新人教版八年级上册数学总复习教案
- 格式:doc
- 大小:1.88 MB
- 文档页数:11
新人教八年级上册第14章章末复习【知识与技能】1.掌握整式的乘法运算方法并运用于计算.2.掌握因式分解的方法并运用于分解因式.【过程与方法】1.引导学生有序地总结归纳本章概念与基本方法.2.应用例题讲解帮助学生形成解题能力.【情感态度】1.体验转化思想.2.培养从特殊到一般,从一般到特殊的思维能力.【教学重点】整式的乘法运算与因式分解.【教学难点】根据实际问题选择合适方法解题.一、知识框图,整体把握【教学说明】引导学生一起表述概念法则,并适当归类,完成框架图.教学中以学生的发言为主,教师予以评判与补充,重在提醒学生找到知识点间的联系与区别.二、释疑解惑,加深理解1.整式的乘除及混合运算整式的乘除及混合运算是本章核心内容,是计算重点.解决此类问题的一般步骤是①审题确定运算顺序,即按先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或去掉括号);②运用各种计算法则准确地计算每一步,这是计算化简核心步骤,计算应仔细认真,防止出错,否则前功尽弃;③检查结果的正确性.例1先化简,再求值:x(x-4)(x+4)-(x+3)(x2-6x+9)+5x3y2÷x2y2,其中x=-3.【分析】此题主要考查整式的运算以及运算的顺序.解:原式=x(x2-16)-x3+6x2-9x-3x2+18x-27+5x=x3-16x-x3+6x2-9x-3x2+18x-27+5x=3x2-2x-27.当x=-3时,原式=3x2-2x-27=3×(-3)2-2×(-3)-27=27+6-27=6.例2解方程:[2x3(2x-3)-x2]÷(2x2)=x(2x-1).【分析】将整式的各种运算融入方程中,因此解方程问题实质上转化为整式的计算问题.2.乘法公式教材中的乘法公式有两个:一是平方差公式,二是完全平方公式.只要掌握了公式的基本结构特点就可以快捷高效地解题.两个公式即可以正用,也可以逆用,有时逆用公式会使计算更加简捷,使用公式时要注意五点:(1)a、b的广泛代表性;(2)公式中各项的关系及整个公式的结构特点;(3)要有连续使用公式的技巧;(4)要掌握公式交替使用的方法;(5)了解两个公式的推广.例3已知a+b=6,ab=-7.求下列各式的值:(1)a 2+b 2;(2)a 2-ab+b 2;(3)a-b.解:(1)∵(a+b )2=(a 2+b 2)+2ab ,故a 2+b 2=62-2×(-7)=50.(2)a 2-ab+b 2=a 2+b 2+2ab-3ab=(a+b )2-3ab=62-3×(-7)=57.(3)∵(a-b )2=(a+b )2-4ab=62-4×(-7)=64,∴a-b=±8.3.因式分解因式分解是整式乘法的逆变形,有两种基本方法:提公因式法和运用公式法.因式分解的一般步骤是一提、二套、三查:若多项式有公因式先提取公因式,然后考虑运用公式,若多项式有两项,考虑平方差公式,若多项式有三项,则考虑用完全平方公式,最后检查一下所得结果否还能继续分解.例4把下列各式分解因式:(1)m 4-16n 4;(2)4x 2n+20x n y n +25y 2n.【分析】如果多项式各项含有公因式,应先提取公因式,再进一步分解因式,分解因式必须分解到每一个多项式都不能再分解为止.解:(1)m 4-16n 4=(m 2)2-(4n 2)2=(m 2+4n 2)(m 2-4n 2)=(m 2+4n 2)[m 2-(2n )2]=(m 2+4n 2)(m+2n )(m-2n ).(2)4x 2n +20x n y n +25y 2n =(2x n )2+2·2x n ·5y n +(5y n )2=(2x n +5y n )2. 例5把下列各式分解因式:【分析】应先提取公因式,然后再运用公式进行分解.三、典例精析,复习新知例6解不等式组:332 1 252541x x x x x x x x +---⎧⎨----⎩()()()>①()()<()②【分析】解不等式组时,要将不等号两边的括号去掉,进行化简,在①中,(x+3)(x-3)符合平方差公式左边的形式,可用平方差公式,直接写出结果得x2-9;在②中,(2x-5)(-2x-5)=(-5+2x)(-5-2x)也符合平方差公式左边的形式,可用平方差公式,这样可使解不等式组的过程简化.【教学说明】平方差公式是代数变形的基本工具之一,在各类题目中均有可能用到,所以要随时注意,灵活使用,这样可以提高解题速度.例7分解因式:1+x+x(1+x)+x(1+x)2+x(1+x)3.你发现了什么规律?利用你发现的规律直接写出多项式1+x+x(1+x)+x (1+x)2+…+x(1+x)2005分解因式的结果.【分析】先将多项式分解因式,分析结果的特点,根据特点找出规律.【教学说明】通过观察多项式的结构特点,较易发现经过整理之后可提公因式(1+x),而提完公因式后,多项式的结构呈现规律性的重复,可逐次提取.可见,解这类题目要善于对多项式的结构进行观察,应避免盲目乱解.1.布置作业:从教材“复习题14”中选取部分题.2.完成创优作业中“本章热点专题训练”.复习教学时要突出:1.引领学生充分认识概念、法则、公式,重点分析概念本质,公式特征及各知识点间关系.2.指导学生挖掘知识点间的联系,整体上认识知识(如整式乘法与因式分解)3.重点指导学生反思解题技法,总结规律,达到举一反三的目的.。
最新人教版八年级数学上册教案(全册共168页)第十一章三角形一、课标要求(1)理解三角形及三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性。
(2)理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和。
