命题与证明
- 格式:doc
- 大小:455.00 KB
- 文档页数:13
1、定义:对一个概念的含义加以描述说明或作出明确规定的语句叫作这个概念的定义.例如:“同一平面内没有公共点的两条直线叫作平行线”是“平行线”的定义. 例如:“把数与表示数的字母用运算符号连接而成的式子叫作代数式”是“代数式”的定义.2、命题:一般地,对某一件事情作出判断的语句(陈述句)叫作命题.注:命题通常写成“如果……,那么……”的形式,其中“如果”引出的部分就是条件,“那么”引出的部分就是结论.2、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫作原命题,另一个叫作逆命题.注:只要将一个命题的条件和结论互换,就可得到它的逆命题,所以每个命题都有逆命题.4、证明:要判断一个命题是真命题,常常要从命题的条件出发,通过讲道理(推理),得出其结论成立,从而判断这个命题为真命题,这个过程叫证明.5、要判断一个命题是假命题,只需举出一个例子(反例),它符合命题的条件,但不满足命题的结论,从而就可判断这个命题为假命题. (举反例)注:6、当直接证明一个命题为真有困难时,我们可以先假设命题不成立,然后利用命题的条件或有关的结论,通过推理导出矛盾,从而得出假设不成立,即所证明的命题正确,这种证明方法称为反证法.反证法是一种间接证明的方法,其基本的思路可归结为“否定结论,导出矛盾,肯定结论”.【例1】下列四个命题中是真命题的有().①同位角相等;②相等的角是对顶角;③直角三角形两锐角互余;④三个内角相等的三角形是等边三角形.A.4个B.3个C.2个D.1个【例2】下列语句中,属于命题的是().(A)直线AB和CD垂直吗(B)过线段AB的中点C画AB的垂线(C)同旁内角不互补,两直线不平行(D)连结A,B两点【例3】下列命题中,属于假命题的是()(A)若a⊥c,b⊥c,则a⊥b (B)若a∥b,b∥c,则a∥c(C)若a⊥c,b⊥c,则a∥b (D)若a⊥c,b∥a,则b⊥c【例4】下列四个命题中,属于真命题的是().(A)互补的两角必有一条公共边(B)同旁内角互补(C)同位角不相等,两直线不平行(D)一个角的补角大于这个角【例5】如图,∠A+∠D=180°(已知),∴______∥_______().∴∠1=_________().∵∠1=65°(已知),∴∠C=65°().【例6】“两直线平行,同位角互补”是______命题(填“真”或“假”).【例7】•.•把命题“等角的补有相等”改写成“如果……那么……”的形式是结果_________,那么__________.【例8】.命题“直角都相等”的题设是________,结论是____________.【例9】判断下列命题的真假,若是假命题,举出反例.(1)若两个角不是对顶角,则这两个角不相等;(2)若a+b=0,则ab=0;(3)若ab=0,则a+b=0.【例10】用“如果……那么……”改写命题.(1)有三个角是直角的四边形是矩形;(2)同角的补角相等;(3)两个无理数的积仍是无理数.。
第19章几何证明§19.1命题与证明学习目标1.通过“对顶角相等”与“三角形的内角和”两例的回顾,初步理解演绎证明及其因果关系的表述;演绎证明的必要性;演绎证明的过程。
2.体会演绎证明是一种严格的数学证明,是人类理性精神的闪光。
知识概要1.演绎证明的概念演绎推理是数学证明的一种常用、完全可靠的的方法,演绎推理的过程就是演绎证明。
也就是说演绎证明是指:从已知的概念、条件出发,依据已被确认的事实和公认的逻辑规则,推导出某结论为正确的过程。
演绎证明是一种严格的数学证明,是我们现在要学习的证明方式。
在本书中演绎证明简称为证明。
学习演绎证明,可以使我们的思维更加严格、缜密,其表达条理清楚、无可辩驳,这是提高逻辑思维能力的有效手段。
运用演绎证明需要注意:①演绎证明的每一步推理都必须有依据,通常把依据写在得到的结论后面的括号内;②整个证明由一段一段的因果关系连接而成,段与段前后连贯,有序展开。
说明:推理的依据,可以是“已知条件”和“已证事实”(简记为“已知”和“已证”),也可以是已有的概念、性质等。
这样表述的“因果关系”的形式,初学时要写得详细些,以后可以在保持论证完整的前提下逐渐省略。
由于证明的需要,可以在原来的图形上添画一些线,像这样的线叫做辅助线。
辅助线通常画成虚线。
2.演绎证明的过程演绎证明的过程是由“一连串、有序的因果关系”组成,演绎证明中每一段先说“因”再说“果”,同时要表述确立因果关系的“依据”。
