )+xf ′(x )的形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )的形式,构造函数F (x )= f (x )x n . 跟踪演练1 已知定义在(0,+∞)上的函数f (x )满足f ′(x )-f (x )x -3>0,且f (1)=0,则不等式f (e x )-3x e x >0的解集为( )A .(0,1)B .(1,+∞)C .(0,+∞)D .(e ,+∞)答案 C解析 设g (x )=f (x )x-3ln x , 则g ′(x )=xf ′(x )-f (x )x 2-3x=xf ′(x )-f (x )-3x x 2. 因为f ′(x )-f (x )x-3>0,x >0, 所以xf ′(x )-f (x )-3x >0,所以g ′(x )>0,即g (x )在(0,+∞)上单调递增.不等式f (e x )-3x e x >0可转化为f (e x )e x -3ln e x >0, 又g (e x)=f (e x )e x -3ln e x , 且g (1)=f (1)1-3ln 1=0, 即g (e x )>g (1),所以e x >1,解得x >0.考向2 利用f (x )与e x 构造例2 (2022·枣庄质检)已知f (x )为定义在R 上的可导函数,f ′(x )为其导函数,且f (x )<f ′(x )恒成立,其中e 是自然对数的底数,则( )A .f (2 022)<e f (2 023)B .e f (2 022)<f (2 023)C .e f (2 022)=f (2 023)D .e f (2 022)>f (2 023)答案 B解析 设函数g (x )=f (x )e x , 可得g ′(x )=f ′(x )-f (x )e x, 由f (x )<f ′(x ),可得f ′(x )-f (x )>0,所以g ′(x )>0,所以g (x )单调递增,则f (2 022)e 2 022< f (2 023)e 2 023, 即e f (2 022)<f (2 023).规律方法 (1)出现f ′(x )+nf (x )的形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )的形式,构造函数F (x )=f (x )e nx . 跟踪演练2 (2022·成都模拟)已知定义在R 上的函数f (x )满足f (x )+f ′(x )>0,且f (3)=3,则f (x )>3e 3-x 的解集为________.答案 (3,+∞)解析 设F (x )=f (x )·e x ,则F ′(x )=f ′(x )·e x +f (x )·e x=e x [f (x )+f ′(x )]>0,∴F (x )在R 上单调递增.又f (3)=3,则F (3)=f (3)·e 3=3e 3.∵f (x )>3e 3-x 等价于f (x )·e x >3e 3,即F (x )>F (3),∴x >3,即所求不等式的解集为(3,+∞).考向3 利用f (x )与sin x ,cos x 构造例3 偶函数f (x )的定义域为⎝⎛⎭⎫-π2,π2,其导函数为f ′(x ),若对任意的x ∈⎣⎡⎭⎫0,π2,有f ′(x )·cos x <f (x )sin x 成立,则关于x 的不等式2f (x )<f ⎝⎛⎭⎫π3cos x的解集为__________________. 答案 ⎝⎛⎭⎫-π2,-π3∪⎝⎛⎭⎫π3,π2 解析 令g (x )=f (x )cos x ,x ∈⎝⎛⎭⎫-π2,π2, ∴g (-x )=f (-x )cos(-x )=f (x )cos x =g (x ),∴g (x )为偶函数,又g ′(x )=f ′(x )cos x -f (x )sin x ,∴当x ∈⎣⎡⎭⎫0,π2时,g ′(x )<0, 即g (x )在⎣⎡⎭⎫0,π2上单调递减, 又g (x )为偶函数,∴g (x )在⎝⎛⎦⎤-π2,0上单调递增, 不等式2f (x )<f ⎝⎛⎭⎫π3cos x 可化为f (x )cos x <f ⎝⎛⎭⎫π3cos π3, 即g (x )<g ⎝⎛⎭⎫π3,则⎩⎨⎧ |x |>π3,-π2<x <π2,解得-π2<x <-π3或π3<x <π2. 规律方法 函数f (x )与sin x ,cos x 相结合构造可导函数的几种常见形式(1)F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x +f (x )cos x ;(2)F (x )=f (x )sin x, F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; (3)F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x -f (x )sin x ;(4)F (x )=f (x )cos x, F ′(x )=f ′(x )cos x +f (x )sin x cos 2x. 跟踪演练3 已知奇函数f (x )的导函数为f ′(x ),且f (x )在⎝⎛⎭⎫0,π2上恒有f (x )sin x < f ′(x )cos x成立,则下列不等式成立的是( ) A.2f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π4B .f ⎝⎛⎭⎫-π3<3f ⎝⎛⎭⎫-π6C.3f ⎝⎛⎭⎫-π4<2f ⎝⎛⎭⎫-π3 D.2f ⎝⎛⎭⎫π3<3f ⎝⎛⎭⎫π4 答案 B解析 构造函数F (x )=f (x )sin x, 由f (x )在⎝⎛⎭⎫0,π2上恒有f (x )sin x < f ′(x )cos x成立, 即f ′(x )sin x -f (x )cos x >0,∴F ′(x )=f ′(x )sin x -f (x )cos x (sin x )2>0, ∴F (x )在⎝⎛⎭⎫0,π2上单调递增, 又F (-x )=f (-x )sin (-x )=-f (x )-sin x=F (x ), ∴F (x )为偶函数,∵π6<π4, ∴F ⎝⎛⎭⎫π6<F ⎝⎛⎭⎫π4,∴f ⎝⎛⎭⎫π6sin π6<f ⎝⎛⎭⎫π4sin π4, ∴2f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π4,故A 错误;∵偶函数F (x )在⎝⎛⎭⎫0,π2上单调递增, ∴F (x )在⎝⎛⎭⎫-π2,0上单调递减, ∵-π3<-π6,∴F ⎝⎛⎭⎫-π3>F ⎝⎛⎭⎫-π6, ∴f ⎝⎛⎭⎫-π3sin ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫-π6sin ⎝⎛⎭⎫-π6,∴-f ⎝⎛⎭⎫-π3>-3f ⎝⎛⎭⎫-π6, ∴f ⎝⎛⎭⎫-π3<3f ⎝⎛⎭⎫-π6,故B 正确; F ⎝⎛⎭⎫-π4<F ⎝⎛⎭⎫-π3,∴f ⎝⎛⎭⎫-π4sin ⎝⎛⎭⎫-π4<f ⎝⎛⎭⎫-π3sin ⎝⎛⎭⎫-π3,∴-3f ⎝⎛⎭⎫-π4<-2f ⎝⎛⎭⎫-π3, ∴3f ⎝⎛⎭⎫-π4>2f ⎝⎛⎭⎫-π3,故C 错误; ∵π3>π4,∴F ⎝⎛⎭⎫π3>F ⎝⎛⎭⎫π4,∴f ⎝⎛⎭⎫π3sin π3>f ⎝⎛⎭⎫π4sin π4, ∴2f ⎝⎛⎭⎫π3>3f ⎝⎛⎭⎫π4,故D 错误.考点二 同构法构造函数例4 已知a >0,若在(1,+∞)上存在x 使得不等式e x -x ≤x a -a ln x 成立,则a 的最小值为________.答案 e解析 ∵x a =ln ln e e a x a x =,∴不等式即为e x -x ≤e a ln x -a ln x .