(3)了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的内角和与外角和公式。
二、教材分析第1节研究与三角形有关的线段。
首先结合引言中的实际例子给出三角形的概念,进而研究三角形的分类。
对于三角形的边,证明了三角形两边的和大于第三边。
然后给出三角形的高、中线与角平分线的概念。
结合三角形的中线介绍三角形的重心的概念。
最后结合实际例子介绍三角形的稳定性。
第2节研究与三角形有关的角,对于三角形的内角,证明了三角形内角和定理。
然后由这个定理推出直角三角形的性质:直角三角形的两个锐角互余。
最后给出三角形的外角的概念,并由三角形内角和定理推出:三角形的外角等于与它不相邻的两个内角的和。
第3节介绍多边形的有关概念与多边形的内角和、外角和公式。
三角形是多边形的一种,因而可以借助三角形给出多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来。
三角形是最简单的多边形,因而常常将多边形分为若干个三角形,利用三角形的性质研究多边形。
多边形的内角和公式就是利用上述方法得到的。
将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习。
三、教学建议1.把握好教学要求与三角形有关的一些概念在本章中只要求达到理解的程度就可以了,进一步的要求可通过后续学习达到。
如对于三角形的角平分线,在本章中只要知道它的定义,能够从定义得出角相等就可以了,学生在画角平分线时发现三条角平分线交于一点,可直接肯定这个结论,在下一章“全等三角形”中再证明这个结论,同样,三角形的三条中线交于一点的结论也可直接点明。
新人教版八年级数学上册全册名师教案大全5篇新人教版八班级数学上册全册名师教案【篇1】一、学习目标:1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;2、会运用两数差的平方公式进行计算。
二、学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探究1、计算: (a - b) =方法一:方法二:方法三:2、两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。
3、两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1、(3 - a)2、 (2a -1)3、(3y-x)4、(2x – 4y)5、( 3a - )(三)合作攻关敏捷运用两数差的平方公式计算:1、(999)2、( a – b – c )3、(a + 1) -(a-1)(四)达标训练1、、选择:下列各式中,与(a - 2b)肯定相等的是()A、a -2ab + 4bB、a -4bC、a +4bD、 a - 4ab +4b2、填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162、计算:( a - b) ( x -2y )3、有一边长为a米的正方形空地,现预备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1、本节课你学到了什么?2、已知a – b = 1,a + b = 25,求ab 的值新人教版八班级数学上册全册名师教案【篇2】一、教学目标(一)、学问与技能:(1)使同学了解因式分解的意义,理解因式分解的概念。
(2)熟悉因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:(1)由同学自主探究解题途径,在此过程中,通过观看、类比等手段,寻求因式分解与因数分解之间的关系,培育同学的观看力量,进一步进展同学的类比思想。
第十一章三角形学科:数学任课教师:授课时间:)第十二章全等三角形单元要点分析教学内容本章的主要内容是全等三角形.主要学习全等三角形的性质以及探索判定三角形全等的方法,并学会怎样应用全等三角形进行证明,本章划分为三个小节,第一节学习三角形全等的概念、性质;第二节学习三角形全等的判定方法和直角三角形全等的特殊判定方法;第三节利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.教材分析教材力求创设现实、有趣的问题情境,使学生经历从现实活动中抽象出几何模型和运用所学内容解决实际问题的过程.在内容呈现上,把研究三角形全等条件的重点放在第一个条件上,通过“边边边”条件探索什么是三角形的判定,如何判定,怎样进行推理论证,怎样正确地表达证明过程.学生开始学习三角形判定定理时的困难在于定理的证明,而这些推理证明并不要求学生掌握.为了突出判定方法这条主渠道,教材都作为基本事实提出来,在画图、实验中让学生知道它们的正确性就可以了.在“角的平分线的性质”一节中的两个互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆命题、互逆定理等内容,这将在“勾股定理”中介绍.三维目标1.知识与技能在探索全等三角形的性质与判定中,提高认知水平,积累数学活动经验.2.过程与方法经历探索三角形全等的判定的,发展空间观念和有条理的表达能力,掌握两个三角形全等的判定并应用于实际之中.3.情感、态度与价值观培养良好的观察、操作、想象、推理能力,感悟几何学的内涵.重、难点与关键1.重点:使学生理解证明的基本过程,掌握用综合法证明的格式.2.难点:领会证明的分析思路,学会运用综合法证明的格式.3.关键:突出三角形全等的判定方法这条主线,淡化对定理的证明.教学建议1.注意使学生经历探索三角形性质及三角形全等的判定的过程.•在教学中鼓励学生观察、操作、推理,运用多种方式探索三角形有关性质.2.注重创设具有现实性、趣味性和挑战性的情境,体现三角形的广泛应用.3.