空间谱估计基本原理
- 格式:ppt
- 大小:742.00 KB
- 文档页数:66
专业综合课程设计报告空间谱估计算法一、设计任务实现空间谱估计算法,并考察算法性能。
二、方案设计1)由均匀线阵形式,确定阵列的导向矢量;2)由阵列导向矢量,对接收信号进行建模仿真;3)根据多重信号分类算法实现空间谱估计;4)考察算法性能与信噪比,采样率,观测时间等参数的关系。
三、设计原理3.1空间谱估计数学模型空间谱估计就是利用空间阵列实现空间信号的参数估计的一项专门技术。
整个空间谱估计系统应该由三部分组成:空间信号入射、空间阵列接收及参数估计。
相应地可分为三个空间,即目标空间、观察空间及估计空间,也就是说空间谱估计系统由这三个空间组成,其框图见图1。
图1 空间谱估计的系统结构对于上述的系统结构,作以下几点说明。
(1)目标空间是一个由信号源的参数与复杂环境参数张成的空间。
对于空间谱估计系统,就是利用特定的一些方法从这个复杂的目标空间中估计出信号的未知参数。
(2)观察空间是利用空间按一定方式排列的阵元,来接收目标空间的辐射信号。
由于环境的复杂性,所以接收数据中包括信号特征(方位、距离、极化等)和空间环境特征(噪声、杂波、干扰等)。
另外由于空间阵元的影响,接收数据中同样也含有空间阵列的某些特征(互耦、通道不一致、频带不一致等)。
这里的观察空间是一个多维空间,即系统的接收数据是由多个通道组成,而传统的时域处理方法通常只有一个通道。
特别需要指出的是:通道与阵元并不是一一对应,通道是由空间的一个、几个或所有阵元合成的(可用加权或不加权),当然空间某个特定的阵元可包含在不同的通道内。
(3)估计空间是利用空间谱估计技术(包括阵列信号处理中的一些技术,如阵列校正、空域滤波等技术)从复杂的观察数据中提取信号的特征参数。
从系统框图中可以清晰的看出,估计空间相当于是对目标空间的一个重构过程,这个重构的精度由众多因素决定,如环境的复杂性、空间阵元间的互耦、通道不一致、频带不一致等。
3.2 阵列信号处理首先,考虑N 个远场的窄带信号入射到空间某阵列上,阵列天线由M 个阵元组成,这里假设阵元数等于通道数,即各阵元接收到信号后经过各自的传输信道送到处理器,也就是说处理器接收来自M 个通道的数据。
第3篇无线电测向与空间谱估计测向体制第五十八研究所朱锦生赵衡内容简介:本文简述无线电测向原理,几种典型的无线电模拟电子技术的无线电测向设备,以及空间谱估计测向的含义和它目前达到的水平。
1 无线电测向的基本原理1.1 无线电测向的目的是测定辐射源(或发射机)的位置无线电测向是靠测定电波传播的方向来实现的。
电波传播方向的轨迹是沿地球的大圆弧前进的,即地面上两点(如辐射源和观测点的两点)间的最短直线距离。
因此测定电波的来向,也即测定了辐射源的方向。
1.2 无线电测向的定位三角交会定位由地面两个以上的观测点对同一辐射源测定电波的来向,这些来波行进轨迹的交会点,即为辐射源或发射机的位置,如图1。
(1)单站定位(一般对短波测向而言)由观测点测定来波的方位角、仰角,通过精确电离层模型计算出电离层反射点的等效高度。
由仰角和电离层等效高度计算出观测点距辐射源的距离,由此距离与方位角一起就可确定辐射源的位置,见图2。
图1 多站测向交会定位示意图图2 短波单站定位示意图1.3 实际电波传播不可能是完全理想的影响电波传播行进轨迹的因素,最大有两个:(1) 电波传播短波远距传播均通过电离层反射来实现,但电离层并不是一面实际的镜子,它有一定的厚度,实际是漫反射,是由逐渐的折射达到反射,见图3。
因此电离层的电子密度对电波传播影响很大。
电离层电子密度的不均匀,相当反射镜面的倾斜,使得电波传播行进的轨迹偏离地球大圆弧(即直线)的轨迹。
除此还有电离层各个不同层的分别反射,即使同一层,也有不同的反射次数,即跳数,结果形成多径传播,见图4。
由于各个途径的电波传播是随时间变化的,结果合成的来波不仅方向上有误差,同时来波的方向还明显呈游动。
(1) 地形地物的影响地形地物如各种建筑物、铁塔、山脉、树林等障碍物,它们也接收电波的照射,同时还产生再次辐射。