由a >0且x >1得a ln x >0,设y =e x -x ,则y ′=e x -1>0,故y =e x -x 在(1,+∞)上单调递增,∴x ≤a ln x ,即a ≥x ln x, 即存在x ∈(1,+∞),使a ≥x ln x, ∴a ≥⎝⎛⎭⎫x ln x min ,设f (x )=x ln x(x >1), 则f ′(x )=ln x -1ln 2x, 当x ∈(1,e)时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0;∴f (x )在(1,e)上单调递减,在(e ,+∞)上单调递增,∴f (x )min =f (e)=e ,∴a ≥e.故a 的最小值为e.规律方法 指对同构,经常使用的变换形式有两种,一种是将x 变成ln e x ,然后构造函数;另一种是将x 变成e ln x ,然后构造函数.跟踪演练4 已知a >0,b >0,且(a +1)b +1=(b +3)a ,则( )A .a >b +1B .a <b +1C .a <b -1D .a >b -1 答案 B解析 因为(a +1)b +1=(b +3)a ,a >0,b >0,所以ln (a +1)a =ln (b +3)b +1>ln (b +2)b +1. 设f (x )=ln (x +1)x(x >0), 则f ′(x )=x x +1-ln (x +1)x 2. 设g (x )=x x +1-ln(x +1)(x >0), 则g ′(x )=1(x +1)2-1x +1=-x (x +1)2<0, 所以g (x )在(0,+∞)上单调递减.当x →0时,g (x )→0,所以g (x )<0,即f ′(x )<0,故f (x )在(0,+∞)上单调递减.因为f (a )>f (b +1),所以a <b +1. 专题强化练1.(2022·咸阳模拟)已知a =1e 2,b =ln 24,c =ln 39,则( )A .a <b <cB .c <a <bC .b <a <cD .c <b <a答案 B 解析 设f (x )=ln x x 2,则a =f (e),b =f (2), c =f (3),又f ′(x )=1-2ln x x 3, 当x ∈(e ,+∞)时,f ′(x )<0,故f (x )=ln x x 2在(e ,+∞)上单调递减, 注意到e<4=2<e<3,则有f (3)<f (e)<f (2),即c <a <b .2.(2022·哈尔滨模拟)已知f (x )是定义在R 上的偶函数,f ′(x )是f (x )的导函数,当x ≥0时,f ′(x )-2x >0,且f (1)=3,则f (x )>x 2+2的解集是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-∞,-1)∪(0,1)答案 B解析 令g (x )=f (x )-x 2,则g (-x )=f (-x )-(-x )2=g (x ),所以函数g (x )也是偶函数,g ′(x )=f ′(x )-2x ,因为当x ≥0时,f ′(x )-2x >0,所以当x ≥0时,g ′(x )=f ′(x )-2x >0,所以函数g (x )在[0,+∞)上单调递增,不等式f (x )>x 2+2即为不等式g (x )>2,由f (1)=3,得g (1)=2,所以g (x )>g (1),所以|x |>1,解得x <-1或x >1,所以f (x )>x 2+2的解集是(-∞,-1)∪(1,+∞).3.(2022·南京质检)设a ,b 都为正数,e 为自然对数的底数,若a e a <b ln b ,则( )A .ab >eB .b >e aC .ab <eD .b <e a解析 由已知a e a <b ln b ,则e a ln e a <b ln b .设f (x )=x ln x ,则f (e a )<f (b ).∵a >0,∴e a >1,∵b >0,b ln b >a e a >0,∴b >1.当x >1时,f ′(x )=ln x +1>0,则f (x )在(1,+∞)上单调递增,所以e a <b .4.(2022·常州模拟)已知函数y =f (x )为奇函数,且当x >0时,f ′(x )sin x +f (x )cos x >0,则下列说法正确的是( )A .f ⎝⎛⎭⎫5π6<-f ⎝⎛⎭⎫7π6<-f ⎝⎛⎭⎫-π6 B .-f ⎝⎛⎭⎫7π6<f ⎝⎛⎭⎫5π6<-f ⎝⎛⎭⎫-π6 C .-f ⎝⎛⎭⎫-π6<-f ⎝⎛⎭⎫7π6<f ⎝⎛⎭⎫5π6 D .-f ⎝⎛⎭⎫-π6<f ⎝⎛⎭⎫5π6<-f ⎝⎛⎭⎫7π6 答案 D解析 令g (x )=f (x )sin x ,因为f (x )为奇函数,则g (x )为偶函数,又当x >0时,f ′(x )sin x +f (x )cos x >0,即g ′(x )>0,则g (x )在(0,+∞)上单调递增,则有g ⎝⎛⎭⎫-π6=g ⎝⎛⎭⎫π6<g ⎝⎛⎭⎫5π6<g ⎝⎛⎭⎫7π6, 即-12 f ⎝⎛⎭⎫-π6<12 f ⎝⎛⎭⎫5π6<-12 f ⎝⎛⎭⎫7π6, 即-f ⎝⎛⎭⎫-π6<f ⎝⎛⎭⎫5π6<-f ⎝⎛⎭⎫7π6. 5.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x f (x )>e x +1的解集为( )A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<x <1}解析 构造函数g (x )=e x f (x )-e x ,因为g ′(x )=e x f (x )+e x f ′(x )-e x=e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x f (x )-e x 在R 上单调递增.又因为g (0)=e 0f (0)-e 0=1,所以原不等式转化为e x f (x )-e x >1,即g (x )>g (0),解得x >0.所以原不等式的解集为{x |x >0}.6.(多选)(2022·渭南模拟)设实数λ>0,对任意的x >1,不等式λe λx ≥ln x 恒成立,则λ的取值可能是( )A .e B.12e C.1e D.2e答案 ACD解析 由题设,e λx ·λx ≥x ln x =e ln x ·ln x ,令f (t )=t ·e t (t >0),则f ′(t )=(t +1)·e t >0,所以f (t )单调递增,又f (λx )≥f (ln x ),即当x ∈(1,+∞)时,λx ≥ln x ,即λ≥ln x x 恒成立,令g (x )=ln x x,x ∈(1,+∞), 则g ′(x )=1-ln x x 2, 所以在(1,e)上,g ′(x )>0,即g (x )单调递增;在(e ,+∞)上,g ′(x )<0,即g (x )单调递减,则g (x )≤g (e)=1e ,故λ≥1e. 7.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集是________.答案 (2,+∞)解析根据题意,构造函数y=xf(x),x∈(0,+∞),则y′=f(x)+xf′(x)<0,所以函数y=xf(x)的图象在(0,+∞)上单调递减.又因为f(x+1)>(x-1)f(x2-1),所以(x+1)f(x+1)>(x2-1)f(x2-1),所以0<x+1<x2-1,解得x>2.所以不等式f(x+1)>(x-1)f(x2-1)的解集是(2,+∞).8.(2022·龙岩质检)已知m>0,n∈R,若log2m+2m=6,2n+1+n=6,则m2n=________. 答案 1解析由题意得log2m+2m=2n+1+n,log2m+2m=2×2n+n,令g(x)=log2x+2x(x>0),则g′(x)=1x ln 2+2>0,所以g(x)在(0,+∞)上单调递增,因为g(m)=g(2n),所以m=2n,所以m2n=1.。