注意直观操作与说理的结合,逐步培养学生有条理的思考和表达.课时划分本单元共分成9课时.12.1 全等三角形 1课时12.2 三角形全等的性质 5课时12.3 角的平分线的性质 2课时复习与交流 1课时12.1 全等三角形教学内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观培养观察、操作、分析能力,体会全等三角形的应用价值.重、难点与关键1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,•两条对应边所夹的角是对应角.教具准备四张大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点?2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC 和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.全等三角形对应角相等.二、随堂练习,巩固深化课本P4练习.【探研时空】1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.(AB=6)2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.•(∠AEC=30°,∠EAC=65°,∠ECA=85°)三、课堂总结,发展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?四、布置作业,专题突破1.课本P4习题11.1第1,2,3,4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,右边部分板书学生的练习.疑难解析由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角).课时作业设计一、填空题.1.如图3所示,△AOC≌△BOD,∠A和∠B,•∠C•和∠D•是对应角,•那么对应边CO=____,AO=_____,AC=______,对应角∠COA=______.2.如图4所示,把△ABC绕A点旋转一定角度,得到△ADE,•那么对应边AB=•_____,AC=______,DE=______,对应角∠BAC=_____,∠B=______.3.已知△ABC≌△DEF,AB=5,BC=4,AC=3,∠C=90°,•则△DEF•中,•最小的边长为______,最大的角为_______度.二、选择题.4.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长().A.13 B.3 C.4 D.65.已知△ABC≌△A′B′C′,∠A=80°,∠B=40°,那么∠C′的度数为().A.80° B.40° C.60° D.120°三、解答题.6.如图所示,△ABC≌△A′B′C′,∠C=25°,BC=6cm,AC=4cm,你能得出△A•′B′C′中哪些角的大小,哪些边的长度?7.如图所示,已知△ABC≌△DEF,则AB与DE,AC与DF的位置有什么关系?•说说你的理由.四、情境思索.8.如图所示,一栅栏顶部是由全等的三角形组成的,其中AC=0.2m,BC=•2AC,求BD的长.五、聚焦中考.9.如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+•∠DOB的度数为多少度?课时作业设计答案:一、1.DO BO BD ∠DOB 2.AD AE BC ∠DAE ∠D 3.3 90°二、4.D 5.C三、6.∠C′=25° B′C′=6cm A′C′=4cm 7.平行(理由略)四、8.略五、9.180°12.2.1三角形全等的判定(SSS)教学内容本节课主要内容是探索三角形全等的条件(SSS),•及利用全等三角形进行证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等. 信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC ,再画一个△A ′B ′C ′,使A ′B ′=AB ,B ′C ′=BC ,C ′A ′=CA .把画出的△A ′B ′C ′剪下来,放在△ABC 上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A ′B ′C ′,使A ′B ′=AB ′,A ′C ′=AC ,B ′C ′=BC : 1.画线段取B ′C ′=BC ;2.分别以B ′、C ′为圆心,线段AB 、AC 为半径画弧,两弧交于点A ′; 3.连接线段A ′B ′、A ′C ′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?” 【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理. (1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS ”). (2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验. 二、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .(教师板书)【教师活动】分析例1,分析:要证明△ABD ≌△ACD ,可看这两个三角形的三条边是否对应相等. 证明:∵D 是BC 的中点, ∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本P8练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC≌△DFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.