多电飞机系统研究分析
- 格式:ppt
- 大小:4.65 MB
- 文档页数:41
1. 多电飞机的技术特点多电飞机是航空科技发展的一项全新技术,它改变了传统的飞机设计理念,是飞机技术发展的一次革命。
美国从20世纪80年代中到90年代初开始投入了大量的人力和物力,组织开展多电飞机的研究。
该研究涉及发电、配电、电力管理、电防冰、电刹车、电力作动和发动机等多个领域,从航空电力系统的概念出发,优化整个飞机的设计。
与全电飞机略有不同,多电飞机(More Electric Aircraft,MEA)在用电力系统取代液压和气压系统的过程中,采用电动静液作动器来操纵飞行控制舵面。
电动静液作动器实际上是一种分布式的小型电动和电控液压系统,因而可以说,多电飞机方案是全电飞机方案的初级阶段。
随着波音787飞机和空客380飞机的首飞及投入运营,多电飞机已成为现实。
多电飞机的特征是具有大容量的供电系统,并广泛采用电力作动技术,使飞机重量下降,可靠性提高,维护性好,运营成本降低。
多电飞机的主要优势简述如下。
(1)多电飞机使飞机的电气系统体系结构优化影响飞机电气系统体系结构的因素很多,包括飞机的类型(民用或军用运输机、亚声速或超声速飞机、战斗机等)、飞机的体系结构(发动机类型、数量、具体布局)、电气负载总需求及它们之间的互相关联性。
图1.3-1是一种典型的多电民用飞机电气系统体系结构图。
多电飞机技术由于采用电力驱动代替了液压、气压、机械系统和飞机的附件传动机匣,是飞机系统的重大创新,它可以节约飞机的有效空间,优化飞机的空间布局,有利于飞机的总体设计,有效提高了飞机的性能和系统可靠性,使之具有容错和故障后重构的能力。
图1.3-1 多电民用飞机电气系统体系结构图(2)多电飞机简化了飞机的动力系统结构多电飞机中的二次能源只有电能,使整个动力系统设计简化,取消了飞机的附件传动机匣和燃气涡轮起动机,简化了飞机的结构,使飞机结构简单、重量轻、可靠性高、可维修性好、生存能力强、使用维护费用低、地面支援设备少,地面设备和机上接口也得以简化。
电动飞机的设计与性能分析随着环境保护意识的增强和科技的迅猛发展,电动飞机逐渐成为航空业界的热门话题。
作为未来航空的一种潜在替代方案,电动飞机具有低碳排放、低噪音、高效能等诸多优势,然而其设计和性能分析仍然是一个具有挑战性的任务。
一、电动飞机的设计要素1.动力系统:电动飞机的核心部分是电力系统。
电动飞机动力系统主要由电机、电池和控制器组成。
电机是转换电能为动力的关键部件,其选型应考虑功率输出、效率和重量等因素。
电池则负责储存和提供电能,其能量密度和充电速度是关键指标。
控制器则起到调控电流和电压的作用,保证动力系统的稳定运行。
2.气动外形:电动飞机的气动外形设计需要兼顾飞行性能和能源利用效率。
流线型的机身和翼面可以降低飞行阻力,提高飞行速度。
此外,充分利用电动飞机的垂直起降优势,采用适当的垂直起降装置,可以提高起降效率。
3.材料选择:电动飞机材料的选择对于其性能至关重要。
轻质高强度的材料可以减轻飞机的整体重量,提高飞行效率和航程。
一些先进的材料,如复合材料和新型金属合金,具有较好的抗腐蚀性和耐高温性,适用于电动飞机的设计。
二、电动飞机的性能分析1.起飞性能:起飞性能是电动飞机设计中的重要参数之一。
通过计算起飞滑跑距离和速度,以及爬升率和精确的起飞性能,可以评估电动飞机的起飞性能。
起飞性能的好坏直接关系到飞机的安全性和使用的灵活性。
2.巡航性能:巡航性能是电动飞机在稳定飞行状态下的性能指标,主要包括最大速度、最大巡航高度和耗油量等。
通过对电动飞机的巡航性能进行分析,可以评估其飞行效率和续航能力。
3.降落性能:降落性能是电动飞机抵达目的地时的重要指标。
通过分析初始下降率、着陆距离和速度等参数,可以评估电动飞机在降落过程中的安全性和稳定性。
4.噪音和环保性能:电动飞机作为低噪音和低碳排放的交通工具,其噪音和环保性能的分析也是重要的研究方向。
通过设计减噪音的飞行器外形和采用低排放的电力系统,可以进一步提高电动飞机的环保性能。
多电飞机容错作动系统拓扑结构分析齐 蓉,陈 明(西北工业大学自动化学院,陕西西安710072) 收稿日期:2004211201 基金项目:航空科学基金资助项目(04F53036)。