这样到达观测点的电波,不仅有直接来自辐射源的电波,而且还有障碍物的再次辐射电波,它们合成的来波方向,偏离辐射源,并根据影响程度,向障碍物偏转一定的角度,这就产生误差。
不同无线电测向的原理通过测试无线电波到达某处时的一些参数,能够获得无线电波的来向。
对于一个固定测向站来说,在V/UHF频段,通常只测试电波在水平面上的来向,在HF的频段,通常还要测量它的仰角。
由于无线电波具有特定的传播规律,根据两个以上站点测得的电波来向,或者一个站点测得的来向、仰角、跳次数据和电离层反射区高度等数据可以得知无线电发射台的位置。
通过测试无线电波到达某处时的一些参数,能够获得无线电波的来向。
对于一个固定测向站来说,在V/UHF 频段,通常只测试电波在水平面上的来向,在HF的频段,通常还要测量它的仰角。
由于无线电波具有特定的传播规律,根据两个以上站点测得的电波来向,或者一个站点测得的来向、仰角、跳次数据和电离层反射区高度等数据可以得知无线电发射台的位置。
根据不同无线电测向的原理,通常有幅度测向法、相位测向法、空间谱估计测向法和时差测向法。
1、幅度测向法幅度测向法是历史最悠久的测向方法。
常见的幅度测向法采用一付有方向性的天线,通过旋转天线,找到信号最强的方向(大音点测向法)或者信号最弱的方向(小音点测向法),就可以确定来波方向。
业余无线电测向(猎狐)均基于幅度测向法。
采用旋转天线的方法测向,设备十分简单。
对于无线电爱好者而言,可以用具有方向性的八木-宇田天线,接上具有测量信号强度功能的接收机(例如对讲机和可变衰减器的组合)构成测向系统。
这种测向系统适合于一个人携带使用,在接近发射源的时候最为有效。
由于这种测向系统需要人工或者电动旋转天线,它的响应时间很长,如果需要捕捉短促信号持续时间很短,或者信号强度本来就在不停变化,则难以取得有效结果。
为了克服旋转天线响应时间长的缺点,发展了沃特森-瓦特测向机。
它用两付相互正交的艾德考克天线接收无线电信号,两付天线的信号分别送入两台接收机,并将接收机的电压输出(与信号幅度线性相关)分别送入示波器的X、Y偏转器,即可在显示屏上显示一条代表来波方向的亮线。
无线电测向体制概述无线电测向的一般知识。
随着无线电频谱资源的广泛应用和无线电通信的日益普及,为了有序和可靠地利用有限的频谱资源,以及确保无线电通信的畅通,无线电监测和无线电测向已经必不可少,其地位和作用还会与时俱进。
什么是无线电测向呢?无线电测向是依据电磁波传播特性,使用仪器设备测定无线电波来波方向的过程。
测定无线电来波方向的专用仪器设备,称为无线电测向机。
在测定过程中,根据天线系统从到达来波信号中获得信息以及对信息处理的方法,可以将测向系统分为两大类:标量测向系统和矢量测向系统。
标量测向系统仅能获得和使用到达来波信号有关的标量信息数据;矢量测向系统可以获得和使用到达来波信号的矢量信息数据。
标量测向系统仅能单独获得和使用电磁波的幅度或者相位信息,而矢量测向系统可以同时获得和使用电磁波的幅度和相位信息.标量测向系统历史悠久,应用最为广泛。
最简单的幅度比较式标量测向系统,是如图(1)所示的旋转环型测向机,该系统对垂直极化波的方向图成8字形。
大多数幅度比较式的标量测向系统,其测向天线和方向图,都是采用了某种对称的形式,例如:阿德考克(Adcock)测向机和沃特森-瓦特(Watson-Watt)测向机,以及各种使用旋转角度计的圆形天线阵测向机;属于相位比较的标量测向系统,有如:干涉仪(Inteferometry)测向机和多普勒(Dopple)测向机等。
在短波标量测向系统可以设计成只测量方位角,也可设计成测量方位角,同时测量来波的仰角。
矢量测向系统,具有从来波信号中获得和使用矢量信息数据的能力。
例如:空间谱估计测向机。
矢量系统的数据采集,前端需要使用多端口天线阵列和至少同时利用两部以上幅度、相位相同的接收机,后端根据相应的数学模型和算法,由计算机进行解算。
矢量系统依据天线单元和接收机数量以及后续的处理能力,可以分辨两元以至多元波场和来波方向。
矢量测向系统的提出还是近十几年的事,它的实现有赖于数字技术、微电子技术和数字处理技术的进步。