课本P15习题11.2第1,2题.2.选用课时作业设计.板书设计把黑板平均分成三份,左边部分板书“边边边”判定法,中间部分板书例题,右边部分板书练习.疑难解析证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是定义、公理、已学过的重要结论.第一课时作业设计一、证明题.1.已知:如图,AD=BC,AB=DC,求证:∠A=∠C.2.已知:如图,AB=EF,BC=FD,AD=EC,求证:∠B=∠F.3.如图,已知AB=AC,AD=AE,BD=CE,你能运用上面条件证明出几对三角形全等?•写出你的证明过程.二、问题探索.4.操作并回答:取一长方形纸片,用A、B、C、D表示其四个顶点.将其折叠,使点D与点B重合(如图).回答问题:(1)图中有没有全等形?如果有,请指出;(2)图中的△BEF与△BFD′虽然有公共边,但却不全等,试说明理由;(3)在图中画一条线段,使图形中出现全等三角形,并写出所出现的全等三角形(只画一条线段,并且是连接图中已用字母标出的某两个点).作业设计答案:一、1.提示:连接BD,证△ABD≌△CDB.2.提示:证明△ACB≌△EDF.3.2对(•证明略)二、4.略12.2.2 三角形全等判定(SAS)教学内容本节课主要内容是探索三角形全等的条件(SAS),及利用全等三角形证明.教学目标1.知识与技能领会“边角边”判定两个三角形的方法.2.过程与方法经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.3.情感、态度与价值观培养合情推理能力,感悟三角形全等的应用价值.重、难点及关键1.重点:会用“边角边”证明两个三角形全等.2.难点:应用结合法的格式表达问题.3.关键:在实践、观察中正确选择判定三角形全等的方法.教具准备投影仪、直尺、圆规.教学方法采用“操作──实验”的教学方法,让学生有一个直观的感受.教学过程一、回顾交流,操作分析【动手画图】【投影】作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA•于点C,•交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD•长为半径画弧,交前面的弧于点D1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.【导入课题】教师叙述:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1•中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O 1D 1,OC=O 1C 1,∠COD=∠C 1O 1D 1,△COD ≌△C 1O 1D 1. 归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力. 【媒体使用】投影显示作法.【教学形式】操作感知,互动交流,形成共识. 二、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,•使CE=CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB=DE .在△ABC 和△DEC 中,CA=CD ,CB=CE ,如果能得出∠1=∠2,△ABC 和△DEC•就全等了.证明:在△ABC 和△DEC 中12CA CDCB CE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEC (SAS ) ∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等) 【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写.【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.三、辨析理解,正确掌握【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC的端点B 重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC与△ABD满足两边及其中一边对角相等的条件,但△ABC与△ABD不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT;(2)以A为圆心,以适当长为半径,画弧,交BT于C、C′;(3)•连线AC,AC′,△ABC与△ABC′不全等.【形成共识】“边边角”不能作为判定两个三角形全等的条件.【教学形式】观察、操作、感知,互动交流.四、随堂练习,巩固深化课本P10练习第1、2题.【探研时空】一位经历过战争的老人讲述了这样一个故事:(如图2所示)在一次战役中,我军阵地与敌军碉堡隔河相望.为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,一个战士想出来这样一个办法,他面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转过一个角度,保持刚才的姿态,这时视线落在了自己所在岸的某一点上.接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与碉堡间的距离.(如图3所示)(1)按这个战士的方法,找出教室或操场上与你距离相等的两个点,•并通过测量加以验证.(2)你能解释其中的道理吗?