3.命题能界定某个对象含义的语句叫做定义.能够判断正确与错误的语句叫做命题.其判断正确的命题称为真命题,其判断错误的命题叫做假命题.数学命题通常由题设或已知条件、结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项.这样的命题常可写成“如果…,那么…”的形式.用“如果”开始的部分是题设,而用“那么”开始的部分是结论.4.公理与定理数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其它命题真假的原始依据,这样的真命题叫做公理.如古希腊著名数学家欧几里得在他的《几何原本》中提出了著名的五大公理与五大公设.五条公理:(1)等于同量的量彼此相等;(2)等量加等量,其和相等;(3)等量减等量,其差相等;(4)彼此能重合的物体是全等的;(5)整体大于部分.五条公设:(1)过两点能作且只能作一直线;(2)线段(有限直线)可以无限地延长;(3)以任一点为圆心,任意长为半径,可作一圆;(4)凡是直角都相等;(5)同一平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于0180,则这两条直线经无限延长后在这一侧一定相交.有些命题是从公理或其它真命题出发,用推理方法证明为正确的,并进一步作为判断其它命题真假的依据.这样的真命题叫做定理.定理依据其作用,一般可分为判定定理和性质定理.例如“等角对等边”是已知三角形的两个内角相等,得到所对的两条边相等,这是等腰三角形的判定定理;“等边对等角”是已知三角形的两条边相等,得到所对的两个角相等,这是等腰三角形的性质定理.一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一命题就叫做它的逆命题.如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个定理是另一 个定理的逆定理.例如“两直线平行,同位角相等”与“同位角相等,两直线平行”就是互逆定理.经典题型精析(一)演绎证明例1.已知:如图,点F E D 、、分别在ABC ∆的边AC AB 、上,且AB DF //,AC DE //,试利用平行线的性质证明=∠+∠+∠C B A 180°.试一试:如图,下面是由已知:b a ⊥,c b ⊥,求证:b a //的证明过程,由如下①②③④四句话组成: ①所以b a //; ②因为b a ⊥,c b ⊥; ③所以21∠=∠; ④所以0901=∠,0902=∠。
命题与证明知识导引1命题:判断某一件事情的句子,由条件和结论两部分组成,正确的命题叫做真命题,不正确的命题叫做假命题。
把一个命题的条件和结论互换就得到它的逆命题,每个命题都有逆命题。
2、从命题的条件出发,经过逐步推理来判断命题的结论是否正确的过程叫做证明。
要证明一个命题是真命题,就是要证明凡是符合条件的所有情况都能得出结论。
要证明一个命题是假命题,只需要举出一个反例说明命题不能成立。
证明一个命题的一般步骤如下:(1)按照题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”一项中写出条件,在“求证”一项中写出结论;(3)在“证明”一项中写出全部推理过程。
3、证明的两种思路:综合与分析(1)利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。
(2)从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。
典例精析例1:判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例。
(1)两条直线被第三条直线所截,同位角相等;(2)如果a>b,那么ac>bc;(3)两个锐角的和是钝角。
例2:下列命题中:①三角形中,至少有两个锐角;②三角形中,至少有一个直角或钝角;③三角形中,两个锐角的和等于90°;④三角形中,三个内角不可能都小于60°。
其中,真命题的个数是()A、1个B、2个C、3个D、4个例3:证明:两条平行线被第三条直线所截,一组同位角的角平分线互相平行。
例4:已知:如图,AM 、CM 分别平分∠BAD 和∠BCD,求证:∠M=21(∠B+∠D)例5:在△ABC 中,BO 平分∠ABC,点P 为直线AC 上一动点,PO⊥BO 于点O 。