DOA估计中虚假谱峰的矩形消除张加利;李红信【摘要】提出了一种增强MUSIC算法分辨力的方法.基本内容是通过人线问距的虚拟扩展提高天线的阵列孔径,达到增加算法分辨力的日的.同时,针对阵列距虚拟扩展带来的虚假谱峰,提出了利用矩形窗函数进行虚假谱峰消除的方法,并给出了消除虚假谱峰的具体流程.仿真结果让明了天线间距虚拟扩展技术可以有效提高阵列天线的分辨力,同时,证明了矩形窗在消除虚假谱峰过程中的有效性,尤其当空间信号源间距较小时,改进算法的优势体现更加明显.【期刊名称】《无线电工程》【年(卷),期】2011(041)005【总页数】3页(P23-24,42)【关键词】DOA估计;相位模糊;虚假谱峰;矩形窗【作者】张加利;李红信【作者单位】兰州大学信息科学与工程学院,甘肃,兰州,730000;兰州大学信息科学与工程学院,甘肃,兰州,730000【正文语种】中文【中图分类】TN9290 引言空间谱表示电磁信号在空间各个方向上的能量分布,通过不同方向上能量分布的强弱,可以判定信号源在空间的物理位置(文献[4])。
空间谱估计通常称为“DOA估计”,即波达方向估计。
MUSIC算法的基本原理是把接收数据的相关函数进行特征分解,得到2个相互正交的子空间,利用子空间的正交特性构造“针状”波束,估计信号源的空间方位。
但是当2个信号源的空间位置较近时,MUSIC算法的估计性能会恶化,甚至失效。
解决的办法是提高算法的分辨力,其中一种方法就是增加天线孔径,缺点是会增加天线成本和天线安装难度。
文献[2]提出通过天线阵子间距的虚拟扩展来达到提高天线分辨力的方法,这种方法的优点是不用实际增加天线阵元数,缺点是会带来方向估计的模糊,即出现了伪峰。
1 MUSIC算法1.1 DOA估计对于一般的远场信号而言,同一信号到达不同的阵元存在一个波程差(或相位差),利用这个相位差可以估计出信号的方位,这就是空间谱估计的基本原理。
假设采用均匀直线阵(本文未经标注,均采用均匀直线阵列),则2个相邻阵元的相位差公式为:式中,d为2个天线阵子间距;θ为入射波与天线法线夹角;τ为时延;f0为中心频率。
DOA文献综述阵列信号处理摘要:阵列信号处理是信号处理领域内的重要分支,在近年来得到了迅速发展。
智能天线技术的核心是自适应天线波束赋形技术,提高系统容量,降低发射功率并提高接收灵敏度。
同时,波达方向估计是阵列信号处理的一个主要研究领域,在雷达、通信、声纳、地震学等领域都有着广泛的应用前景。
通过研究经典的多重信号分类(MUSIC)算法,对波达方向(DOA)的估计。
关键词:智能天线技术;波达方向;MUSIC算法;波达方向(DOA)估计。
引言:阵列信号处理主要的研究方向是自适应阵列处理和空间谱估计。
空间谱估计主要目的是估计信号的空域参数或信源位置,如果能得到信号的空间谱,就能得到信号的波达方向(DOA)。
波达方向估计指的是要确定同时处在空间某一区域内多个感兴趣信号的空间位置,即各个信号到达阵列参考阵元的方向角。
1.空间谱估计原理空间谱估计就是利用空间阵列实现空间信号的参数估计。
空间谱估计系统应该由三部分组成:空间信号入射、空间阵列接收及参数估计。
在研究过程中,需要确定假设条件。
有以下几条:点源假设、窄带信号假设、阵列与模拟信道假设、噪声假设等构成估计系统。
2.阵列信号DOA估计的常用方法(1)传统波束形成法,主要思想是:在某一时刻使整个阵列对某一个方向进行估计,测量输出功率。
在输出功率上,能产生最大功率的方向就是DOA估计。
(2)Capon最小方差法,主要思想是:通过最小化总体输出的功率,来降低干扰的影响,从而对来波方向进行估计。
(3)子空间类算法,主要思想是:利用阵列接收数据的协方差矩阵R的两条性质:特征向量的扩张空间可分解成两个正交子空间,即信号子空间和噪声子空间;信号源的方向向量与噪声子空间正交。
3.影响DOA估计结果的因素信号的DOA估计结果受到多种因素的影响,既与入射信号源有关,也与实际应用中的环境有关。
以下给出比较重要的影响因素。
(1)阵元数。
一般来说,在阵列其它参数一样的情况下,阵元数越多,超分辨算法的估计性能越好;(2)阵元间距。