【思路点拨】情境中使用的方法在实际应用中虽然是一种估测,但用到的原理都是三角形全等(SAS);教学中,让学生在教室里或操场上亲自做一做,•实际体验.五、课堂总结,发展潜能1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.六、布置作业,专题突破1.课本P15习题11.2第3、4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,其中右边部分板书“边角边”判定法,中间部分板书例题,右边部分板书练习题.疑难解析现阶段中的证明都比较简单,常遇到下列几种情况:(1)•利用中点定义证明线段相等;(2)利用垂直的定义证明角相等;(3)利用平行线的性质证明角相等;(4)•利用三角形的内角和等于180°证明角相等;(5)利用图形的和、差证明边或角相等.第二课时作业设计一、填空题.1.如图4,若AO=DO,只需补充________就可以根据SAS判定△AOB≌△DOC.(4) (5) (6)2.如图5,已知AB=BD,则需要添加条件________,就可以根据SSS判定△ABC•≌△DBC.40DCBA二、选择题.3.如图6,AB=CD ,AD=BC ,则图中全等的三角形有( ). A .4对 B .3对 C .2对 D .1对4.如图7,已知△ABC 中,BA=BC ,BD ⊥AC 于D ,若∠C=40°, 则∠ABE 为( ). (7)A .40°B .50°C .80°D .140° 三、证明题.5.如图8,点A ,B ,C ,D 在同一条直线上,EC=FD ,AE=BF ,AB=CD ,你能证明AE ∥BF ,•CE ∥DF 吗?写出推理过程.6.如图9,已知AB=AC ,AD=AE ,∠1=∠2,你能证明出∠B=∠C 吗?与同伴交流.四、探索题.7.如图10,已知∠1=∠2,BA=BD ,无论动点P 在BC 上如何移动,都能得到PA=PD ,•你能说出这是为什么吗?动手试一试.五、聚焦中考.8.如图11,在正方形ABCD 中,E 是AD 中点,F 是BA 延长线上一点,AF=12AB . (1)求证:△ABE ≌△ADF . (2)阅读下面材料:如图12,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置. 如图13,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置;如图14,以点A 为中心,把△ABC 旋轴180°,可以变到△AED 的位置.(11) (12) (13) (14)像这样,其中一个三角形是由另一个三角形按平行移动,翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:①在图11中,可以通过平行移动,翻折、旋转中的哪一种方法,使△ABE•变到△ADF的位置?②指出图11中线段BE与DF之间的关系.作业设计答案:一、1.BO=CO 2.AC=CD二、3.A 4.C三、5.提示:证明△AEC≌△BFD 6.证明△ABE≌△ACD四、7.略五、8.(1)AB=AD AD⊥AB ∴△BAE=∠DAF=90°(2)∵AE=12AD,AF=12AB,•∴AE=AF,∴△ABE≌△ADF.(3)①△ABE 绕点A逆时针旋转90°到△ADF的位置②BE=DF12.2.3 三角形全等判定(ASA)教学内容本节课主要内容是探索三角形全等的判定(ASA,AAS),•及利用全等三角形的证明.教学目标1.知识与技能理解“角边角”、“角角边”判定三角形全等的方法.2.过程与方法经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定法解决实际问题. 3.情感、态度与价值观培养良好的几何推理意识,发展思维,感悟全等三角形的应用价值.重、难点与关键1.重点:应用“角边角”、“角角边”判定三角形全等.2.难点:学会综合法解决几何推理问题.3.关键:把握综合分析法的思想,寻找问题的切入点.教具准备投影仪、幻灯片、直尺、圆规.教学方法采用“问题教学法”在情境问题中,激发学生的求知欲.教学过程一、回顾交流,巩固学习【知识回顾】(投影显示)情境思考:1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,•将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.(1) (2)[答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而EH=FH]2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=•DE(SSS)或∠BAC=∠DAE(SAS)].3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.【教师活动】操作投影仪,提出问题,组织学生思考和提问.【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.【教学形式】用问题牵引,辨析、巩固已学知识,在师生互动交流过程中,激发求知欲.二、实践操作,导入课题【动手动脑】(投影显示)问题探究:先任意画一个△ABC,再画出一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即使两角和它们的夹边对应相等),把画出的△A′B′C′剪下,•放到△ABC上,它们全等吗?D CBAE【学生活动】动手操作,感知问题的规律,画图如下:探究规律:两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA ”). 【知识铺垫】课本图11.2─8中,∠A ′=∠A ,∠B ′=∠B ,那么∠C=∠A ′C ′B•′吗?