.导数运算中构造函数解决抽象函数问题【模型总结】关系式为“加”型xx)](x'(x)?fx[ef()]'?e[f0f'(x)?f(x)? 1)构造()(x'(x)?f)?0[xf(x)]'?xfxf'(x)?f(x 2()构造n?1nn?1n[xf'(x)?(xx)]'?xf'(x)?nx)?xnf(x)]fx[f(0nf(x)?xf'(x)?)构造3(x(注意对的符号进行讨论)关系式为“减”型xx f'(x)?f(x?f(x)e)f(x)f'(x)e?[]'?0(x)?f'(x)?f(1)构造xx2x ee(e)f(x)xf'(x)?f(x)]'?[0?f(x)xf'(x)?构造(2)2xx nn?1f(x)xf'(x)?nff(x)x(f'(x)?nxx)?[]'?0x)?'(x)?nf(xf 3)构造(n2nn?1xx(x)x的符号进行讨论)(注意对小结:1.加减形式积商定 2.系数不同幂来补 3.符号讨论不能忘典型例题:f(x)、g(x)f'(x)g(x)?f(x)g'(x)?0g(?3)?0R,求不是,例1.设上的可导函数,f(x)g(x)?0的解集等式f(x)、g(x)x?0R时,函数当变式:设,上的奇函数、偶分别是定义在f'(x)g(x)?f(x)g'(x)?0g(?3)?0f(x)g(x)?0的解集. ,求不等式,f(x)2.例R)x(x)、g(f x满足已知定义在上的函数a?f'(x)g(x)?f(x)g'(x),,且g(x)??5(f(1)f?1)31)nf(*??nn(n?N). 的前项和等于,则等于若有穷数列,??2?(1)gg(1)32g(n)??f(x)x a?f'(x)g(x)?f(x)g'(x)f(x)、g(x)R满足上的函数,,且变式:已知定义在)g(xf(1)f(?1)5??logx?1x的解集. 若若,求关于的不等式a g(1)g(?1)2 1 / 2.)(xf3.例R0?x)f'(x)f(x时,的奇函数的导函数为,已知定义域为当0??)f'(x,x111)ln2?lnf(f(?2)c,f(),b?a??2c,,ba,则关于若的大小关系是2224.例RR?x?x)f'(x)f()(xf上的可导奇函数,且已知函数对于任意恒成为定义在)xf(f(3)=e,则/e^x<1的解集为立,且1?f(2))xf((1))f(0)?1f(f'(x)??fx R. ,求是,变式:设上的可导函数,且的值.2e2x2f(x?'(x))?xf)xf()xf'(R上的导函数为,例5.设函数在,且)xf(1?f(1)?xf'(x)2f'(x)f(x)0x?,若存在,且时,,当的导函数为变式:已知2?x)?f(xRx?x.,使,求的值:巩固练习??????''x31xff?x2?f)xf(R的不,且,则关于定义在1.满足上的函数,其导函数??1xx??f.等式的解集为▲//)(xy?f)(x)?ff(x)f(x R,且2.已知定义在的导函数为上的可导函数,满足x1?1)f(2)y?f(x?ex()?f为偶函数,▲,则不等式的解集为????0?xx)g)))f(x)g(xf(f)(xg((xI上恒成立,的导函数,若3.设分别是和在区间和132))g(xf(xax??2xf(x)?2bxx)?xg(I在若函数在区间和与则称上单调性相反.3(a,b)b?a0a?的最大值为上单调性相反(开区间▲),则??2???0,x(?x)?fx)?f()(fx)xf(Rx? 4.设函数,R在上存在导数有且在对任意的,?a,a?22(a?)?fa)?2f.?xf()x(的取值范围为▲上,,若则实数;2 / 2。
培优课导数中的函数构造问题类型一利用f (x )与x 构造1.常用构造形式有xf (x ),f (x )x ,这类形式是对u ·v ,v u型函数导数计算的推广及应用,我们对u ·v ,v u 的导函数观察可得知,u ·v 型导函数中体现的是“+”法,v u型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u ·v 型,当导函数形式出现的是“-”法形式时,考虑构造u v.例1设f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.答案(-∞,-4)∪(0,4)解析构造F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x ),当x <0时,f (x )+xf ′(x )<0,可以推出当x <0时,F ′(x )<0,∴F (x )在(-∞,0)上单调递减.∵f (x )为偶函数,x 为奇函数,∴F (x )为奇函数,∴F (x )在(0,+∞)上也单调递减,根据f (-4)=0可得F (-4)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知xf (x )>0的解集为(-∞,-4)∪(0,4).例2已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集是()A.(0,1)B.(2,+∞)C.(1,2)D.(1,+∞)答案B解析构造函数y =xf (x ),x ∈(0,+∞),则y ′=f (x )+xf ′(x )<0,所以函数y =xf (x )在(0,+∞)上单调递减.又因为f (x +1)>(x -1)f (x 2-1),所以(x +1)f (x +1)>(x 2-1)f (x 2-1),所以x +1<x 2-1,且x 2-1>0,x +1>0,解得x >2或x <-1(舍去),所以不等式f (x +1)>(x -1)f (x 2-1)的解集是(2,+∞).例3设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的解集为________.答案(-∞,-1)∪(1,+∞)解析构造F (x )=f (x )x,则F ′(x )=f ′(x )·x -f (x )x 2,当x <0时,xf ′(x )-f (x )>0,可以推出当x <0时,F ′(x )>0,F (x )在(-∞,0)上单调递增,∵f (x )为偶函数,x 为奇函数,∴F (x )为奇函数,∴F (x )在(0,+∞)上也单调递增,根据f (1)=0可得F (1)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知f (x )>0的解集为(-∞,-1)∪(1,+∞).例4已知函数f (x )=x ln x +x (x -a )2(a ∈R ).若存在x ∈12,2,使得f (x )>xf ′(x )成立,则实数a的取值范围是()C.(2,+∞)D.(3,+∞)答案C解析由f (x )>xf ′(x )成立,可得f (x )x ′=xf ′(x )-f (x )x 2<0.设g (x )=f (x )x=ln x +(x -a )2,则存在x ∈12,2,使得g ′(x )=1x +2(x -a )<0成立,即amin .又x +12x≥2x ·12x =2,当且仅当x =12x ,即x =22时取等号,所以a > 2.2.xf (x ),f (x )x是比较简单常见的f (x )与x 之间的函数关系式,如果碰见复杂的,不易想的我们该如何处理,由此我们可以思考形如此类函数的一般形式.F (x )=x n f (x ),F ′(x )=nx n -1f (x )+x n f ′(x )=x n -1[nf (x )+xf ′(x )];F (x )=f (x )xn ,F ′(x )=f ′(x )·x n -nx n -1f (x )x 2n=xf ′(x )-nf (x )x n +1.