(1)如图1,当∠ABC=40°,∠BAC=60°,点P 与点C 重合时,教APO = (2)如图2,当点P 在AC 的延长线时,求证:∠APO=21(∠ACB-∠BAC ) (3)如图3,当点P 在边AC 上时,请直接写出∠APO 与∠ACB,∠BAC 的等量关系 式探究活动例:已知:如图,在△ABC 中有D ,E 两点,求证:BD +DE +CE <AB +AC学力训练A 组 务实基础1、以下各数中可用来证明命题“能被5整除的数的末位数一定是5”是假命题的反例为( )A 、5B 、24C 、25D 、30 2、下列命题中,真命题是( )A 、同位角相等B 、在同一平面内,若直线a ⊥b ,b ⊥c ,则a ⊥cC 、三角形的一个外角大于任何一个内角D 、直角三角形的两个锐角互余 3、如图所示,∠A=28°,∠BFC=92°,∠B=∠C,则∠BDC 的度数是( ) A 、85° B、75° C 、64° D、60°(第3题图) (第4题图)4、如图所示,∠A=50°,∠B=40°,∠C=30°,则∠BDC 等于( ) A 、120° B、100° C、115° D、150°5、已知α,β是两个钝角,计算)(61βα+的值。
命题与证明知识点总结命题与证明是数学中基础且重要的一部分,它涉及到逻辑推理、推断和论证等一系列思维活动。
在整个数学学科中,命题与证明贯穿始终,无处不在。
本文将系统总结命题与证明的相关知识点,包括命题逻辑、证明方法、常见证明技巧等内容。
一、命题逻辑命题逻辑是研究命题之间的逻辑关系的一门学科,其中命题是陈述句,它要么为真,要么为假。
在命题逻辑中,我们通常使用符号来表示命题,并通过符号之间的逻辑连接来表达命题之间的关系。
常见的逻辑连接包括合取(∧)、析取(∨)、蕴含(→)、双条件(↔)等。
1.合取合取是指命题p和q同时为真时,合取命题p∧q为真,否则为假。
合取命题p∧q的真值表如下:p q p∧qT T TT F FF T FF F F2.析取析取是指命题p和q中至少有一个为真时,析取命题p∨q为真,否则为假。
析取命题p∨q的真值表如下:p q p∨qT T TT F TF T TF F F3.蕴含蕴含是指当p为真而q为假时,蕴含命题p→q为假,否则为真。
蕴含命题p→q的真值表如下:p q p→qT T TT F FF T TF F T4.双条件双条件是指命题p和q同时为真或同时为假时,双条件命题p↔q为真,否则为假。
双条件命题p↔q的真值表如下:p q p↔qT T TT F FF T FF F T二、证明方法在数学中,我们常常需要证明一个命题的真假,为此我们需要采用合适的证明方法来论证。
常见的证明方法包括直接证明法、间接证明法、数学归纳法等。
1.直接证明法直接证明法是指通过一系列逻辑推理来证明一个命题的方法。
通常情况下,我们能够找到一条直接的逻辑推理路径,从已知的事实得出结论。
举例:证明“所有的偶数都是2的倍数”。
我们可以直接证明该命题,因为偶数的定义就是2的倍数。
2.间接证明法间接证明法是指通过反证法来证明一个命题的方法。
我们假设该命题的反命题为真,然后通过一系列逻辑推理得出矛盾,从而证明原命题为真。
命题与证明教案【篇一:《命题与证明》教案】《命题与证明》教案教学目标1、了解互逆命题.会写出一个命题的逆命题.了解定理、逆定理和互逆定理.2、体会证明的必要性.3、能运用基本事实和相关定理进行简单的证明.教学过程一、复习命题的有关概念.二、探索新知1、观察与思考(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(2)两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等. 思考:(1)找出命题(1)(2)中的条件和结论.(2)在这两个命题中,其中一个命题的条件和结论,与另一个命题的条件和结论有怎样的关系?(3)请再举例说明两个具有这种关系的命题.像这样,一个命题的条件和结论分别为另一个命题的结论和条件的两个命题,称为互逆命题.在两个互逆的命题中,如果我们将其中一个命题称为原命题,那么另一个命题就是这个原命题的逆命题.做一做请写出下列命题的逆命题,并指出原命题和逆命题的真假性:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(2)如果两个角是对顶角,那么这两个角相等.(3)如果一个数能被3整除,那么这个数也能被6整除.(4)已知两数a,b.如果a+b>0,那么a-b>0.2、证明的概念根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明.3、例题学习证明:平行于同一条直线的两条直线平行.像这样用文字叙述的命题的证明,应当按下列步骤进行:第一步,依据题意画图,将文字语言转换为符号(图形)语言.第二步,根据图形写出已知、求证.第三步,根据基本事实、已有定理等进行证明.如果一个定理的逆命题是真命题,那么这个逆命题也可以称为原定理的逆定理.一个定理和它的逆定理是互逆定理.课堂小结这节课你有什么收获?【篇二:命题与证明教案】命题与证明教案(九年级上册)第二章命题与证明主要内容:定义与命题、公理与定理以及证明。
