第一章 集合 本章整合
集合元素的特性: 确定性、互异性、无序性 集合与集合的表示方法 集合的分类:根据集合元素个数可划分为有限集、无限集 集合的表示:可以用列举法、描述法及 Venn 图来表示集合 子集:如果集合������中的任意一个元素都是集合 ������的元素, 那么集合������叫做集合������的子集,记作������ ⊆ ������ 集合的基本关系 真子集:如果集合������是集合������的子集,并且������ 中至少有一个元素不 属于������,那么集合������叫做集合������的真子集,记作������⫋������ 相等:如果������ ⊆ ������,且������ ⊆ ������,那么������ = ������ 交ห้องสมุดไป่ตู้:������⋂������ = {������|������∈������,且������∈������} 集合的基本运算 并集:������⋃������ = {������|������∈������或������∈������} 补集:∁������ ������ = {������|������∈������,且 ������∉������}
专题一
专题二
专题三
专题四
专题四 集合中补集的思想 在研究一个问题时,若从其正面入手较难,不妨考虑从其反面(即对 立面)入手,这种“正难则反”的方法就是补集思想的具体应用,它在解 决有关问题时常常收到意想不到的效果,集合中的运算常用这种思 想. 应用已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若A∩B≠⌀,求实 数m的取值范围. 提示:A∩B≠⌀,说明集合A是由方程x2-4mx+2m+6=0①的实数根组 成的非空集合,并且方程①的根有(1)两个负根;(2)一个负根一个零 根;(3)一个负根一个正根三种情况,分别求解十分烦琐,这时我们从 求解问题的反面考虑,采用补集思想,即先由Δ≥0,求出全集U,然后求 方程①的两根均为非负数时m的取值范围,最后再利用“补集”求解.