结论:(1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )xn .例5已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (-1)=0,当x >0时,2f (x )>xf ′(x ),则使得f (x )>0成立的x 的取值范围是________.答案(-1,0)∪(0,1)解析构造F (x )=f (x )x2,则F ′(x )=f ′(x )·x -2f (x )x 3,当x >0时,xf ′(x )-2f (x )<0,可以推出当x >0时,F ′(x )<0,F (x )在(0,+∞)上单调递减.∵f (x )为偶函数,x 2为偶函数,∴F (x )为偶函数,∴F (x )在(-∞,0)上单调递增,根据f (-1)=0可得F (-1)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知f (x )>0的解集为(-1,0)∪(0,1).类型二利用f (x )与e x 构造1.f (x )与e x 构造,一方面是对u ·v ,u v(e x )′=e x 的考查,所以对于f (x )±f ′(x )类型,我们可以等同xf (x ),f (x )x的类型处理,“+”法优先考虑构造F (x )=f (x )·e x ,“-”法优先考虑构造F (x )=f (x )ex 形式.例6已知f (x )为R 上的可导函数,其导函数为f ′(x ),且对于任意的x ∈R ,均有f (x )+f ′(x )>0,则()A.e -2023f (-2023)<f (0),e 2023f (2023)>f (0)B.e -2023f (-2023)<f (0),e 2023f (2023)<f (0)C.e -2023f (-2023)>f (0),e 2023f (2023)>f (0)D.e -2023f (-2023)>f (0),e 2023f (2023)<f (0)答案A 解析构造函数h (x )=e x f (x ),则h ′(x )=e x f (x )+e x f ′(x )=e x [f (x )+f ′(x )]>0,所以函数h (x )在R 上单调递增,故h (-2023)<h (0),即e -2023f (-2023)<e 0f (0),即e -2023f (-2023)<f (0).同理,h (2023)>h (0),即e 2023f (2023)>f (0),故选A.例7已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则()A.f (2)>e 2f (0),f (2023)>e 2023f (0)B.f (2)<e 2f (0),f (2023)>e 2023f (0)C.f (2)>e 2f (0),f (2023)<e 2023f (0)D.f (2)<e 2f (0),f (2023)<e 2023f (0)答案D 解析构造F (x )=f (x )ex 形式,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足f ′(x )<f (x ),则F ′(x )<0,F (x )在R 上单调递减,所以F (2)<F (0),即f (2)e2<f (0),即f (2)<e 2f (0).同理,F (2023)<F (0),即f (2023)<e 2023f (0).故选D.2.同样e x f (x ),f (x )e x 是比较简单常见的f (x )与e x 之间的函数关系式,如果碰见复杂的,我们是否也能找出此类函数的一般形式呢?F (x )=e nx f (x ),F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )];F (x )=f (x )enx ,F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx.结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )e nx.例8已知函数f (x )的定义域为R ,其导函数为f ′(x ),且3f (x )-f ′(x )>0在R 上恒成立,则下列等式一定成立的是()A.f (1)<e 3f (0)B.f (1)>e 2f (0)C.f (1)>e 3f (0)D.f (1)<e 2f (0)答案A 解析令g (x )=f (x )e3x ,则g ′(x )=f ′(x )·e 3x -3f (x )e 3x (e 3x )2=f ′(x )-3f (x )e 3x 因为3f (x )-f ′(x )>0在R 上恒成立,所以g ′(x )<0在R 上恒成立,故g (x )在R 上单调递减,所以g (1)<g (0),即f (1)e 3<f (0)e0,即f (1)<e 3f (0).类型三利用f (x )与sin x ,cos x 构造因为sin x ,cos x 的导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x +f (x )cos x ;F (x )=f (x )sin x,F ′(x )=f ′(x )sin x -f (x )cos x sin 2x;F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x -f (x )sin x ;F (x )=f (x )cos x,F ′(x )=f ′(x )cos x +f (x )sin x cos 2x.例9已知函数y =f (x )对于任意的x -π2,f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式不成立的是()A.2B.2C.f (0)<2D.f (0)<2答案A 解析构造F (x )=f (x )cos x形式.则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x ,导函数f ′(x )满足f ′(x )cos x +f (x )sin x >0,则F ′(x )>0,F (x )-π2,.把选项转化后可知选A.例10已知函数y =f (x -1)的图象关于点(1,0)对称,函数y =f (x )对于任意的x ∈(0,π)满足f ′(x )sin x >f (x )cos x (其中f ′(x )是函数f (x )的导函数),则下列不等式成立的是()A.-3B.2-C.3D.2答案C 解析由已知,得f (x )为奇函数,由函数y =f (x )对于任意的x ∈(0,π)满足f ′(x )sin x >f (x )cos x ,得f ′(x )·sin x -f (x )cos x >0,即f (x )sin x ′>0,所以y =f (x )sin x在(0,π)上单调递增,又因为y =f (x )sin x为偶函数,所以y =f (x )sin x在(-π,0)上单调递减,sin π3sin π23类型四构造具体函数关系式这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.例11已知α,β∈-π2,π2,且αsin α-βsin β>0,则下列结论正确的是()A.α>βB.α2>β2C.α<βD.