利用SPSS进行判别分析的几个问题的说明_陈敏琼
- 格式:pdf
- 大小:725.80 KB
- 文档页数:7
判别分析实验报告SPSS实验目的:判别分析(Discriminant Analysis)是一种经典的多元统计分析方法,用于解释和预测分类变量。
该实验旨在使用SPSS软件进行判别分析,探索一组变量对分类结果的贡献和预测能力。
实验步骤:1.数据收集:从一些公司的人力资源数据库中随机选择了200个员工作为样本,收集了以下变量:性别(男、女)、教育程度(本科、研究生、博士)、工龄(年)、绩效评分(0-5)、离职与否(是、否)。
2.数据清洗:检查数据中是否存在缺失值,并对缺失值进行处理。
删除离职与否变量中缺失值。
3.数据探索:使用SPSS进行描述性统计分析,了解样本的基本情况。
分别计算男女性别比例和各教育程度及离职状态的分布情况。
4. 变量选择:使用SPSS进行判别分析,将离职与否作为分类变量,性别、教育程度、工龄和绩效评分作为预测变量。
使用Wilks' Lambda检验选择预测变量,确定对分类结果的贡献。
5.判别函数计算:根据选择的预测变量,计算判别函数。
使用判别函数对样本进行分类,并计算分类结果的准确率。
实验结果:1.数据探索结果显示,样本中男女性别比例约为1:1,教育程度主要集中在本科和研究生,离职比例为14%。
2. 判别分析结果显示,Wilks' Lambda检验结果为0.632,p值小于0.05,说明选取的预测变量对分类结果有统计上显著的贡献。
3.计算得到的判别函数为D=-0.311(性别)+0.236(教育程度)+0.011(工龄)+0.585(绩效评分)。
4.使用判别函数对样本进行分类,分类准确率为81.5%。
其中,离职样本的分类准确率为75%,非离职样本的分类准确率为82%。
实验结论:通过判别分析实验,我们得出以下结论:1.性别、教育程度、工龄和绩效评分这四个变量对员工的离职与否有显著的预测能力。
2.预测变量中绩效评分对离职结果的贡献最大,说明绩效评分较低的员工更容易离职。
实验4判别分析的SPSS 实现【实验目的】判别分析是判别样品所属类型的一种统计方法。
本实验要求学生应用距离判别准则(即,对任给的一次观测,若它与第i 类的重心距离最近,就认为它来自第i 类),对两总体和多总体情形下分别进行判别分析。
实验中需注意协方差矩阵相等时,选取线性判别函数.【实验内容】一、 实现判别分析的软件操作二、 学会用Wilks ’Lambda 检验判断判别函数的显著性三、 从软件结果中写出分类函数(Fisher 判别函数),并利用Fisher 判别函数对待判样本判别四、 从软件结果中写出非标准的判别函数,从而计算Z 得分并建立分割点,然后对待判样本进行分类,在dis_1栏中读取。
1、例4.1,一个城市的居民家庭,按其有无割草机可分为两组,有割草机一组,记为1π无割草机一组记为2π,割草机工厂预判断一些家庭是否购买割草机,从1π 和2π分别随机抽取12个样品,调查两项之指标:1x =家庭收入,2x =房前屋后土地面积。
数据如表4-1.表4.1第一份《人类发展报告》中公布的。
该报告建议,目前对人文发展的衡量应当以人生的三大要素的指标指示分别采用出生时的预期寿命、成人识字率和实际人均GTP ,将以上三个指标指示数值合成为一个复合指数,即人文发展指数。
表2X1:0岁组死亡概率 X2:1岁组死亡概率X4:55岁组死亡概率X5:80岁组死亡概率4、对全国30个省、市自治区1994年影响各地区经济增长差异的制度变量:X1——经济增长率(%)、X2——非国有化水平(%)、X3——开放度(%)、X4——市场化程度(%)作判别分析。
5、研究某年全国各地区农民家庭收支分布规律,根据抽样调查资料进行分类处理,抽取28个省、市、自治区的样本,每个样本有六个指标。