本章是学生用逻辑推理的方法对命题进行研究的开始,是今后学习证明的基础。
§24.3命题与证明(一)初三数学1.定义、命题与定理观察下面的图形,找出其中的平行四边形.要解决这个问题,首先要弄清楚怎样的图形才能称为平行四边形.你还记得以前学过的知识吗?“有两组对边分别平行的四边形叫做平行四边形”这句话说明了平行四边形的含义以及区别于其他图形的特征.一般地,能明确指出概念含义或特征的句子,称为定义.还可以举出如下的一些定义:(1)有一个角是直角的三角形,叫做直角三角形.(2)两个角的和等于90°,就说这两个角互为余角.(3)在同一平面内,两条不相交的直线叫做平行线.(4) 平分一个角的射线叫这个角的平分线.定义必须是严密的.一般避免使用含糊不清的术语,比如“一些”、“大概”、“差不多”等不能在定义中出现.正确的定义能把被定义的事物或名词与其他的事物或名词区别开来.思考1试判断下列句子是否正确.如果两个角是对顶角,那么这两个角相等;三角形的内角和是180°;同位角相等;平行四边形的对角线相等;菱形的对角线相互垂直;垂直于同一直线的两直线平行.根据已有的知识可以判断出句子(1)、(2)、(5)是正确的,句子(3)、(4)、(6)是错误的.(其中(6)若有在同一平面内,则正确)上述6个句子都叫做命题. 我们把判断一件事情的句子叫命题.正确的命题称为真命题,错误的命题称为假命题.故句子(1)、(2)、(5)真命题,句子(3)、(4)、(6)是假命题思考2试判断下列语句是否是命题.如果BC AC =,那么点C 是AB 的中点; 连接A 、B 两点;若︒=∠+∠90B A ,则 ︒=∠50A ,︒=∠40B ; 三点确定一个圆; 点P 在直线AB 上. 解:如果BC AC =,那么点C 是AB 的中点; 是命题 连接A 、B 两点; 不是命题 若︒=∠+∠90B A ,则 ︒=∠50A ,︒=∠40B ; 是命题 三点确定一个圆; 是命题 点P 在直线AB 上. 是命题数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.例如,我们通过探索,已经知道下列命题是正确的: ⑴ 一条直线截两条平行直线所得的同位角相等;⑵ 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; ⑶ 如果两个三角形的两边及其夹角分别对应相等,那么这两个三角形全等; ⑷ 如果两个三角形的两角及其夹边分别对应相等,那么这两个三角形全等; ⑸ 如果两个三角形的三边分别对应相等,那么这两个三角形全等; ⑹全等三角形的对应边、对应角分别相等.我们把这些作为不需要证明的基本事实,即作为公理.(请同学们记住这6条公理)有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.例如,运用公理“两角及其夹边分别对应相等的两个三角形全等”,可以得到定理:“两角及其一角的对边分别对应相等的两个三角形全等.”定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的根据. 在数学中,许多命题是由题设(或条件)和结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项.这种命题常可写成“如果……那么……”的形式.其中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.例1 把下列命题改写成“如果……那么……”的形式,并分别指出命题的题设与结论. ⑴ 在一个三角形中,等角对等边; ⑵ 三角形的内角和等于180度; ⑶ 直角三角形的两锐角互余;⑷ 垂直于同一直线的两直线平行; ⑸ 邻补角的平分线互相垂直; ⑹ 对顶角的平分线在一条直线上;⑺ 角平分线上的点到这个角的两边距离相等; ⑻ 同角的余角相等; ⑼ 等角的补角相等;⑽ 同弧所对的圆周角相等.解:⑴ 在一个三角形中,等角对等边; 这个命题可以写成:“如果在一个三角形中有两个角相等,那么这两个角所对的边也相等.” 这里的题设是“在一个三角形中有两个角相等”,结论是“这两个角所对的边也相等”.