α+β>0答案B 解析构造f (x )=x sin x 形式,则f ′(x )=sin x +x cos x ,x ∈0,π2时导函数f ′(x )≥0,f (x )单调递增;x ∈-π2,f ′(x )<0,f (x )单调递减.又f (x )为偶函数,根据单调性和图象可知选B.例12已知实数a ,b ,c 满足a -2e a b =1-c d -1=1,其中e 是自然对数的底数,那么(a -c )2+(b -d )2的最小值为()A.8B.10C.12D.18答案A解析由a -2e a b=1⇒b =a -2e a ,进而⇒f (x )=x -2e x ,又由1-c d -1=1⇒d =2-c ⇒g (x )=2-x ;由f ′(x )=1-2e x =-1,得x =0,所以切点坐标为(0,-2),所以(a -c )2+(b -d )2=8.培优课利用导数研究恒成立或能成立问题利用导数研究恒成立与能成立问题的常用的方法有:一种先利用综合法,结合导函数的零点之间的大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另外一种,直接通过导函数的式子,解出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.类型一单变量恒成立求参数范围问题例1已知函数f (x )=ln x .若对任意x >0,不等式f (x )≤ax ≤x 2+1恒成立,求实数a 的取值范围.解因为对任意x >0,不等式f (x )≤ax ≤x 2+1恒成立,≥ln x x ,≤x +1x 在x >0max ≤a min .设h (x )=ln x x ,则h ′(x )=1-ln x x 2,当x ∈(0,e)时,h ′(x )>0;当x ∈(e ,+∞)时,h ′(x )<0,所以h (x )≤1e.要使f (x )≤ax 恒成立,必须a ≥1e.另一方面,当x >0时,x +1x≥2,要使ax ≤x 2+1恒成立,必须a ≤2,所以满足条件的a 的取值范围是1e ,2.例2已知f (x )=e x -ax 2,若f (x )≥x +(1-x )e x 在[0,+∞)恒成立,求实数a 的取值范围.解f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x ,即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0),当a ≤1时,由x ≥0知h ′(x )≥0,∴在[0,+∞)上h (x )≥h (0)=0,原不等式恒成立.当a >1时,令h ′(x )>0,得x >ln a ;令h ′(x )<0,得0≤x <ln a .∴h (x )在[0,ln a )上单调递减,又∵h (0)=0,∴h (x )≥0不恒成立,∴a >1不合题意.综上,实数a 的取值范围为(-∞,1].类型二单变量能成立求参数范围问题例3已知函数f (x )=ax -e x (a ∈R ),g (x )=ln x x ,若∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围.解因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,则ax ≤ln x x ,即a ≤ln x x2.设h (x )=ln x x 2,则问题转化为amax .由h ′(x )=1-2ln x x 3,令h ′(x )=0,得x = e.当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 的变化情况如下表:x(0,e)e (e ,+∞)h ′(x )+0-h (x )极大值12e由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e.故a ∞,12e .例4已知函数f (x )=x -a ln x ,g (x )=-1+a x(a ∈R ).(1)设函数h (x )=f (x )-g (x ),求函数h (x )的单调区间;(2)若在区间[1,e]上存在一点x 0,使得f (x 0)<g (x 0)成立,求a 的取值范围.解(1)h (x )=x +1+a x-a ln x (x >0),h ′(x )=1-1+a x 2-a x =x 2-ax -(1+a )x 2=(x +1)[x -(1+a )]x 2.①当a +1>0,即a >-1时,在(0,1+a )上h ′(x )<0,在(1+a ,+∞)上h ′(x )>0,所以h (x )在(0,1+a )上单调递减,在(1+a ,+∞)上单调递增;②当1+a ≤0,即a ≤-1时,在(0,+∞)上h ′(x )>0,所以函数h (x )在(0,+∞)上单调递增.综上所述,当a >-1时,h (x )在(0,1+a )上单调递减,在(1+a ,+∞)上单调递增;当a ≤-1时,函数h (x )在(0,+∞)上单调递增.(2)在[1,e]上存在一点x 0,使得f (x 0)<g (x 0)成立,即在[1,e]上存在一点x 0,使得h (x 0)<0,即函数h (x )=x +1+a x-a ln x 在[1,e]上的最小值小于零.由(1)可知:①当1+a ≥e ,即a ≥e -1时,h (x )在[1,e]上单调递减,所以h (x )的最小值为h (e),由h (e)=e +1+a e -a <0可得a >e 2+1e -1.②当1+a ≤1,即a ≤0时,h (x )在[1,e]上单调递增,所以h (x )的最小值为h (1),由h (1)=1+1+a <0可得a <-2.③当1<1+a <e ,即0<a <e -1时,可得h (x )的最小值为h (1+a ).因为0<ln(1+a )<1,所以0<a ln(1+a )<a .故h (1+a )=2+a -a ln(1+a )>2,此时,h (1+a )<0不成立.综上所述,所求a 的取值范围是(-∞,-2)类型三双变量恒(能)成立求参数范围问题例5已知函数f (x )=13x 3+x 2+ax ,函数g (x )=x ex ,若对∀x 1∈12,2,∃x 2∈12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.解“对∀x 1∈12,2,∃x 2∈12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈12,2时,f ′(x )max ≤g (x )max ”.因为f ′(x )=x 2+2x +a =(x +1)2+a -1在12,2上单调递增,所以f ′(x )max =f ′(2)=8+a .而g ′(x )=1-x ex ,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.所以当x ∈12,2时,g (x )max =g (1)=1e.由8+a ≤1e ,得a ≤1e-8,所以实数a ∞,1e-8.例6已知函数f (x )=x e x -e x ,函数g (x )=mx -m (m >0),若对任意的x 1∈[-2,2],总存在x 2∈[-2,2]使得f (x 1)=g (x 2),求实数m 的取值范围.解∵函数f (x )=x e x -e x =e x (x -1)的导函数f ′(x )=e x (x -1)+e x =x e x ,∴当x ∈(0,+∞)时,f ′(x )>0,故f(x)在(0,+∞)上是增函数,当x∈(-∞,0)时,f′(x)<0,故f(x)在(-∞,0)上是减函数,∴当x=0时,f(x)min=f(0)=-1,又f(-2)=-3e-2,f(2)=e2,∴f(x)在[-2,2]上的值域为[-1,e2],又函数g(x)=mx-m(m>0)在[-2,2]上是增函数,∴g(x)在[-2,2]上的值域为[-3m,m].