先采用聚类分析将28个样本分为3类,其中有3个样本(北京、上海、广州)属于孤立样本,未归属于已分的三类中,现采用多组判别分析判定这28个样本的所属类别。
判别分析1.基本理解判别分析用于处理已知分类情况的数据集,将未知分类数据归入已知的分类中。
判别分析过程基于对变量的函数组合,变量应能够充分地体现各个类别之间的差异。
从已知变量类别的样本中拟合判别函数,后根据判别函数将新样本进行类别归类。
在P维空间中,有K个相关已知类别的总体G1,G2,G3,....Gk,单个的预测样本记为Xi =(Xi1,Xi2,Xi3,....,Xip),i=1,2,3,....n,样本属于K个总体的一个,P个变量为判别指标,判别函数就是确定样本属于哪一类别。
判别函数的两种判别方法:(1)贝叶斯判别:是一种概率型的判别函数,开始需要知道各个类别的先验概率或分布密度,后计算每个样本属于某个类别的最大概率或最小错判损失,并以此归类。
类别概率计算公式:P(Gi|D)=P(D|Gi)P(Gi)/ΣP(D|Gi)P(Gi),其中P(Gi)为属于i类的先验概率,P(D|Gi)为在第i类中得D分的条件概率,而P(Gi|D)为在第i类中得D分的后验概率。
(2)Fisher判别:是一种依据方差分析原理建立的判别方法,基本思路为投影。
对P维空间中的点Xi =(Xi1,Xi2,Xi3, (X)in),i=1,2,3,....,n,找到一组线性函数Ym (Xi)=×B,m=1,2,3,....,m,一般m<p,依据组间均方差与组内均方差之比最大的原则,选择最优的线性函数。
判别分析的一般步骤:(1):依据已知类别的观测集建立分类规则或判别规则。
(2):运用所建规则对样本进行分类检验,得到各样本的判别准确率。
(3):选择拥有较高准确率的判别规则,应用于新样本的类别判断。
2.判别分析操作步骤判别函数第一步:首先将已确定分类情况的数据到spss软件中,点击分析、分类、判别式。
图1第一步第二步:进入判别分析勾选框后首先将变量列表中的变量放入右侧的变量框中,将因变量(已知分组情况变量)放入分组变量框并定义好范围,点击继续,将自变量放入自变量框中。
SPSS操作方法:判别分析例题为研究1991年中国城镇居民月平均收入状况,按标准化欧氏平方距离、离差平方和聚类方法将30个省、市、自治区.分为三种类型。
试建立判别函数,判定广东、西藏分别属于哪个收入类型。
判别指标及原始数据见表9-4。
1991年30个省、市、自治区城镇居民月平均收人数据表单位:元/人 x1:人均生活费收入 x6:人均各种奖金、超额工资(国有+集体) x2:人均国有经济单位职工工资 x7:人均各种津贴(国有+集体)x3:人均来源于国有经济单位标准工资x8:人均从工作单位得到的其他收入x4:人均集体所有制工资收入 x9:个体劳动者收入5贝叶斯判别的SPSS操作方法:1. 建立数据文件2.单击Analyze→ Classify→ Discriminant,打开Discriminant Analysis 判别分析对话框如图1所示:图1 Discriminant Analysis判别分析对话框3.从对话框左侧的变量列表中选中进行判别分析的有关变量x1~x9进入Independents 框,作为判别分析的基础数据变量。
从对话框左侧的变量列表中选分组变量Group进入Grouping Variable 框,并点击Define Range...钮,在打开的Discriminant Analysis: Define Range对话框中,定义判别原始数据的类别数,由于原始数据分为3类,则在Minimum(最小值)处输入1,在Maximum(最大值)处输入3(见图2)。
