第3章 拉深模设计
- 格式:ppt
- 大小:1.24 MB
- 文档页数:50
拉深模具的设计拉深模具的分类及典型结构拉深模按其工序顺序可分为首次拉深模和后续各工序拉深模,它们之间的本质区别是压边圈的结构和定位方式上的差异。
按拉伸模使用的冲压设备又可分为单动压力机用拉深模、双动压力机用拉深模及三动压力机用拉深模,它们的本质区别在于压边装置的不同(弹性压边和刚性压边)。
按工序的组合来分,又可分为单工序拉深模、复合模和级进式拉深模。
此外还可按有无压边装置分为无压边装置拉深模和有压边装置拉深模等。
下面将介绍几种常见的拉深模典型结构。
1一凸模;2一定位板;3一凹模;4一下模座图 1 无压边装置的首次拉深模1.首次拉深模(1)无压边装置的首次拉深模(图1)此模具结构简单,常用于板料塑性好,相对厚度时的拉深。
工件以定位板 2 定位,拉深结束后的卸件工作由凹模底部的台阶完成,拉深凸模要深入到凹模下面,所以该模具只适合于浅拉深。
(2)具有弹性压边装置的首次拉深模这是最广泛采用的首次拉深模结构形式(图2)压边力由弹性元件的压缩产生。
这种装置可装在上模部分(即为上压边),也可装在下模部分(即为下压边)。
上压边的特征是由于上模空间位置受到限制,不可能使用很大的弹簧或橡皮,因此上压边装置的压边力小,这种装置主要用在压边力不大的场合。
相反,下压边装置的压边力可以较大,所以拉深模具常采用下压边装置。
(3)落料首次拉深复合模图 3 为在通用压力机上使用的落斜首次拉深复合模。
它一般采用条料为坯料,故需设置导料板与卸料板。
拉深凸模 9 的顶面稍低于落料凹模 10 ,刃面约一个料厚,使落料完毕后才进行拉深。
拉深时由压力机气垫通过顶杆 7 和压边圈 8 进行压边。
拉深完毕后靠顶杆 7 顶件,卸料则由刚性卸料板 2 承担。
1一凸模;2一上模座;3一打料杆;4一推件块;5一凹模;6一定位板;7一压边圈;8一下模座;9一卸料螺钉图 2 有压边装置的首次拉深模(4)双动压力机上使用的首次拉滦模(图4)因双动压力机有两个滑块,其凸模 1 与拉深滑块(内滑块)相连接,而上模座2(上模座上装有压边圈3)与压边滑块(外滑块)相连。
目录题目盒型件拉深模设计 (2)前言 (2)第一章审图 (5)第二章拉深工艺性分析 (6)2.1对拉深件形状尺寸的要求 (6)2.2拉深件圆角半径的要求 (6)2.3 形拉深件壁间圆角半径rpy (7)2.4 拉深件的精度等级要求不宜过高 (7)2.5 拉深件的材料 (7)2.6 拉深件工序安排的一般原则 (8)第三章拉深工艺方案的制定 (8)第四章毛坯尺寸的计算 (9)4.1 修边余量 (9)4.2毛坯尺寸 (9)第五章拉深次数确定 (10)第六章冲压力及压力中心计算 (11)6.1 冲压力计算 (11)6.2 压力中心计算 (12)第七章冲压设备选择 (12)第八章凸凹模结构设计 (13)8.1凸模圆角半径 (13)8.2 凸凹模间隙 (13)8.3 凸凹模尺寸及公差 (14)第九章总体结构设计 (14)9.1 模架的选取 (14)9.2 模柄 (15)9.3拉深凸模的通气孔尺寸 (15)9.4导柱和导套 (16)9.5 推杆 (17)9.6卸料螺钉 (17)9.7螺钉和销钉 (17)第十章拉深模装配图绘制和校核 (18)10.1拉深模装配图绘制 (18)10.2 拉深模装配图的校核 (20)第十一章非标准件零件图绘制 (21)11.1冲压凸模 (21)11.2 冲压凹模 (22)11.3 压边圈 (22)11.4 凸模垫板 (23)第十二章结论 (24)参考文献 (25)题目盒型件拉深模设计其目的在于巩固所学知识,熟悉有关资料,树立正确的设计思想,掌握设计方法,培养学生的实际工作能力。
