1.2 集合间的基本关系
课标阐释
思维脉络
1.理解子集、真子集的概念及
集合相等的含义.
2.掌握子集、真子集及集合相
等的应用,会判断集合间的基
本关系.
3.在具体情境中了解空集的
含义并会应用.
一
二
三
四
一、子集与真子集
1.视察下面实例:①A={1,2,3},B={1,2,3,4,5};
②设A为新华中学高一(2)班全体女生组成的集合,B为这个班全
探究一
探究二
探究三
探究四
思想方法
随堂演练
反思感悟集合相等则元素相同,但要注意集合中元素的互异性,
防止错解.
探究一
探究二
探究三
探究四
思想方法
随堂演练
延伸探究若将本例已知条件改为“集合A={x,xy,x-y},集合
B={0,|x|,y},且A=B”,求实数x,y的值.
解:∵0∈B,A=B,∴0∈A.
解析:∵9∈A∩B,∴9∈A且9∈B,
∴2a-1=9或a2=9,解得a=5或a=±3.
当a=5时,A={-4,9,25},B={0,-4,9},符合题意;
当a=3时,A={-4,5,9},B不满足集合中元素的互异性,故a≠3;
当a=-3时,A={-4,-7,9},B={-8,4,9},符合题意.
综上可得a的值为5或-3.
(1)若A∩B=⌀,求a的取值范围;
(2)若A∪B={x|x<1},求a的取值范围.
分析:利用数轴把集合A,B表示出来,根据题目条件数形结合列出
参数a满足的不等式,求解时需注意等号能否取得.
探究一
探究二
探究三
探究四
思想方法