⑵三角形的内角和等于180度;这个命题可以写成:“如果有三个角是同一个三角形的三个内角,那么这三个角的和等于180度.”这里的题设是“有三个角是同一个三角形的三个内角”,结论是“这三个角的和等于180度”.⑶直角三角形的两锐角互余;这个命题可以写成:“如果两个角是同一个直角三角形的两个锐角,那么这两个角的和等于90度.”这里的题设是“有两个角是同一个直角三角形的两个锐角”,结论是“这两个角的和等于90度”.⑷垂直于同一直线的两直线平行;这个命题可以写成:“如果两条直线都垂直于第三条直线,那么这两条直线互相平行.”这里的题设是“两条直线都垂直于第三条直线”,结论是“这两条直线互相平行”.⑸邻补角的平分线互相垂直;这个命题可以写成:“如果两条射线分别是两个邻补角的角平分线,那么这两条射线互相垂直.”这里的题设是“两条射线分别是两个邻补角的角平分线”,结论是“这两条射线互相垂直” .⑹对顶角的平分线在一条直线上;这个命题可以写成:“如果两条射线分别是一组对顶角的角平分线,那么这两条射线在同一条直线上.”这里的题设是“两条射线分别是一组对顶角的角平分线”,结论是“这两条射线在同一条直线上”.⑺角平分线上的点到这个角的两边的距离相等;这个命题可以写成:“如果一个点在一个角的平分线上,那么这个点到这个角的两边的距离相等.”这里的题设是“有一个点在一个角的平分线上”,结论是“这个点到这个角的两边的距离相等.”.⑻同角的余角相等;这个命题可以写成:“如果有两个角是同一个角的余角,那么这两个角相等.”这里的题设是“有两个角是同一个角的余角”,结论是“这两个角相等” .⑼等角的补角相等;这个命题可以写成:“如果有两个角分别是两个相等角的补角,那么这两个角相等.”这里的题设是“有两个角分别是两个相等角的补角”,结论是“这两个角相等”.⑽同弧所对的圆周角相等. 这个命题可以写成:“如果有两个角是同一个圆中同一条弧所对的圆周角,那么这两个角相等.”这里的题设是“有两个角是同一个圆中同一条弧所对的圆周角”,结论是“这两个角相等”.如果要判断一个命题是假命题,那么我们只要举出一个符合命题题设而不符合结论的例子就可以了,这种方法称为“举反例”.用“举反例”的方法判断下列命题是假命题.一个锐角与一个钝角的和等于一个平角解:锐角等于30°,钝角等于120°,但它们的和就不等于180°,从而说明这个命题是假命题.(2)有两条边和一个角分别对应相等的两个三角形全等.解:如图 ABC ∆和ABD ∆中,B B AB AB AD AC ∠=∠== , ,,满足有两条边和一个角分别对应相等,但ABC ∆和ABD ∆不全等. 由此说明这个命题是假命题.再来看下面三个问题:① 一位同学在钻研数学题时发现: 2+1=3, 2×3+1=7, 2×3×5+1=31, 2×3×5×7+1=211.于是,他根据上面的结果并利用素数表得出结论:从素数2开始,排在前面的任意多个素数的乘积加1一定也是素数.他的结论正确吗? (素数也称质数是大于1的整数,除了它本身和1以外不能被其他正整数所整除)*当我们找到 5095930031113117532⨯==+⨯⨯⨯⨯⨯.显然30031不是素数. 所以他的结论不正确.② 一个同学在画图时发现:如下图所示,三角形三条边的垂直平分线的交点都在三角形的内部.于是他得出结论: 任何一个三角形三条边的垂直平分线的交点都在三角形的内部.他的结论正确吗?*在第23章圆我们已知道三角形三条边的垂直平分线的交点是三角形的外心,锐角三角形的外心在三角形内,直角三角形的外心在三角形的边上,钝角三角形的外心在三角形外. 显然他的结论也不正确.③我们曾经通过计算四边形、五边形、六边形、七边形、八边形等的内角和,得到一个结论: n 边形的内角和等于)2(-n ×180°.这个结果可靠吗?是否有一个多边形的内角和不满足这一规律?* 由以前学过的知识,我们知道这个结果是正确的.上面的几个例子说明: 通过特殊的事例得到的结论可能正确,也可能不正确.因此,通过这种方式得到的结论,还需进一步加以证实.要否定一个结论,只需举出一个反例即可,而要肯定一个结论,则要经过推理论证.下节课我们将开始系统学习几何证明.本节小结:一.搞清4个概念① 能明确指出概念含义或特征的句子,称为定义. ② 判断一件事情的句子叫命题.③人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理. ④ 用逻辑推理的方法判断为正确的命题叫做定理.二.习题要求①会判断一句话是否是命题.②能将一个命题改写成“如果……那么……”的形式.③会用“举反例”说明一个命题是假命题.④能正确区分真命题和假命题.课堂练习选择题:1.