作者简介:齐 蓉(1962-)女,吉林长春人,副教授,主要研究方向为航空电气系统分析与设计,控制系统可靠性理论与工程设计。
摘 要:针对多电飞机电力作动系统,提出永磁容错电机及其容错驱动控制的拓扑结构,探讨系统的电气故障模式,研究防止故障传播的电、磁、热隔离设计,在理论上给出了容错电机相数的选取方法,采用独立的同轴电机组件实现高冗余系统。
研究结果表明:电机、功率变换器和供电通道均采用以相为基本单位的模块化拓扑结构可实现多电飞机对作动系统的高容错要求。
关键词:电力作动系统;容错电机;容错驱动中图分类号:TP302.8,V242.44 文献标识码:A 文章编号:16712654X (2005)0120082204引言作为未来飞机发展方向的多电飞机,其特征是以电力作动系统取代液压作动系统。
电力作动器使系统结构小巧、响应速度快捷、作动控制效率提高、能耗降低,消除了液压作动系统存在的漏油、安全性、结构复杂等问题,提高了系统的实时检测和故障诊断能力,改善了维护性并减小了飞机的重量,为机载系统智能化管理提供技术支撑[1]。
由于电力作动系统应用于舵面操纵、燃油、刹车、环境控制等电力操纵和电力传动系统,它们都与飞行安全和战机性能紧密相关,这要求电力作动系统不但具有高功率密度,特别重要的是应具有高可靠性和容错能力。
电力作动系统的原理结构如图1所示。
具有容错能力的电力作动系统的关键技术之一就是驱动电机及其驱动电路的容错结构设计。
永磁无刷电机通过特殊的结构设计实现容错目的。
图1 电力作动系统原理结构图1 永磁容错电机驱动多电飞机对电力作动系统的容错要求是当以下任何一种故障形式发生时,系统可以不降低或略降低性能运行。
作动系统故障分为机械故障和电气故障,本文只考虑如下电气故障:电机的故障形式:a .绕组开路;b .绕组相间短路;c .绕组出线端短路;d .绕组匝间短路;e .绕组接地短路。
飞机供电系统的可靠性研究随着现代航空事业的不断发展,飞机的供电系统已经成为了飞行安全的重要组成部分。
由于飞行中的极端条件和长时间的运行,飞机供电系统的可靠性是飞行安全的必要保障。
因此,现代航空电气工程对飞机供电系统的可靠性进行了深入的研究和探索,以确保飞机在高度安全的情况下顺利执行各种飞行任务。
一、飞机供电系统的结构和分类在对飞机供电系统的可靠性进行研究之前,首先需要了解飞机供电系统的结构和分类。
根据供电类型,飞机供电系统一般可以分为直流供电系统和交流供电系统。
直流供电系统是指通过电瓶或发电机等设备产生的直流电,向飞机中各个系统供电。
因为直流电源的控制简单,维修和保养较为方便,且通常能够满足飞机的所有供电需求,所以直流供电系统已经成为了飞机中最常用的供电系统之一。
交流供电系统则是指通过交流发电机等设备产生的交流电,随后通过变频器、稳压器等设备对电压进行控制、变换和稳定,向飞机各个系统供电。
交流供电系统的特点是输出功率较大,能够满足飞机某些高功率负载的需求。
此外,交流供电系统还具有可调节输出电压范围广、电压稳定性好等优点。
二、飞机供电系统的可靠性问题在飞机供电系统的运行中,由于各种原因,系统出现故障的情况是不可避免的。
而不同的故障类型和对应的解决方案,决定着飞机供电系统的可靠性。
常见的飞机供电系统故障类型有:(一)电源故障。
飞机供电系统的最重要的部分是电源部分,包括电瓶、发电机等设备。
若发生电源故障,将会导致整个飞机的供电故障。
(二)交流设备故障。
交流设备分别控制着交流供电系统的频率、电压和负载等功能。
若某一交流设备发生故障,将会影响到整个交流供电系统的正常供电。
(三)直流设备故障。
直流设备包括电瓶和发电机等,它们主要负责给直流负载供电,若出现故障将会使得直流系统无法正常工作。
(四)电气连接故障。
由于飞机供电系统的极其复杂,不同系统之间存在数百处电气连接,其中每一个连接都可能存在故障风险。
以上种种故障都会对飞机供电系统的运行以及飞机的飞行安全带来巨大的影响。
多电飞机直流负载系统稳定性分析随着航空业的发展和飞机飞行技术的进步,飞机的电气系统也得到了不断的优化和改进。
传统的飞机电气系统采用交流电源供电,随着航空电子设备的不断增加和先进技术的应用,直流负载系统逐渐成为了飞机电气系统的主流。
