有限元方法与ANSYS简介
- 格式:ppt
- 大小:5.79 MB
- 文档页数:83
学会使用AnsysWorkbench进行有限元分析和结构优化Chapter 1: Introduction to Ansys WorkbenchAnsys Workbench是一款广泛应用于工程领域的有限元分析和结构优化软件。
它的功能强大,能够帮助工程师在设计过程中进行力学性能预测、应力分析以及结构优化等工作。
本章节将介绍Ansys Workbench的基本概念和工作流程。
1.1 Ansys Workbench的概述Ansys Workbench是由Ansys公司开发的一套工程分析软件,主要用于有限元分析和结构优化。
它集成了各种各样的工具和模块,使得用户可以在一个平台上进行多种分析任务,如结构分析、热分析、电磁分析等。
1.2 Ansys Workbench的工作流程Ansys Workbench的工作流程通常包括几个基本步骤:(1)几何建模:通过Ansys的几何建模功能,用户可以创建出需要分析的结构的几何模型。
(2)加载和边界条件:在这一步骤中,用户需要为结构定义外部加载和边界条件,如施加的力、约束和材料特性等。
(3)网格生成:网格生成是有限元分析的一个关键步骤。
在这一步骤中,Ansys Workbench会将几何模型离散化为有限元网格,以便进行分析计算。
(4)材料属性和模型:用户需要为分析定义合适的材料属性,如弹性模量、泊松比等。
此外,用户还可以选择适合的分析模型,如静力学、动力学等。
(5)求解器设置:在这一步骤中,用户需要选择适当的求解器和设置求解参数,以便进行分析计算。
(6)结果后处理:在完成分析计算后,用户可以对计算结果进行后处理,如产生应力、位移和变形等结果图表。
Chapter 2: Finite Element Analysis with Ansys Workbench本章将介绍如何使用Ansys Workbench进行有限元分析。
我们将通过一个简单的示例,演示有限元分析的基本步骤和方法。
ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE 工具之一。
CAE的技术种类CAE的技术种类有很多,其中包括有限元法(FEM,即Finite Element Method),边界元法(BEM,即Boundary Element Method),有限差法(FDM,即Finite Difference Element Method)等。
每一种方法各有其应用的领域,而其中有限元法应用的领域越来越广,现已应用于结构力学、结构动力学、热力学、流体力学、电路学、电磁学等。
ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。
因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。
软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。
前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。
软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。
该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。
有限元分析ANSYS简单入门教程有限元分析(finite element analysis,简称FEA)是一种数值分析方法,广泛应用于工程设计、材料科学、地质工程、生物医学等领域。
ANSYS是一款领先的有限元分析软件,可以模拟各种复杂的结构和现象。
本文将介绍ANSYS的简单入门教程。
1.安装和启动ANSYS2. 创建新项目(Project)点击“New Project”,然后输入项目名称,选择目录和工作空间,并点击“OK”。
这样就创建了一个新的项目。
3. 建立几何模型(Geometry)在工作空间内,点击左上方的“Geometry”图标,然后选择“3D”或者“2D”,根据你的需要。
在几何模型界面中,可以使用不同的工具进行绘图,如“Line”、“Rectangle”等。
4. 定义材料(Material)在几何模型界面中,点击左下方的“Engineering Data”图标,然后选择“Add Material”。