下列语句中,不是命题的是()两点之间线段最短. (B) 直线AB//CD.钝角和锐角之差等于直角. (D) 三点确定一个圆.2.下列命题中,⑴两个角对应相等的两个三角形相似.⑵两条平行线被第三条直线所截,同旁内角互补.⑶如果两条直线都和第三条直线平行,那么这两条直线平行.⑷两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 被作为公理的有( )(A) 4个 (B) 3个 (C) 2个 (D) 1个3.下列命题中,有()假命题⑴经过两点有且只有一条直线. ⑵三角形任一外角等于两个内角的和.⑶面积相等的两个三角形全等. ⑷有两条边分别相等的两个等腰三角形全等.⑸等角的补角相等. ⑹三边对应平行的两个三角形全等.(A) 5个 (B) 4个 (C) 3个 (D) 2个4.下列命题中,有()真命题⑴互为补角的两个角的平分线互相垂直.⑵三角形的三个内角与三个外角的和为540度.⑶有一边相等其余两边对应平行的两个三角形全等.⑷有一腰和顶角对应相等的两个等腰三角形全等.(A) 4个 (B) 3个 (C) 2个 (D) 1个5.根据下列命题,画出图形并写出“已知”、“求证”(不必证明);两条边及其中一边上的中线分别对应相等的两个三角形全等;在一个三角形中,如果一边上的中线等于这边的一半,那么这个三角形是直角三角形.AB CDA'B'C'D'已知:如图∆ABC和∆A/B/C/中,AB=A/B/,BC=B/C/,AD、A/D/分别是BC、B/C/边上的中线且AD=A/D/. 求证: ∆ABC≌∆A/B/C/(2)已知:如图ABC ∆中,CD 是AB 边中线且AB CD 21=,求证:︒=∠90ACB ABCD§24.3命题与证明(二)初三数学复习上节课有关知识: (1)几个概念① 能明确指出概念含义或特征的句子,称为定义. ②判断一件事情的句子叫命题. ③人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理. ④ 用逻辑推理的方法判断为正确的命题叫做定理.(2) 已学过的公理有:① 一条直线截两条平行直线所得的同位角相等;② 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行; ③ 如果两个三角形的两边及其夹角分别对应相等,那么这两个三角形全等; ④ 如果两个三角形的两角及其夹边分别对应相等,那么这两个三角形全等; ⑤ 如果两个三角形的三边分别对应相等,那么这两个三角形全等; ⑥ 全等三角形的对应边、对应角分别相等. 2.证明根据题设、定义以及公理、定理、等式的性质等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.(1)在证明中经常用到的定义有:①角平分线定义:平分一个角的射线叫这个角的平分线. 用法:如图(1) ∵OC 平分AOB ∠(已知)∴21∠=∠(角平分线定义)(2)∵21∠=∠(已知)∴OC 平分AOB ∠(角平分线定义)②邻补角定义:如果两个角有公共顶点和一条公共边,且这两个角的另一边互为反向延长线,那么这两个角叫做互为邻补角。
第4章命题与证明目录4.1定义与命题(1) (2)4.1 定义与命题(2) (5)4.2证明(1) (6)4.2证明(2) (7)4.2证明(3) (9)4.3反例与证明 (12)4.1定义与命题(1)【教学目标】1.了解定义的含义. 2.了解命题的含义.3.了解命题的结构,会把一个命题写成“如果……那么……”的形式.【教学重点、难点】重点:命题的概念.难点:象范例中第(3)题,这类命题的条件和结论不十分明显,改写成“如果…那么…” 形式学生会感到困难,是本节课的难点.【教学过程】一、创设情景,导入新课(1)阅读新华社酒泉2005年10月11日这篇报导:神舟六号载人飞船将于10月12日上午发射,……神舟六号飞船搭乘两名航天员,执行多天飞行任务.按计划,飞船将从中国酒泉卫星发射中心发射升空,运行在轨道倾角42.4°、近地点高度为200千米、远地点高度为347千米的椭圆轨道上,实施变轨后,进入343千米的圆轨道.要读懂这段报导,你认为要知道哪些名称和术语的含义?(2)什么叫做平行线?(在同一平面内不相交的两条直线叫做平行线).什么叫做物质的密度?(单位体积内所含某一物质的质量叫做密度). 二、合作交流,探求新知 1.定义概念的教学从以上两个问题中引入定义这个概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.象问题(1)中的轨道倾角、近地点高度、远地点高度、变轨的含义必须有明确的规定,即需要给出定义. 