直流负载系统在飞机电气系统中具有很多优势,如电能利用效率高、能量传输稳定等,但同时也面临着一些挑战,如稳定性问题。
本文将对多电飞机直流负载系统的稳定性进行分析,探讨造成稳定性问题的原因和解决方法。
一、多电飞机直流负载系统概述多电飞机指的是使用多个电源系统来供电的飞机,这些电源系统可能来自不同的发动机、APU(辅助动力装置)以及地面电源。
为了更好地利用这些不同来源的电力,并将其供应给飞机上的各种负载设备,飞机电气系统采用了直流负载系统。
直流负载系统具有高效能、能量传输稳定等优势,能够更好地满足现代飞机对电气能源的需求。
多电飞机直流负载系统包括电源转换单元(PCU)、电源分配单元(PDU)、直流负载优化控制器等组件。
PCU负责将不同来源的电能转换为直流电能,PDU负责将直流电能分配给飞机上的各种负载设备,直流负载优化控制器则负责控制和优化整个系统的运行情况。
这些组件共同构成了多电飞机直流负载系统的基本框架,但同时也带来了稳定性问题。
1. 电压波动在多电飞机直流负载系统中,由于电源的不稳定性,以及负载的变化,会导致电压的波动。
这种电压波动可能会对飞机上的电气设备造成损害,甚至影响到飞行安全。
2. 跨耦影响多电飞机直流负载系统中,不同电源系统之间可能存在跨耦影响,即一个电源系统的变化可能会对其他电源系统产生影响,导致系统的不稳定性。
3. 故障传播在多电飞机直流负载系统中,一旦某个组件发生故障,可能会导致故障信号传播到整个系统,影响系统的稳定性和可靠性。
4. 谐波问题以上这些问题都会对多电飞机直流负载系统的稳定性产生影响,需要进行深入的分析和解决。
1. 系统仿真和模拟对于多电飞机直流负载系统的稳定性分析,首先可以利用仿真软件对系统进行模拟。
飞机电力系统技术研究摘要:飞机动力系统技术是新一代飞机需要立即研究的关键技术之一,变得越来越重要,尤其是随着飞机集成、多电源、互联、智能、效率等新的性能要求。
系统是满足这些新要求的重要支撑。
本文结合国外电力系统技术的技术发展,介绍了从多代到多技术、混合技术和电气技术的具体解决方案的分步实施。
该系统还分析了关键技术和市场趋势,解决了飞机动力系统的四个关键问题,为飞机动力系统技术是下一代飞机研究设计和未来发展的参考。
关键词:电力系统架构;电机技术;电力电子技术;独立电网技术随着电力电子技术、电机技术、电池技术和技术的飞速发展。
因此,飞机动力系统的重要性越来越突出。
新一代能源飞机的核心技术这是消除飞机运动和提高飞机的能源效率的重要途径。
将航天动力系统分析研究与国外航天动力系统技术的发展相结合,提出在航空领域发展新一代飞机动力系统技术,开发飞机动力系统研究新技术,正在研发新一代飞机技术,强调市场领域电气化技术的发展,希望能为航空业的发展提供借鉴。
1飞机电力系统地位和作用飞机电力系统是一个独立的电力网络,包括电力的产生、传输、分配、储存和使用。
这个独立的电网包括发电机、输电线路、配电系统和电源转换器电池电量以及各种飞机动力元件以及控制这些组件操作的控件。
飞机电气系统的电气部件主要由飞机系统等基本功能部件组成。
飞行控制系统环境控制系统防冰系统起飞和着陆系统、通信系统(内部和外部)和飞机照明。
飞机动力所有这些系统和组件都非常可靠、紧凑且重量轻,从而实现了飞机的高效率,随着越来越多的飞机系统使用电力生产。
飞机整体生产力将提高,排放量将减少,飞机动力系统的地位和作用将变得越来越重要。
未来,飞机的动力系统也将成为飞机主动力发动机的核心,将极大地支持飞机技术的发展。
2飞机电力系统构成飞机的电气系统飞机电气系统设备和电气系统设备将从发电机的能量分配系统。
电力转换设备和功率转换设备。
飞机的电力系统是独立的。
独立的收入来源和飞机电气设备的主要来源。
多电飞机飞行控制系统可靠性分析作者:叶自清来源:《现代商贸工业》2018年第32期摘要:研究了采用“2H/2E”(两套液压源/两套电源)双体系结构作动系统的多电飞行控制系统可靠性分析。
应用可靠性框图的方法对飞机的作动系统、飞控计算机、三轴控制系统进行了可靠性分析。
在此基础上继而计算出飞控系统的可靠性,计算得出的可靠性符合安全性要求。