通过模具结构设计,学生在工艺性分析、工艺方案论证、工艺计算、模具零件结构设计、编写技术文件和查阅文献方面受到一次综合训练,增强学生的实际工作能力前言从几何形状特点看,矩形盒状零件可划分成2 个长度为(A-2r) 和2 个长度为(B-2r) 的直边加上4 个半径为r 的1/4 圆筒部分(图4.4.1) 。
若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为 2r 、高为 h 的圆筒件的拉深,直边部分的变形相当于弯曲。
拉深工艺及拉深模具的设计拉深工艺是一种常见的金属加工方法,用于将平面金属材料加工成具有凹凸形状的器件或零件。
它通常涉及到将金属板材通过拉伸的方式使其变形,以达到所需的形状和尺寸。
而拉深模具则是用于支撑和引导金属板材在拉深过程中发生变形的工具。
拉深工艺的设计需要考虑多个因素,包括材料的性质、板材的厚度和尺寸、拉深的形状和深度等。
首先,根据所需拉深的形状设计模具的结构和形状,并确定所需的深度和尺寸。
其次,需要选择合适的材料和工艺参数,以确保金属材料在拉深过程中能够保持良好的塑性变形能力,并且不会发生过度拉伸、断裂或破裂。
此外,还需要考虑到加工效率和成本等因素,以优化拉深工艺的设计。
拉深模具的设计是实现拉深工艺的关键。
它通常由多个部分组成,包括上模板、下模板、导柱、导套、导向装置、弹簧等。
上模板和下模板是用于支撑金属板材并施加压力的主要部分,它们的形状和结构决定了拉深的形状和深度。
导柱和导套用于引导上模板的移动,以确保拉深的精度和稳定性。
导向装置用于确保上模板和下模板的对位精度,避免偏移和倾斜。
而弹簧则用于提供足够的弹性力,以使上模板在拉深过程中能够平稳地移动。
在拉深模具的设计过程中,需要考虑到多个因素。
首先,需要进行模具的结构和形状设计,确保其能够满足所需拉深的形状和深度。
其次,需要选择合适的材料,以确保模具具有足够的强度和硬度。
同时,还需要进行模具的冷却设计,以提高模具的寿命和加工效率。
此外,需要进行模具的装配和调试,确保其能够正常使用并满足要求的加工精度和质量。
总之,拉深工艺及拉深模具的设计需要考虑到多个因素,包括材料的性质、工艺参数、加工效率和成本等。
通过合理的设计和优化可以实现高效、精确和稳定的拉深加工。
课程设计带凸缘筒形件首次拉深的拉深模设计一、工艺分析1,冲压工艺方案的设定:考虑到零件的生产批量,经过分析得采用反拉深复合膜生产。
2,先剪切条料→落料→第一次拉深→……第四次拉深→修边。
二、工艺参数的计算 。
如上右图所示的拉深件。
(1) 查表4-6选取修边余量Δd 由d 凸d=7529=2.6 、 d 凸=75mm 得出Δd=2.2实际d 凸=75+2×2.2=79.4≈79 (2),初算毛坯直径。
根据公式(4-9a )得出:D =√d 12+4d 2h +2πr (d 1+d 2)+4πr 2+d 42−d 32,将d 1=20 d 2=29 d 3=38d 4=79 h=40 r=4 代入上式得出D=√202+4×29×40+2×3.14×4(20+29)+4×3.14×42+792−382 =√6472+4797≈106,其中6472为工件不包含凸缘部分的表面积,即零件实际需要拉深部分的面积。
(3),判断能否一次拉出。
由h d =4929=1.69 、d 凸d=7929=2.72 、 t D ×100=1106x100=0.94查表4-14得出h1d 1=0.17﹣0.21、而零件实际需要的为1.69、因此不能一次拉深完成。
(4),计算拉深次数及各工序的拉深直径。