完成做一做请说出下列名词的定义:(1)无理数;(2)直角三角形;(3)一次函数;(4)频率;(5)压强. 2.命题概念的教学 教师提出问题:判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断? (1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等;(4)a ,b 两条直线平行吗? (5)鸟是动物; (6)若42=a ,求a 的值; (7)若22b a =,则b a =.答案:句子(1)(3)(5)(7) 对事情作了判断,句子(2)(4)(6)没有对事情作出判断.其中(1)(3)(5)判断是正确的,(7)判断是错误的.在此基础上归纳出命题的概念:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.象句子(1)(3)(5)(7)都是命题;句子(2)(4)(6)都不是命题.说明:讲解定义、命题的含义时,要突出语句的作用.句子根据其作用分为判断、陈述、疑问、祈使四个类别.定义属于陈述句,是对一个名称或术语的意义的规定.而命题属于判断句或陈述句,且都对一件事情作出判断.与判断的正确与否没有关系.3.命题的结构的教学告诉学生现阶段我们在数学上学习的命题可看做由题设(或条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.这样的命题可以写成“如果……那么……”的形式,其中以“如果”开始的部分是条件,“那么”后面的部分是结论.如“两直线平行,同位角相等”可以改写成“如果两条直线平行,那么同位角相等”.三、师生互动运用新知下面通过书本中的范例介绍如何找出一个命题的条件和结论,并改写成“如果……那么……”的形式.例1 指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;(5)三角形的内角和等于180°;(6)角平分线上的点到角的两边距离相等.分析:找出命题的条件和结论是本节课的难点,因为命题在叙述时要求通顺和简练,把命题中的有些词或句子省略了,在改写是注意把时要把省略的词或句子添加上去.(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)学生可能会说条件是“在同一个三角形中”,结论是“等角对等边”.教学时可作这样引导:“等角对等边含义”是指有两个角相等所对的两条边相等,`然后提问学生,一个三角形满足什么条件时,有两条边相等?这个命题的条件是什么?结论是什么?值得注意的是,命题中包含了一个前提条件:“在一个三角形中”,在改写时不能遗漏.(3)可作如下启发:对顶角指两个角的关系,相等指两个角相等.把“两个角”添补上去,写成“是对顶角的两个角相等”,这样学生不难得出这个命题的条件是“两个角是对顶角”,结论是“两个角相等”.这个命题可以改写成“如果两个角是对顶角,那么这两个角相等”.(4)条件是“两个角是同一个角的余角”,结论是“这两个角相等”.这个命题可以改写成“如果两个角是同一个角的余角,那么这两个角相等”.(5)条件是“三个角是一个三角形的三个内角”,结论是“这三个角的和等于180°”.这个命题可以改写如果“三个角是一个三角形的三个内角,那么这三个角的和等于180°”; (6) 如果“一个点在一个角的平分线上,那么这个点到这个角的两边距离相等”. 例2 下列语句中,哪些是命题,哪些不是命题? (1)若a<b ,则a b -<-; (2)三角形的三条高交于一点;(3)在ΔABC 中,若AB>AC ,则∠C>∠B 吗? (4)两点之间线段最短; (5)解方程0322=--x x ; (6)1+2≠3.答案:(1)(2)(4)(6)是命题,(3)(5)不是命题. 例3(1) 请给下列图形命名,,并给出名称的定义:① ②答案:略(2)观察下列这些数,找出它们的共同特征,给以名称,并作出定义: -52,-2,0,2,8,14,20,… 答案:能被2整除的整数是偶数. 四、应用新知 体验成功课内练习:教材中安排了4个课内练习,第1题是为定义这个概念配置的,第2题是为命题这个概念配置的,第3、4题是为命题的结构配置的.第4题可以通过同伴或同桌的合作交流完成.五、总结回顾,反思内化学生自由发言,这节课学了什么?教师做补充.三个内容:⎪⎩⎪⎨⎧分组成题是由条件和结论两部命题的的结构:通常命的判断的句子事情作出正确或不正确命题的概念:对某一件子名称或术语的意义的句定义的含义:规定某一六、布置作业 巩固新知 课本P72作业题.4.1 定义与命题(2)【教学目标】知识目标:理解真命题、假命题、公理和定义的概念能力目标:会判断一个命题的真假,会区分定理、公理和命题。