若对任意的x1∈[-2,2],总存在x2∈[-2,2],使得f(x1)=g(x2),则[-1,e2]⊆[-3m,m],∴-3m≤-1<e2≤m,解得m≥e2,即实数m的取值范围是[e2,+∞).培优课与e x、ln x有关的不等式的证明类型一经典不等式e x≥x+1例1证明不等式e x≥x+1.证明设f(x)=e x-x-1,则f′(x)=e x-1,由f′(x)=0,得x=0,所以当x<0时,f′(x)<0;当x>0时,f′(x)>0,所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以f(x)≥f(0)=0,即e x-x-1≥0,所以e x≥x+1.思维升华与e x有关的常用不等式(1)e x≥1+x(x∈R).(2)e x≥e x(x∈R).迁移求证:e x-1≥x.证明法一令H(x)=e x-1-x,则H′(x)=e x-1-1.若x <1,则H ′(x )<0,H (x )在(-∞,1)上单调递减;若x >1,则H ′(x )>0,H (x )在(1,+∞)上单调递增.∴H (x )min =H (1)=0,∴H (x )≥0,∴e x -1≥x .法二令t =x -1,则x =t +1.由e t ≥t +1,得e x -1≥x .类型二经典不等式ln x ≤x -1例2证明不等式ln x ≤x -1.证明由题意知x >0,令f (x )=x -1-ln x ,所以f ′(x )=1-1x =x -1x,所以当f ′(x )>0时,x >1;当f ′(x )<0时,0<x <1,故f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (x )有最小值f (1)=0,故有f (x )=x -1-ln x ≥f (1)=0,即ln x ≤x -1成立.迁移1证明不等式ln(x +1)≤x .证明由题意知x >-1,令f (x )=ln(x +1)-x ,所以f ′(x )=1x +1-1=-x x +1,所以当f ′(x )>0时,-1<x <0;当f ′(x )<0时,x >0,故f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减,所以f (x )有最大值f (0)=0,故有f (x )=ln(x +1)-x ≤f (0)=0,即ln(x +1)≤x 成立.迁移2已知x >0,求证:x 1+x <ln(1+x ).证明法一构造函数g (x )=ln(1+x )-x 1+x,则g (0)=0.当x >0时,g ′(x )=11+x -11+x -x (1+x )2=x (1+x )2>0.即当x >0时,函数g (x )单调递增.即g (x )>g (0)=0.故g (x )=ln(1+x )-x 1+x >0,即x 1+x<ln(1+x ).法二∵ln x ≤x -1,且当x =1时等号成立.∴ln 1x +1<1x +1-1(x >0),即ln 1x +1<-x x +1,∴x x +1<ln(x +1).思维升华与ln x 有关的常用不等式(1)x -1x≤ln x ≤x -1(x >0,当且仅当x =1时,等号成立).(2)ln x ≤x e(x >0,当且仅当x =e 时,等号成立).(3)ln x ≤2(x -1)x +1(0<x ≤1,当且仅当x =1时,等号成立).(4)ln x ≥2(x -1)x +1(x ≥1,当且仅当x =1时,等号成立).(5)ln x x ≤1,当且仅当x =1时,等号成立).(6)ln x x ≥1,当且仅当x =1时,等号成立).类型三与e x 和ln x 有关的不等式例3已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e时,f (x )≥0.(1)解f (x )的定义域为(0,+∞),f ′(x )=a e x -1x.由题设知f ′(2)=0,所以a =12e 2.从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )的单调递增区间为(2,+∞),单调递减区间为(0,2).(2)证明当a ≥1e 时,f (x )≥e x e-ln x -1.设g (x )=e x e-ln x -1(x ∈(0,+∞)),则g ′(x )=e x e -1x.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点.故当x >0时,g (x )≥g (1)=0.因此,当a ≥1e时,f (x )≥0.例4已知函数f (x )=x 2-(a -2)x -a ln x (a ∈R ).(1)求函数y =f (x )的单调区间;(2)当a =1时,证明:对任意的x >0,f (x )+e x >x 2+x +2.(1)解函数f (x )的定义域是(0,+∞),f ′(x )=2x -(a -2)-a x =(x +1)(2x -a )x,当a ≤0时,f ′(x )>0对任意x ∈(0,+∞)恒成立,∴函数f (x )在区间(0,+∞)上单调递增;当a >0时,由f ′(x )>0得x >a 2,由f ′(x )<0,得0<x <a 2,∴函数f (x ).(2)证明当a =1时,f (x )=x 2+x -ln x ,要证明f (x )+e x >x 2+x +2,只需证明e x -ln x -2>0,先证明当x >0时,e x >x +1,令g (x )=e x -x -1(x >0),则g ′(x )=e x -1,当x >0时,g ′(x )>0,g (x )单调递增,∴当x >0时,g (x )>g (0)=0,即e x >x +1,∴e x -ln x -2>x +1-ln x -2=x -ln x -1.∴只要证明x -ln x -1≥0(x >0),令h (x )=x -ln x -1(x >0),则h ′(x )=1-1x =x -1x(x >0),易知h (x )在(0,1]上单调递减,在[1,+∞)上单调递增,∴h (x )≥h (1)=0即x -ln x -1≥0成立,∴f (x )+e x >x 2+x +2成立.思维升华与e x 和ln x (x >0)有关的不等式之间的关系e x >x +1>x >x -1>ln x ,常用该不等式通过放缩证明一些问题.。
导数中的构造函数(最全精编)导数小题中构造函数的技巧函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想。
在导数题型中,构造函数的解题思路恰好是这两种思想的良好体现。
下面我将分享导数小题中构造函数的技巧。
一)利用 $f(x)$ 进行抽象函数构造1、利用 $f(x)$ 与 $x$ 构造;常用构造形式有 $xf(x)$ 和$\frac{f(x)}{x}$。
在数导数计算的推广及应用中,我们对 $u\cdot v$ 的导函数观察可得,$u\cdot v$ 型导函数中体现的是“加法”,$\frac{u}{v}$ 型导函数中体现的是“除法”。
由此,我们可以猜测,当导函数形式出现的是“加法”形式时,优先考虑构造$u\cdot v$ 型;当导函数形式出现的是“除法”形式时,优先考虑构造 $\frac{u}{v}$ 型。
我们根据得出的“优先”原则,看一看例1和例2.例1】$f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,当$x0$ 的解集为?思路点拨:出现“加法”形式,优先构造 $F(x)=xf(x)$,然后利用函数的单调性、奇偶性和数形结合求解即可。