,因此需要用试凑法计算利用表4-14来进行计算,但由于有两个未知数m和d td1拉深直径。
下面用逼近法来确定第一的拉深直径。
的值为由于实际拉深系数应该比极限拉伸系数稍大,才符合要求,所以上表中d td11.5、1.6、1.7的不合适。
因为当d t的值取1.4的时候,实际拉深系数与极限拉深系数接近。
故初定第一次d1拉深直径d1=56.因以后各次拉深,按表4-8选取。
故查表4-8选取以后各次的拉深系数为当m2=0.77时d2=d1×m2=56×0.77=43mm当m2=0.79时d3=d2×m3=43×0.79=34mm当m3=0.81时d4=d3×m4=34×0.81=27mm<29mm因此以上各次拉程度分配不合理,需要进行如下调整。
毕业设计(论文)题目拉深模具设计系 (部) 工程技术系专业模具设计与制造班级姓名学号指导老师系主任2012年5月3日毕业设计(论文)任务书兹发给模具设计与制造班学生毕业设计(论文)任务书,内容如下:1、毕业设计(论文)题目:拉深模具设计2、应完成的项目:(1)模具结构必须满足精冲工艺要求,并能在工作状态下形成压应力体系;(2)模具具有较高的强度和刚度,功能可靠,导向精度好;(3)认真考虑模具的润滑、排气,并能可靠清除冲出的零件及废料;(4)合理选用精冲模具材料、热处理方法和模具零件的加工工艺性;(5)模具结构简单、维修方便,具有良好的经济性。
3、参考资料以及说明:[1] 王芳.冷冲压模具设计指导.机械工业出版社1982.[2] 徐政坤.冷压模具及设备. 机械工业出版社 2005[3] 成虹.冲压工艺与模具设计.高等教育出版社 2006[4] 丁松聚 .冷冲模设计.机械工业出版社 2003.[5] 杨占尧.冲压模具图册.高等教育出版社[6] 马正元 .冲压工艺与模具设计.机械工业出版社 1998[7] 模具实用技术从书编委会.冲模设计与应用实例.1986[8] 齐占庆主编.机床电气控制技术.第三版.北京:机械工业出版社,2005[9] 孙锡红.模具制造工. 中国劳动社会保障出版社 20044.、本毕业设计(论文)任务书于2011年10月25日发出,应于2012年1月10日前完成。
指导教师:签发2011 年10 月25 日学生签名:2011 年10 月28 日毕业设计(论文)开题报告不论冲压件的几何形状和尺寸大小如何,其生产过程一般都是从原材料剪切下料开始,经过各种冲压工序和其他必要的辅助工序(如退火,酸洗,表面处理等)加工出图纸所要求的零件。
对于某些组合冲压件或精度要求较高的冲压件,还需要经过切削,焊接或铆接等加工,才能完成。
冲压件工艺过程的制定和模具设计是冷冲压课程设计的主要内容。
进行冲压设计就是根据已有的生产条件,综合考虑影响生产过程顺利进行的各方面因素,合理安排零件的生产工序,最优地选用,确定各工艺参数的大小和变化范围,设计模具,选用设备等,以使零件的整个生产过程达到优质,高产,低耗,安全的目的冲压工艺规程是模具设计的依据,而良好的模具结构设计,又是实现工艺过程的可靠保证,若冲压工艺有改动,往往会造成模具的返工,甚至报废。
拉深工艺及拉深模设计本章内容简介:本章在分析拉深变形过程及拉深件质量影响因素的基础上,介绍拉深工艺计算、工艺方案制定和拉深模设计。
涉及拉深变形过程分析、拉深件质量分析、圆筒形件的工艺计算、其它形状零件的拉深变形特点、拉深工艺性分析与工艺方案确定、拉深模典型结构、拉深模工作零件设计、拉深辅助工序等。
学习目的与要求:1.了解拉深变形规律、掌握拉深变形程度的表示;2.掌握影响拉深件质量的因素;3.掌握拉深工艺性分析。
重点:1. 拉深变形特点及拉深变形程度的表示;2.影响拉深件质量的因素;3.拉深工艺性分析。