情感目标:通过对真假命题的判断,培养学生树立科学严谨的学习方法。
【教学重点、难点】重点:判断一个命题的真假是本节的重点。
难点:公理、命题和定义的区别。
【教学过程】(一):合作学习:1:复习命题的概念,思考下列命题的条件是什么?结论是什么?(1)边长为a(a>0)的等边三角形的面积为√3/4a2.(2)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(3)对于任何实数x,x2<0.提问:上述命题中,哪些正确?哪些不正确?2:得出真命题、假命题的概念:正确的命题称为真命题,不正确的命题称为假命题。
3:把学生分成两组,一组负责说命题,然后指定第二组中某一个人来回答是真命题还是假命题(二):举例:判断下列命题是真命题还是假命题(1)x=1是方程x2-2x-3=0 的解。
(2)x=2是方程(x2 –4)/(x2 -3x+2)=0的解。
(3)如图,若∠1=∠2,则∠3=∠4。
(4)一个图形经过旋转变化,像和原图形全等。
(三)讲述公理和定义1:公理:人类经过长期实践后公认为正确的命题,作为判断其他命题的依据。
这样公认为正确的命题叫做公理。
例如:“两点之间线段最短”,“一条直线截两条平行所得的同位角相等”,然后提问学生:你所学过的还有那些公理2:定理:用推理的方法判断为正确的命题叫做定理。
定理也可以作为判断其他命题真假的依据。
3:举例请用学过的公理或定理说明下面这个命题的正确性:“等腰三角形底边上的高线、顶角的角平分线互相重合“(四):课内练习:见书本作业题(五):作业:见作业本【教学目标】1.了解证明的含义。
2.体验、理解证明的必要性。
3.了解证明的表达格式,会按规定格式证明简单命题。
【教学重点、难点】重点:本节教学的重点是证明的含义和表述格式。
难点:本节教学的难点是按规定格式表述证明的过程。
【教学过程】一、新课引入教师借助多媒体设备向学生演示课内节前图:比较线段AB和线段CD的长度。
通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性二、新课教学1、合作学习参考教科书P74:一组直线a、b、c、d、是否不平行(互相相交),请通过观察、先猜想结论,并动手验证2、证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论。
教师对具体的说理过程予以详细的板书。
小结归纳得出证明的含义,让学生体会证明的初步格式。
(2)通过例2的教学理解证明的含义,体会证明的格式和要求例2、证明命题“如果一个角的两边分别平行于另一个角的两边,且方向相同,那么这两个角相等”是真命题。
分析:根据需要画出图形,用几何语言描述题中的已知条件、以及要证明的结论(求证)。
证明过程的具体表述(略)小结:证明几何命题的表述格式(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程。
(3)练习:P76课内练习2三、例题教学例2、已知:如图,AC与BD相交于点O,AO=CO,BO=DO。
求证: AB∥CD (证明略)四、练习巩固P76 课内练习3五、小结(1)证明的含义(2)真命题证明的步骤和格式(3)思考、探索:假命题的判断如何说理、证明?六、作业布置OAB CD【教学目标】1.进一步体会证明的含义;2.探索并理解三角形内角和定理的几何证明; 3.进一步熟练证明的方法和表述;4.让学生体验从实验几何向推理几何的过渡.【教学重点、难点】重点:探索三角形内角和定理的证明,进一步掌握证明的方法和表述.难点:例1是由较复杂的题设条件得出若干结论,用到多个定理,是本节的难点.【教学过程】一、复习证明的一般格式和表述,导入新课.通过一个简单的命题的求证过程,让学生自己回顾证明一个命题的一般格式,并用自己的语言进行表述.(1)求证:线段垂直平分线上的点到线段两个端点的距离相等. 设问:①如何写出已知、求证,并画出图形②如何进行证明(可由学生口述)(2)根据上述题目结合学生的回答引导学生归纳出证明一个命题的一般格式: ①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;③在“证明”中写出推理过程. 二、合作交流,探究新知(一)通过一个简单的例子向学生简介把一个由实验得到的几何命题经过推理的方法加以论证,让学生体验实验几何向推理几何的简单过渡。