解析】构造 $F(x)=xf(x)$,则 $F'(x)=f(x)+xf'(x)$。
当$x0$ 的解集为 $(-\infty,-4)\cup(0,4)$。
例2】设 $f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,且$f(1)=2$。
当 $x0$ 恒成立。
则不等式 $f(x)>0$ 的解集为?思路点拨:出现“除法”形式,优先构造$F(x)=\frac{f(x)}{x-f(x)}$,然后利用函数的单调性、奇偶性和数形结合求解即可。
解析】构造 $F(x)=\frac{f(x)}{x-f(x)}$,则$F'(x)=\frac{xf'(x)-2f(x)}{(x-f(x))^2}$。
因为 $xf'(x)-f(x)>0$,所以 $F'(x)>0$,$F(x)$ 在 $(-\infty,0)$ 上单调递增。
利用求导法则构造函数近年高考试卷中常出现一种客观题,考查导数运算法则的逆用、变形应用能力。
这种题目的背景、题设条件或所求结论中具有“f(x)±g(x)、f(x)g(x)、f(x)/g(x)”等特征式,旨在考查学生对导数运算法则的掌握程度。
解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题。
本文结合实例介绍此类问题的几种常见形式及相应解法。
常用的构造函数有:1.和与积联系:如f(x)+xf'(x),构造xf(x);2xf(x)+x^2f'(x),构造x^2f(x);3f(x)+xf'(x),同样构造x^2f(x);3f(x)+xf'(x),构造x^3f(x);………;nf(x)+xf'(x),构造x^n f(x);f'(x)+f(x),构造e^xf(x)等等。
2.减法与商联系:如xf'(x)-f(x)>0,构造F(x)=f(x)/x;x^2f'(x)-2f(x)>0,构造F(x)=f(x)/x^2;xf'(x)-nf(x)>0,构造F(x)=f(x)/x^n;f'(x)-f(x),构造F(x)=f(x)/e^x;2xe^xf'(x)-2f(x),构造F(x)=f(x)/(2xe^x)等等。
在构造函数时,有时候不唯一,关键是要合理构造函数。
给出导函数,构造原函数,本质上离不开积分知识。
一种常见形式是巧设“y=f(x)±g(x)”型可导函数。
当题设条件中存在或通过变形出现特征式“f'(x)±g'(x)”时,不妨联想、逆用“f'(x)±g'(x)=[f(x)±g(x)]'”,构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题。
“利用导数运算法则构造函数解问题”是一种非常有用的解决问题的方法,它可以帮助
我们快速、准确地解决各种数学问题。
首先,我们可以利用导数运算法则构造出一个函数,即设定一个满足某个特定要求的
函数,然后根据这个函数确定求解问题的方法,从而解决问题。
其次,我们可以利用导数
运算法则,求解一个函数的极值,即找出函数值最大或最小的点,从而求解函数的最优解。
最后,我们可以利用导数运算法则,求解一个函数的最大值和最小值,通过求解函数
的极值,可以得到函数的最优解,从而解决问题。
总之,利用导数运算法则构造函数解决问题是一种非常有用的解决问题的方法,它可
以帮助我们快速、准确地解决各种数学问题。
高二数学2021年4月解导数题的几种构造妙招■河南省商丘市应天高中在解导数有关问题时,常常需要构造一个辅助函数,然后利用导数解决问题,怎样构造函数就成了解决问题的关键,本文给出几种常用的构造方法,以抛砖引玉。
一.联想构造侧f函数于(工)在其定义域内满足鼻才(鼻)+于(鼻)=eS且/(I)=e,则函数于(刃()。
A.有极大值,无极小值张振继(特级教师)解:令(鼻)=e"—In鼻,则f(h)=e"——=——。
令fj)=o,则鼻云一1=0。
oc JC根据y=e"与y=丄的图像可得,两个图像交点的横坐标^O e(o,i),所以力(鼻)在(o, 1)上不单调,无法判断于(口)与于(%)的大小,A、B不正确。
同理,构造函数g(工)=兰,可证g(鼻)在(0,1)上单调递减,所以3C.B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,又无极小值分析:联想导数的运算法则,(/(x)・/(rc),于是构造函数g(x)=^/(x)o其导数已知,所以±/(h)=X+C,确定常数C,求得fS=兰JC°解:设g(鼻)=xf(h),则g'(rc)=広f Gr)+_/'Q)=eJ可设ga)=e’+C,即•x/*a)=b+C(C为常数)。
令h=1,则1・/(l)=e+C o又/'(1) =e,故C=0,g(rc)=e",即讨(rc)=e"。
q"(qr-[)所以fS=—,f'S=―。
工rc/(乂)在(一*,0),(0,1)上单调递减,在(1,+*)上单调递增。
所以/(工)有极小值,无极大值,选B。
二、同构构造侧2【2014年湖南卷】若0Vm<Z j^2 VI,则()。
A.e2—e1>ln rc2—In鼻】B.e2—e1Vln孔—In rrjC.rr2e1>5e2D.jr2e1<C je!e2分析:将等式或不等式的两边化为相同结构形式,可以根据结构形式构造辅助函数解题。
构造函数解决不等式问题 例:[2011·辽宁卷]函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2, 则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)【解析】构造函数G (x )=f (x )-2x -4,所以G ′(x )=f ′(x )-2,由于对任意x ∈R ,f ’(x )>2, 所以G ′(x )=f ′(x )-2>0恒成立,所以G (x )=f (x )-2x -4是R 上的增函数, 又由于G (-1)=f (-1)-2×(-1)-4=0,所以G (x )=f (x )-2x -4>0, 即f (x )>2x +4的解集为(-1,+∞),故选B. 训练:1.已知函数()y f x =的图象关于y 轴对称,且当(,0),()'()0x f x xf x ∈-∞+<成立0.20.22(2)a f =g ,log 3(log 3)b f ππ=g ,33log 9(log 9)c f =g ,则a,b,c 的大小关系是( ) A. b a c >> B.c a b >> C.c b a >> D.a c b >>解:因为函数()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.因为[()]'()'()xf x f x xf x =+,所以当(,0)x ∈-∞时,[()]'()'()0xf x f x xf x =+<,函数()y xf x =单调递减,当(0,)x ∈+∞时,函数()y xf x =单调递减.因为0.2122<<,0131og π<<,3192og =,所以0.23013219og og π<<<,所以b a c >>,选A.2. 已知()f x 为R 上的可导函数,且x R ∀∈,均有()()f x f x '>,则有 A .2013(2013)(0)e f f -<,2013(2013)(0)f e f > B .2013(2013)(0)e f f -<,2013(2013)(0)f e f < C .2013(2013)(0)ef f ->,2013(2013)(0)f e f > D .2013(2013)(0)ef f ->,2013(2013)(0)f e f <解:构造函数()(),x f x g x e=则2()()()()()()()x x x xf x e e f x f x f xg x e e '''--'==, 因为,x ∀∈R 均有()()f x f x '>,并且0x e >,所以()0g x '<,故函数()()xf xg x e =在R 上单调递减,所以(2013)(0)(2013)(0)g g g g -><,,即20132013(2013)(2013)(0)(0)f f f f e e --><,,也就是20132013(2013)(0)(2013)(0)e f f f e f -><,,故选D . 