为什么? 【学生回答】根据三角形内角和定理,∠C ′=180°-∠A ′-∠B ′,∠C=180°-∠A-∠B ,由于∠A=∠A ′,∠B=∠B ′,∴∠C=∠C ′.【教师提问】在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF (课本图11.2─9),△ABC 与△DEF 全等吗?【学生活动】运用三角形内角和定理,以及“ASA ”很快证出△ABC ≌△EFD ,并且归纳如下: • •归纳规律:•两个角和其中一个角的对边对应相等的两个三角形全等(简与成AAS ). 三、范例点击,应用所学【例3】如课本图11.2─10,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C ,求证:AD=AE .【教师活动】引导学生,分析例3.•关键是寻找到和已知条件有关的△ACD•和△ABE ,再证它们全等,从而得出AD=AE .证明:在△ACD 与△ABE 中,()A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩公共角 ∴△ACD ≌△ABE (ASA ) ∴AD=AE【学生活动】参与教师分析,领会推理方法. 【媒体使用】投影显示例3. 【教学形式】师生互动.【教师提问】三角对应相等的两个三角形全等吗?【学生活动】与同伴交流,得到有三角对应相等的两个三角形不一定会全等,拿出三角板进行说明,如图3,下面这块三角形的内外边形成的△ABC和△A′B•′C′中,∠A=∠A′,∠B=∠B′,∠C=∠C′,但是它们不全等.(形状相同,大小不等).四、随堂练习,巩固深化课本P13练习第1,2题.【探研时空】1.如图4,小红不慎将一块三角形模具打碎为两块,•她是否可以只带其中一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?为什么?【思路点拨】这是一个实际问题,应带含有两个角的那一块,由“角边角”可知,利用这块能配出一个与原来全等的三角形模具.2.小颖在练习本上画一个三角形,小兰和她开个玩笑,•将墨迹污染到这块三角形的图形上(如图5),急得小颖直叫,•要小兰画出一个与原来完全一样的三角形来,小兰该怎么办呢?你能帮她吗?【思路点拨】观察图形,可知未被墨水污染的有两条边及其夹角,•根据“SAS”可以作一个与原来完全一样的三角形.五、课堂总结,发展潜能1.证明两个三角形全等有几种方法?如何正确选择和应用这些方法?2.全等三角形性质可以用来证明哪些问题?举例说明.3.你在本节课的探究过程中,有什么感想?六、布置作业,专题突破1.课本P15习题11.2第5,6,9,10题.2.选用课时作业设计.。
人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。
理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。
人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。
本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。
2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。
(2)难点:求解最短路径算法的程序实现。
3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。
依据教学大纲安排,重点讲解第一种状况问题的解决。
安排一个课时讲授。
教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。
二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。
2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。
(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。
3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。
三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。
教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。
由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。
四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。
2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。
3、课后给学生布置同类型任务,加强练习。
五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。
教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。
八年级上册数学教案人教版【优秀8篇】篇一:人教版八年级上册数学教案篇一一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。
而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。
所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