选择后点击Continue按钮返回Discriminant Analysis主对话框。
图2 Define Range对话框4、选择分析方法Enter independent together 所有变量全部参与判别分析(系统默认)。
本例选择此项。
Use stepwise method 采用逐步判别法自动筛选变量。
单击该项时Method 按钮激活,打开Stepwise Method对话框如图3所示,从中可进一步选择判别分析方法。
判别分析的SPSS实现判别分析是一种常用的统计方法,也是一种分类的机器学习方法。
它的目的是使用已知的分类信息来训练一个分类模型,然后根据这个模型来预测新的未知实例的分类。
SPSS是一种常用的统计软件,提供了方便易用的界面来进行判别分析。
下面将介绍如何在SPSS中进行判别分析。
首先,打开SPSS软件并加载要进行判别分析的数据。
可以通过"File"->"Open"来打开数据文件,或者直接将数据文件拖动到SPSS界面中。
然后,选择"Analyze"->"Classify"->"Discriminant",进入判别分析的界面。
在界面中,需要选择要进行判别分析的变量,包括一个或多个预测变量和一个分类变量。
预测变量是判别分析模型的输入,而分类变量是判别分析模型的输出。
可以使用鼠标将变量从"Available"列表拖动到"Predictors"和"Target"列表中。
接下来,可以点击"Statistics"按钮来选择统计量。
在判别分析中,有几个常用的统计量可以选择。
例如,可以选择"Wilks' lambda"来衡量判别分析模型的预测准确率,或者选择"Group centroids"来了解不同分类的均值差异。
然后,点击"Options"按钮来设置其他选项。
在"Options"界面中,可以选择是否标准化变量,即将变量标准化为均值为0和标准差为1的形式。
标准化可以使得不同变量的尺度一致,有助于提高判别分析的性能。
此外,还可以选择输出判别函数的系数和判别函数值,以及设定分类概率的阈值等。
最后,点击"OK"按钮开始进行判别分析。
判别分析的一般步骤及SPSS实现判别分析是一种用于分类变量的统计方法,它可以用于确定一个或多个预测变量对于区分不同组之间差异的程度。
判别分析由一系列步骤组成,包括问题的定义、数据的准备、模型的建立、模型的评估和结果的解释。
以下是判别分析的一般步骤以及如何在SPSS中实现这些步骤的详细说明。
第一步:问题的定义在进行判别分析之前,需要明确研究的目的和问题。
例如,我们可能希望根据顾客的一些特征(如性别、年龄、收入等)来预测顾客是否购买一些产品。
这样的问题可以通过判别分析解决。
第二步:数据的准备在进行判别分析之前,需要确保数据满足分析的要求。
数据应包括一个或多个预测变量和一个分类变量。
如果数据中存在缺失值,需要进行缺失值的处理。
如果数据中存在异常值,可以选择忽略或进行适当的修正。
第三步:模型的建立在SPSS中,可以使用“分类函数”来建立判别分析模型。
选择“分析”菜单中的“分类”选项,然后选择“判别”子菜单。
在“判别”对话框中,选择一个或多个预测变量,并将分类变量指定为“因变量”。
此外,还可以选择是否进行卡方检验以及是否使用交叉验证等选项。
卡方检验可以用于评估预测变量与分类变量之间的关联性,而交叉验证可以用于评估模型对于不同样本的预测效果。
第四步:模型的评估在SPSS中,判别分析的模型评估结果可以在“判别”输出中找到。
主要关注以下几个指标:1.方差贡献表:可以查看每个预测变量对于判别函数的贡献程度,以及它们之间的相关性。
2.群组描述:可以查看不同组之间的平均值,以确定最能区分不同组的预测变量。
3.准确性表:可以查看模型的整体分类准确率以及每个组的分类准确率。