6. 已知函数))((R x x f ∈满足1)1(=f ,且)(x f 的导函数21)('<x f ,则212)(+<x x f 的解集为( )A. {}11<<-x x B. {}1-<x x C. {}11>-<x x x 或 D. {}1>x x解:构造新函数1()()()22xF x f x =-+, 则11(1)(1)()11022F f =-+=-=,1'()'()2F x f x =-,对任意x R ∈,有1'()'()02F x f x =-<,即函数()F x 在R 上单调递减,则()0F x <的解集为(1,)+∞,即212)(+<x x f 的解集为(1,)+∞,选D.3.[2013·绥化一模] 已知函数y =f (x -1)的图象关于点(1,0)对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立(其中f ′(x )是f (x )的导函数),若a =(30.3)·f (30.3),b =(log π3)·f (log π3),c =)91(log 2·f )91(log 2,则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .c >b >aD .a >c >b解:因为函数y =f (x -1)的图象关于点(1,0)对称,所以f (x )关于(0,0)中心对称为奇函数,所以函数g(x)=xf (x )为偶函数.又当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,故g(x)=xf (x )在(-∞,0)上为减函数.由偶函数的性质得函数xf (x )在(0,+∞)上为增函数,又⎪⎪⎪⎪⎪⎪log 319>30.3>log π3>0,所以c >a >b . 例:巳知函数f (x )=13ax 2-b x -1nx ,其中a ,b ∈R 。
(I )当a=3,b=-1时,求函数f (x )的最小值;(Ⅱ)若曲线y=f (x )在点(e ,f(e ))处的切线方程为2x -3y -e=0(e=2.71828…为自然对数的底数),求a ,b 的值;(Ⅲ)当a>0,且a 为常数时,若函数h (x )=x[f (x )+1nx]对任意的x 1>x 2≥4,总有1212()()1h x h x x x ->--成立,试用a 表示出b 的取值范围;【知识点】导数的综合应用解:因为()()2ln ,0,f x x x x x =+-∈+∞,所以()()()2111'21x x f x x x x-+=+-=, 令()1'0,12f x x ==-得或,所以f(x)在102⎛⎫⎪⎝⎭,上单调递减,在12⎛⎫+∞ ⎪⎝⎭,上单调递增, 则f(x)在12x =处取得最小值为13ln 224f ⎛⎫=+ ⎪⎝⎭; (Ⅱ)因为()()21212','333f x ax b f e ae b x e =--=--=所以①, 又因为切点(e ,f(e))在直线2x -3y -e=0上,所以切点为,3e e ⎛⎫⎪⎝⎭, 所以()21133e f e ae be =--=②,联立①②解得11,a b e e==-. (Ⅲ)由题意,对于任意124x x >≥,总有()()1122120h x x h x x x x +-+⎡⎤⎡⎤⎣⎦⎣⎦>-成立,令()()[)321,4,3p x h x x ax bx x x =+=-+∈+∞,则函数p(x)在x ∈[4,+∞)上单调递增,所以()[)2'2104,p x ax bx =-+≥∈+∞在x 上恒成立.构造函数()()()10,0,F x ax a x x=+>∈+∞,则()22211'ax F x a x x -=-=,所以F(x)在⎛⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增.(1)14016a ><<即时,F(x)在4,a ⎛ ⎝⎭上单调递减,在a ⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增.所以F(x)的最小值为2F b b a ⎛⎫=≤≤⎪ ⎪⎝⎭所以得(2)当1416a a ≤≥即时F(x)在(4,+∞)上单调递增,()11244,248b F a b a ≤=+≤+即,综上,当1016a <<时(b ∈-∞,当116a ≥时,1,28b a ⎛⎤∈-∞+ ⎥⎝⎦【思路点拨】本题主要考查的是利用导数求函数的最值及利用导数研究曲线的切线,利用导数求最值一般先判断函数的单调性,再结合单调性确定最值位置,对于由不等式恒成立求参数参数范围问题通常转化为函数的最值问题解答. 变式练习:1.函数.ln )2()(2x x a ax x f ++-=(Ⅰ)当1=a 时,求曲线)(x f y =在点))1(,1f (处的切线方程;(Ⅱ)当0>a 时,若)(x f 在区间],1[e 上的最小值为-2,求a 的取值范围; (Ⅲ)若对任意2121),,0(,x x x x <+∞∈,且22112)(2)(x x f x x f +<+恒成立,求a 的取值范围. 解:(Ⅰ)当1=a 时,xx x f x x x x f 132)(,ln 3)(2+-=+-=.………2分 因为2)1(,0)1('-==f f .所以切线方程是.2-=y …………4分 (Ⅱ)函数x x a ax x f ln )2(2)(++-=的定义域是),(∞+0. ………………5分 当0>a 时,)0(1)2(21)2(2)('2>-+-=++-=x xx a ax x a ax x f令0)('=x f ,即0)1)(12(1)2(2)('2=--=++-=xax x x x a ax x f , 所以21=x 或ax 1=. ……………………7分 当110≤<a,即1≥a 时,)(x f 在[1,e]上单调递增, 所以)(x f 在[1,e]上的最小值是2)1(-=f ; 当e a <<11时,)(x f 在[1,e]上的最小值是2)1()1(-=<f af ,不合题意; 当e a≥1时,)(x f 在(1,e )上单调递减, 所以)(x f 在[1,e]上的最小值是2)1()(-=<f e f ,不合题意………………9分(Ⅲ)设x x f x g 2)()(+=,则x ax ax x g ln )(2+-=,只要)(x g 在),(∞+0上单调递增即可.…………………………10分 而xax ax x a ax x g 1212)('2+-=+-=当0=a 时,01)('>=xx g ,此时)(x g 在),(∞+0上单调递增;……………………11分 当0≠a 时,只需0)('≥x g 在),(∞+0上恒成立,因为),0(+∞∈x ,只要0122≥+-ax ax , 则需要0>a ,对于函数122+-=ax ax y ,过定点(0,1),对称轴041>=x ,只需082≤-=∆a a ,即80≤<a . 综上80≤≤a . ………………………14分2. 函数()ln m f x x x =+,m R ∈(1)求函数的极值;(2)讨论()'()3x g x f x =-的零点的个数;(3)对()()0,1f b f a b a b a-∀>><-恒成立,求m 的取值范围。