人教版八年级上册数学教案(通用10篇)八年级上册数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力。
2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。
3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。
重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用。
2.难点:灵活地应用公式法进行因式分解。
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的`。
教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容。
教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2。
【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。
3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2。
【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2。
【归纳公式】完全平方公式a2±2ab+b2=(a±b)2。
二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4。
【例2】如果x2+axy+16y2是完全平方,求a的值。
【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题。
总复习教案教导处签字:日期:年月日龙文教育教师一对一讲义教学目标:1.掌握八年级上册十一章至十五章的知识点2.能熟练的运用各章节的知识点解决相应的问题教学重点,难点:1.掌握八年级上册十一章至十五章的知识点2.能熟练的运用各章节的知识点解决相应的问题教学过程:第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。
第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线4.轴对称与轴对称图形的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中①关于x轴对称的点横坐标相等,纵坐标互为相反数;②关于y轴对称的点横坐标互为相反数,纵坐标相等;③关于原点对称的点横坐标和纵坐标互为相反数;④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;⑤关于与直线X=C或Y=C对称的坐标点(x, y)关于x轴对称的点的坐标为_ (x, -y)_____.点(x, y )关于y 轴对称的点的坐标为___(-x, y )___.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等 四、(等腰三角形)知识点回顾 1.等腰三角形的性质①.等腰三角形的两个底角相等。
(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一) 理解:已知等腰三角形的一线就可以推知另两线。
2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边) 五、(等边三角形)知识点回顾 1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。
2、等边三角形的判定:①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
第十三章 实数知识要点归纳一、实数的分类:正整数整数 零有理数 负整数 有限小数或无限循环小数正分数分数负分数 小数1.实数正无理数无理数 无限不循环小数负无理数2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数。
3、相反数与倒数;4、绝对值5、近似数与有效数字;6、科学记数法7、平方根与算术平方根、立方根;8、非负数的性质:若几个非负数之和为零 ,则这几个数都等于零。
二、复习1. 无理数:无限不循环小数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a20200002233..无理数的表示算术平方根定义如果一个非负数的平方等于,即那么这个非负数就叫做的算术平方根,记为,算术平方根为非负数平方根正数的平方根有个,它们互为相反数的平方根是负数没有平方根定义:如果一个数的平方等于,即,那么这个数就叫做的平方根,记为立方根正数的立方根是正数负数的立方根是负数的立方根是定义:如果一个数的立方等于,即,那么这个数就叫做的立方根,记为x a x a x a a a a x a a a x a x a x a a =≥⎧⎨⎪⎪⎩⎪⎪=±⎧⎨⎪⎪⎩⎪⎪=⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪30.实数及其相关概念概念有理数和无理数统称实数分类有理数无理数或正数负数绝对值、相反数、倒数的意义同有理数实数与数轴上的点是一一对应实数的运算法则、运算规律与有理数的运算法则运算规律相同。
⎧⎨⎪⎩⎪⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪第十四章 一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。