4.标准化系数表:可以查看每个预测变量对于判别函数的贡献程度,使用标准化系数来比较不同预测变量的影响。
第五步:结果的解释对于判别分析的结果进行解释是非常重要的,以帮助我们理解预测变量如何影响分类变量,并从中得出有用的结论。
可以通过参考判别函数的系数、标准化系数和方差贡献来解释结果。
判别分析实验报告 SPSS一、实验目的判别分析是一种用于分类和预测的统计方法。
本次实验旨在通过使用 SPSS 软件,掌握判别分析的基本原理和操作流程,能够运用判别分析方法对实际数据进行分类,并对分类结果进行评估和解释。
二、实验数据本次实验使用的数据集包含了两个类别(类别 A 和类别 B)的样本,每个样本具有若干个特征变量,如年龄、收入、教育程度等。
数据集共有 200 个样本,其中类别 A 有 100 个样本,类别 B 有 100 个样本。
三、实验步骤1、数据导入首先,打开 SPSS 软件,选择“文件”菜单中的“打开”选项,将实验数据文件导入到 SPSS 中。
2、变量定义在 SPSS 数据视图中,对各个变量进行定义,包括变量名称、变量类型、变量标签等。
3、判别分析操作选择“分析”菜单中的“分类”子菜单,然后点击“判别分析”选项。
在弹出的判别分析对话框中,将类别变量选入“分组变量”框中,将其他特征变量选入“自变量”框中。
4、选择判别方法SPSS 提供了多种判别方法,如费希尔判别法、贝叶斯判别法等。
本次实验选择费希尔判别法。
5、模型评估在判别分析结果中,查看判别函数的系数、判别函数的显著性检验、分类结果的准确性等指标,以评估模型的性能。
四、实验结果与分析1、判别函数系数判别函数的系数反映了各个自变量对判别函数的贡献程度。
通过查看系数的大小和符号,可以了解各个变量在区分不同类别中的重要性。
例如,年龄变量的系数为正,说明年龄越大,越有可能属于某个类别;而收入变量的系数为负,说明收入越低,越有可能属于另一个类别。
2、判别函数的显著性检验通过对判别函数的显著性检验,可以判断判别函数是否能够有效地区分不同的类别。
如果检验结果显著,说明判别函数具有统计学意义,可以用于分类。
3、分类结果SPSS 会给出每个样本的分类结果,以及分类的准确性。
通过比较实际类别和预测类别,可以评估模型的分类效果。
如果分类准确性较高,说明模型能够较好地对样本进行分类;如果分类准确性较低,则需要进一步分析原因,可能是数据质量问题、变量选择不当或者判别方法不合适等。
SPSS判别分析SPSS(Statistical Package for the Social Sciences)是一款广泛使用的统计分析软件,也提供了强大的判别分析功能。
本文将介绍SPSS中判别分析的步骤、应用以及结果的解读。
一、判别分析的步骤1.数据准备:首先,将已知类别的样本数据录入SPSS中,每个样本对应一个实例,每个实例有一组预测变量和一个类别变量。
2.变量选择:选择要作为预测变量的特征或属性,并将其加入模型。
通常,只有连续型或分类型的自变量(预测变量)可以用于判别分析。
3.数据分割:将已知类别的样本数据分为训练集和测试集,一般按照70%的比例划分。
4.判别模型:使用SPSS中的判别分析功能建立判别模型。
在SPSS中,可以通过路径“分析-分类-判别”打开判别分析对话框。
5.模型评估:使用测试集来评估模型的准确性和性能。
可以查看分类结果的混淆矩阵,计算预测准确率、召回率、F1值等指标。
6.结果解读:根据模型的解读提示,分析各个预测变量对判别结果的重要性,找出主要影响判别的变量。
二、判别分析的应用领域判别分析广泛应用于各个领域,包括社会科学、医学、市场营销等。
以下是几个常见的应用案例:1.疾病诊断:通过患者的生物特征(如血液检测结果、基因表达谱等)来判断是否患有其中一种疾病。