关键词:2H/2E;可靠性框图;作动系统;飞行控制系统中图分类号:TB 文献标识码:Adoi:10.19311/ki.1672.3198.2018.32.1031 绪论从20世纪80年代以来,电传操纵系统获得了极大发展,空客A320飞机采用的是带有机械备份的数字式电传操纵系统。
该系统采用五套数字计算机,而每套计算机中又有两个非相似的处理器。
综合飞控系统重量和可靠性等方面的考虑,在研究飞行控制系统可靠性时,拟采用四余度非相似数字电传飞控系统。
2 系统可靠性分析2.1 液压伺服作动器(SHA)可靠性框图模型根据液压伺服作动的系统原理图,双通道的液压伺服作动器SHA属于双余度作动系统,可靠性框图属于并联形式,两个伺服控制器并联,两个电磁阀并联,伺服控制器、电磁阀与液压缸组成串联模式。
2.2 电动静液作动器(EHA)可靠性框图模型根据电动静液作动器的系统原理图,双通道的电动静液作动器EHA可靠性框图属于并联形式,两个电机泵并联,两个蓄能器并联,两个单向阀并联,两个旁通阀并联,电机泵、蓄能器、单向阀、旁通阀与液压缸组成串联模式。
2.3 作动系统可靠性计算作动系统元部件的故障率(表1)。
单通道SHA的故障率为λSHA=8.2×10-4/h。
单通道EHA的可靠度为λEHA=3.7×10-5/h。
2.4 飞行控制计算机FCC可靠性分析每个主飞行计算机从四余度的ARINC629总线上接收信息,并完成控制律及余度管理的计算。
每套主飞行计算机又包含有4条非相似数字计算机处理器通道。
多电飞机电气系统关键技术研究一、本文概述Overview of this article随着科技的飞速发展和环保理念的日益深入人心,多电飞机(More Electric Aircraft,MEA)已成为航空领域的研究热点。
多电飞机通过提高电气系统在飞机总体系统中的功率占比,实现了对飞机能源使用效率的大幅提升,同时也为飞机设计带来了更多的灵活性和创新性。
然而,随着电气系统在飞机上的广泛应用,其关键技术的研究与突破显得尤为重要。
本文旨在深入探讨多电飞机电气系统的关键技术,包括其设计理念、核心技术、挑战以及未来发展趋势,以期为多电飞机的研发和应用提供有益的参考。
With the rapid development of technology and the increasing popularity of environmental protection concepts, More Electric Aircraft (MEA) has become a research hotspot in the aviation field. Multi electric aircraft achieve a significant improvement in energy efficiency by increasing the power proportion of the electrical system in the overall aircraft system, while also bringing more flexibility and innovation toaircraft design. However, with the widespread application of electrical systems in aircraft, research and breakthroughs in their key technologies have become particularly important. This article aims to delve into the key technologies of multi electric aircraft electrical systems, including their design concepts, core technologies, challenges, and future development trends, in order to provide useful references for the research and application of multi electric aircraft.本文首先将对多电飞机的概念、发展历程及其优势进行简要介绍,阐述其在现代航空领域的重要地位。