二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数. 三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象. 五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。
) 注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)列表法 (2)图像法 (3)解析式法 七、正比例函数与一次函数的概念:一般地,形如y=kx(k 为常数,且k ≠0)的函数叫做正比例函数.其中k 叫做比例系数。
一般地,形如y=kx+b (k,b 为常数,且k ≠0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例. 八、正比例函数的图象与性质:(1)图象:正比例函数y= kx (k 是常数,k ≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx 经过第三,一象限,从左向右上升,即随着x 的增大y 也增大;当k<0时,直线y= kx 经过二,四象限,从左向右下降,即随着 x 的增大y 反而减小。
九、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1. 一次函数与一元一次方程:从“数”的角度看x 为何值时函数y= ax+b 的值为0.2. 求ax +b =0(a , b 是常数,a ≠0)的解,从“形”的角度看,求直线y= ax+b 与 x 轴交点的横坐标3. 一次函数与一元一次不等式:解不等式ax +b >0(a ,b 是常数,a ≠0) .从“数”的角度看,x 为何值时函数y= ax+b 的值大于0.4.解不等式ax +b >0(a ,b 是常数,a ≠0) . 从“形”的角度看,求直线y= ax+b 在 x 轴上方的部分(射线)所对应的的横坐标的取值范围.5.一次函数与二元一次方程组:解方程组 从“数”的角度看,自变量(x )为何值时两个函数的值相等.并 求出这个函数值 解方程组 从“形”的角度看,确定两直线交点的坐标. ⎪⎩⎪⎨⎧=-=+c b a c b ay x y x 222111⎪⎩⎪⎨⎧=-=+cb ac b a y x y x 222111第十五章 整式乘除与因式分解一.回顾知识点1、主要知识回顾: 幂的运算性质:a m ·a n =a m +n (m 、n 为正整数) 同底数幂相乘,底数不变,指数相加. ()nm a = a mn (m 、n 为正整数) 幂的乘方,底数不变,指数相乘.()n n n b a ab = (n 为正整数)积的乘方等于各因式乘方的积.n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减. 零指数幂的概念: a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l . 负指数幂的概念:a -p =p a 1 (a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数.也可表示为:ppn m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加. 多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 2、乘法公式: ①平方差公式:(a +b )(a -b )=a 2-b 2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差. ②完全平方公式:(a +b )2=a 2+2ab +b 2 (a -b )2=a 2-2ab +b 2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解. 掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可; (2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止. 弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式. 二、熟练掌握因式分解的常用方法. 1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的. 2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用; 常用的公式:①平方差公式: a 2-b 2= (a +b )(a -b ) ②完全平方公式:a 2+2ab +b 2=(a +b )2 a 2-2ab +b 2=(a -b )2典型例题:例1:如图,直线b kx y +=交坐标轴于A (-2,0)、B (0,3)两点,则不等式0 b kx +的解集是( )A 、2- xB 、3 xC 、2- xD 、3 x例2、4的平方根是___________例3.如图,数轴上A 、B 、C 三点中,表示3的点是_______________例4.计算:()4322a a ∙=_____________例5已知函数53-=x y ,当x=2时,y=________________例6.如图,在ABC ∆中,90=∠C °,AD 平分CAB ∠,BC=8cm ,BD=5cm ,点D 到直线AB 的距离是__________________cm例7.如图,三角形纸片ABC ,AB=10cm ,BC=7cm ,AC=6cm ,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则AED ∆的周长为________cm 。