2.风险评估:用于评估贷款申请者的信用风险,根据一些个人特征(如年龄、收入、居住地等)来预测违约概率。
3.市场细分:根据消费者的特征(如年龄、性别、购买行为等)将市场区分为不同的细分市场,以制定更精准的市场营销策略。
4.情感识别:通过分析文本数据(如社交媒体评论、产品评论等)来判断用户的情感倾向,以评估产品或服务的满意度。
三、结果解读判别分析的结果包括判别函数、判别系数和预测结果。
判别函数可以看作是一组线性加权的预测变量,用于将实例划分到不同的类别中。
判别系数表示了每个预测变量对判别结果的贡献程度,可以用于解释影响判断的主要变量。
SPSS中判别分析方法的正确使用判别分析是一种经典的统计方法,用于将一组观测值分配到不同的已知类别中。
它被广泛应用于分类问题,如客户群体分类、药物分类等。
在SPSS中,判别分析方法可以通过以下步骤正确使用:第一步:准备数据首先,需要准备一个用于判别分析的数据集。
该数据集应包含预测变量(也称为自变量)和所属类别(也称为因变量)两部分。
预测变量是用来解释类别分布的变量,而所属类别是需要预测或分类的变量。
确保数据集中不含有缺失值或异常值。
第二步:设置分析方法在SPSS中,可以通过点击“分析”菜单,然后选择“分类”子菜单中的“判别”选项来设置判别分析。
在弹出的对话框中,将需预测的类别(也称为因变量)移动到“因变量”框中,将预测变量(也称为自变量)移动到“自变量”框中。
可以选择要使用的分析方法,如方差判别分析、线性判别分析等,然后点击“确定”开始分析。
第三步:解读输出结果SPSS将生成一个判别分析的结果报告,包括描述性统计、判别函数、马氏距离以及判别图等。
可以通过阅读输出结果了解到判别函数如何区分不同的类别,以及判别图如何表示不同的类别之间的差异。
此外,还可以观察描述性统计结果,比较不同类别之间的平均值、方差等指标,进一步理解类别分布的特征。
第四步:交叉验证为了验证判别分析的准确性和稳定性,可以使用交叉验证方法。
在SPSS中,可以选择在判别分析对话框的“交叉验证”选项中设置交叉验证方法。
交叉验证将数据集分为几个部分,然后使用其中一部分数据来估计判别函数,再使用剩余的数据来验证判别函数的准确性。
通过交叉验证可以得到判别分析的预测正确率,以及其它评估指标。
第五步:解读结果根据判别分析的结果报告和交叉验证的准确性评估,可以判断判别分析方法的准确性和稳定性。
如果预测正确率较高且稳定,那么可以认为判别分析是一个有效的分类方法。
此外,还可以利用判别函数的系数和贡献度等信息,评估不同预测变量对类别分布的贡献程度。
总结:判别分析是一种常用的分类方法,可用于解决各种分类问题。
判别分析实验报告 SPSS一、实验目的及要求:1、目的用SPSS软件实现判别分析及其应用。
2、内容及要求用SPSS对实验数据利用Fisher判别法和贝叶斯判别法,建立判别函数并判定宿州、广安等13个地级市分别属于哪个管理水平类型。
二、仪器用具:仪器名称规格/型号数量备注计算机 1 有网络环境SPSS软件 1三、实验方法与步骤:准备工作,把实验所用数据从Word文档复制到Excel,并进一步导入到SPSS数据文件中,同时,由于只有当被解释变量是属性变量而解释变量是度量变量时,判别分析才适用,所以将城市管理的7个效率指数变量的变量类型改为“数值,N,”,度量标准改为“度量,S,”,以备接下来的分析。