难点:1.拉深变形规律及拉深变形特点;2.拉深件质量分析;3.拉深件工艺分析。
拉深:利用拉深模将一定形状的平面坯料或空心件制成开口空心件的冲压工序。
拉深工艺可以在普通的单动压力机上进行,也可在专用的双动、三动拉深压力机或液压机上进行。
拉深件的种类很多,按变形力学特点可以分为四种基本类型,如图5-1所示。
图5-1 拉深件示意图5.1 拉深变形过程分析5.1.1 拉深变形过程及特点图5-2所示为圆筒形件的拉深过程。
直径为D、厚度为t的圆形毛坯经过拉深模拉深,得到具有外径为d、高度为h的开口圆筒形工件。
图5-2 圆筒形件的拉深1.在拉深过程中,坯料的中心部分成为筒形件的底部,基本不变形,是不变形区,坯料的凸缘部分(即D-d的环形部分)是主要变形区。
拉深过程实质上就是将坯料的凸缘部分材料逐渐转移到筒壁的过程。
2.在转移过程中,凸缘部分材料由于拉深力的作用,径向产生拉应力,切向产生压应力。
在和的共同作用下,凸缘部分金属材料产生塑性变形,其“多余的三角形”材料沿径向伸长,切向压缩,且不断被拉入凹模中变为筒壁,成为圆筒形开口空心件。
3.圆筒形件拉深的变形程度,通常以筒形件直径d与坯料直径D的比值来表示,即m=d/D(5-1)其中m称为拉深系数,m越小,拉深变形程度越大;相反,m越大,拉深变形程度就越小。
5.1.2 拉深过程中坯料内的应力与应变状态拉深过程是一个复杂的塑性变形过程,其变形区比较大,金属流动大,拉深过程中容易发生凸缘变形区的起皱和传力区的拉裂而使工件报废。
拉深模具设计要点拉深是一种利用模具将平面金属片加工成三维形状的工艺方法,而拉深模具的设计则是实现该工艺方法的关键。
本文将介绍拉深模具设计的要点,并探讨如何提高拉深模具的性能和效率。
一、拉深模具的种类按照不同的结构和用途,拉深模具可分为单向拉深模具、多向拉深模具、复合拉深模具等。
单向拉深模具只能将金属片拉深成一个方向的凸轮形状;多向拉深模具能够将金属片拉深成多个方向的形状,适用于复杂的零件生产;复合拉深模具则是结合两种或以上的拉深形式,可以实现更为多样化的零件加工。
二、拉深模具的设计要点1. 材料选择拉深模具的制造材料需具有高强度、高硬度、高韧性、高温耐性等性质,以确保模具的耐用性和稳定性。
常用的材料有合金钢、硬质合金、高速钢等。
2. 模具结构设计模具的设计应考虑加工时的工艺流程和金属片的物理特性,以确保成品的质量。
模具的结构设计应考虑到材料密度改变的情况,特别是拉深部位的弯曲角度、曲面度和收缩率等,同时也需考虑到模具的割缝和表面质量等因素。
3. 模具形状和尺寸设计在拉深模具的形状和尺寸设计上,设计师需考虑到零件的性能要求和装配要求,并确保模具能够适应所选定的加工设备。
同时,模具的深度、前侧角度、后侧角度、侧壁角度等参数也需符合零件加工的要求。
4. 模具表面的处理模具表面的处理是一项重要的工艺,可有效提高模具的耐用性和零件质量,常见的处理方法包括氮化、硬质化、涂层等。
在选择表面处理时,需要考虑到材料的成本和零件的性能要求。
三、拉深模具的加工与维护在拉深模具加工时,操作人员需根据零件的要求精确调整机器参数,以确保零件的生产质量和效率。
同时,模具的维护也是不可忽视的,需要经常检查模具的磨损程度、裂纹和变形情况,及时更换或修理模具,以保持模具的正常使用寿命。
在现代工业生产中,拉深模具已成为一种普遍应用的加工方法,而模具设计则是实现该方法和产生高质量产品的重要保障。
为了提高拉深模具的性能和效率,设计师需要考虑到材料选择、结构设计、模具形状和尺寸设计等多个方面,以制作出高质量、耐用的模具,为生产提供坚实的保障。