四、实验结果与数据处理:表1 组均值的均等性的检验Wilks 的 Lambda F df1 df2 Sig. 综合效率标准指数 .582 23.022 264 .000 经济效率标准指数 .406 46.903 2 64 .000 结构效率标准指数 .954 1.560 2 64 .218 社会效率标准指数 .796 8.225 2 64 .001 人员效率标准指数 .342 61.645 2 64 .000 发展效率标准指数 .308 71.850 2 64 .000 环境效率标准指数 .913 3.054 2 64 .054表1是对各组均值是否相等的检验,由该表可以看出,在0.05的显著性水平1上我们不能拒绝结构效率标准指数和环境效率标准指数在三组的均值相等的假设,即认为除了结构效率标准指数和环境效率标准指数外,其余五个标准指数在三组的均值是有显著差异的。
表2 对数行列式group 秩对数行列式 1 6 -33.410 2 6 -33.177 3 6 -40.584 汇聚的组内 6 -32.308 打印的行列式的秩和自然对数是组协方差矩阵的秩和自然对数。
表3 检验结果箱的 M 140.196 F 近似。
spss进⾏判别分析步骤_spss判别分析结果解释_spss判别分析案例详解1.Discriminant Analysis判别主对话框如图 1-1 所⽰图 1-1 Discriminant Analysis 主对话框(1)选择分类变量及其范围在主对话框中左⾯的矩形框中选择表明已知的观测量所属类别的变量(⼀定是离散变量),按上⾯的⼀个向右的箭头按钮,使该变量名移到右⾯的Grouping Variable 框中。
此时矩形框下⾯的Define Range 按钮加亮,按该按钮屏幕显⽰⼀个⼩对话框如图1-2 所⽰,供指定该分类变量的数值范围。
图 1-2 Define Range 对话框在Minimum 框中输⼊该分类变量的最⼩值在Maximum 框中输⼊该分类变量的最⼤值。
按Continue 按钮返回主对话框。
(2)指定判别分析的⾃变量图 1-3 展开 Selection Variable 对话框的主对话框在主对话框的左⾯的变量表中选择表明观测量特征的变量,按下⾯⼀个箭头按钮。
把选中的变量移到Independents 矩形框中,作为参与判别分析的变量。
(3)选择观测量图 1-4 Set Value ⼦对话框如果希望使⽤⼀部分观测量进⾏判别函数的推导⽽且有⼀个变量的某个值可以作为这些观测量的标识,则⽤Select 功能进⾏选择,操作⽅法是单击Select 按钮展开Selection Variable。
选择框如图1-3 所⽰。
并从变量列表框中选择变量移⼊该框中再单击Selection Variable 选择框右侧的Value按钮,展开Set Value(⼦对话框)对话框,如图1-4 所⽰,键⼊标识参与分析的观测量所具有的该变量值,⼀般均使⽤数据⽂件中的所有合法观测量此步骤可以省略。
(4)选择分析⽅法在主对话框中⾃变量矩形框下⾯有两个选择项,被选中的⽅法前⾯的圆圈中加有⿊点。
这两个选择项是⽤于选择判别分析⽅法的l Enter independent together 选项,当认为所有⾃变量都能对观测量特性提供丰富的信息时,使⽤该选择项。
SPSS中判别分析的使用——以语言学实验为例
瞿健菊
【期刊名称】《文教资料》
【年(卷),期】2015(000)034
【摘要】判别北分析是多元统计分析中最常用的方法之一.该文结合一个语言学实验的例子对SPSS判别分析的操作步骤和输出结果作了详细的介绍,并对判别分析的不同方法在SPSS中的使用进行了区分.
【总页数】3页(P16-18)
【作者】瞿健菊
【作者单位】南京师范大学文学院,江苏南京 210097
【正文语种】中文
【相关文献】
1.应用SPSS软件实现环境统计中的判别分析
2.判别分析和SPSS的使用
3.本地方言的使用在英语语言学课程教学中的利弊探析r——以《新编语言学教程》为例
4.ERPs实验在我国语言学研究中的使用情况
——基于国内语言学专业硕、博士毕业论文的调查5.SPSS中判别分析方法的正确使用
因版权原因,仅展示原文概要,查看原文内容请购买。