在材料库中选择合适的材料,并输入必要的参数,如弹性模量、泊松比等。
5. 设置边界条件(Boundary Conditions)在几何模型界面中,点击左上方的“Analysis”图标,然后选择“New Analysis”并选择适合的类型。
然后,在右侧的“Boundary Conditions”面板中,设置边界条件,如约束和加载。
6. 网格划分(Meshing)在几何模型界面中,点击左上方的“Mesh”图标,然后选择“Add Mesh”来进行网格划分。
可以选择不同的网格类型和规模,并进行调整和优化。
7. 定义求解器(Solver)在工作空间内,点击左下方的“Physics”图标,然后选择“Add Physics”。
选择适合的求解器类型,并输入必要的参数。
8. 运行求解器(Run Solver)在工作空间内,点击左侧的“Solve”图标。
ANSYS会对模型进行求解,并会在界面上显示计算过程和结果。
ANSYS16.0有限元分析从⼊门到精通(第2版)ANSYS 16.0有限元分析从⼊门到精通(第2版)第⼀部分 基础知识1 绪论1.1 有限元法概述1.1.1 有限元法分析过程1.1.2 有限元的⽅法和理论⼿段1.2 ANSYS 16.0简介1.2.1 ANSYS启动与退出1.2.2 ANSYS操作界⾯1.2.3 ANSYS⽂件管理1.2.4 ANSYS分析流程1.2.5 分析实例⼊门1.3 本章⼩结2 APDL基础应⽤2.1 APDL参数2.1.1 参数的概念与类型2.1.2 参数命名规则2.1.3 参数的定义与复制操作2.1.4 参数的删除操作2.1.5 数组参数2.2 APDL的流程控制2.2.1 *GO分⽀语句2.2.2 *IF分⽀语句2.2.3 *DO循环语句2.2.4 *DOWHILE循环语句2.3 宏⽂件2.3.1 创建宏⽂件2.3.2 调⽤宏⽂件2.4 运算符、函数与函数编辑器2.5 本章⼩结3 实体建模3.1 实体建模操作概述3.2 ⽤⾃下向上的⽅法建模3.3 ⾃顶向下法3.4 外部程序导⼊模型3.5 常⽤建模命令汇总3.6 实体模型的建⽴3.7 本章⼩结4 划分⽹格4.1 定义单元属性4.2 设置⽹格划分控制4.2.1 智能⽹格划分4.2.2 全局单元尺⼨控制4.2.3 默认单元尺⼨控制4.2.4 关键点尺⼨控制4.2.5 线尺⼨控制4.2.6 ⾯尺⼨控制4.2.7 单元尺⼨定义命令的优先顺序4.2.8 完成划分4.3 ⽹格的修改4.3.1 清除⽹格4.3.2 ⽹格的局部细化4.3.3 层状⽹格划分4.4 ⾼级⽹格划分技术4.4.1 单元选择4.4.2 映射⽹格4.4.3 扫掠⽹格4.4.4 拉伸⽹格4.5 划分⽹格命令汇总4.6 本章⼩结5 加载5.1 载荷与载荷步5.1.1 载荷5.1.2 载荷步5.2 加载⽅式5.2.1 实体加载的特点5.2.2 有限元模型的加载特点5.3 施加载荷5.4 齿轮泵模型的加载5.5 耦合与约束⽅程5.5.1 耦合5.5.2 约束⽅程5.6 本章⼩结6 求解6.1 求解综述6.2 例题6.3 求解命令汇总6.4 本章⼩结7 后处理7.1 通⽤后处理器7.1.1 结果⽂件7.1.2 结果输出7.1.3 结果处理7.1.4 结果查看器7.2 时间历程后处理器7.2.1 时间历程变量浏览器7.2.2 定义变量7.2.3 显⽰变量7.3 本章⼩结第⼆部分 专题技术8 结构静⼒分析8.1 结构分析概述8.1.1 结构分析的定义8.1.2 静⼒学分析的基本概念8.1.3 结构静⼒学分析的⽅法8.2 开孔平板静⼒分析8.2.1 问题描述8.2.2 设置分析环境8.2.3 定义单元与材料属性8.2.4 建⽴模型8.2.5 划分⽹格8.2.6 施加边界条件8.2.7 求解8.2.8 显⽰变形图8.2.9 显⽰结果云图8.2.10 查看⽮量图8.2.11 查看约束反⼒8.2.12 查询危险点坐标8.3 平⾯应⼒分析8.3.1 问题描述8.3.2 设置分析环境8.3.3 定义⼏何参数8.3.4 选择单元8.3.5 定义实常数8.3.6 定义材料属性8.3.7 创建实体模型8.3.8 设定⽹格尺⼨并划分⽹格8.3.9 施加载荷并求解8.3.10 求解8.3.11 查看分析结果8.3.12 命令流8.4 本章⼩结9 模态分析9.1 模态分析的基本假设9.2 模态分析⽅法9.3 ⽴体桁架结构模态分析9.3.1 问题描述9.3.2 分析9.3.3 设置环境变量9.3.4 设置材料属性9.3.5 创建⼏何模型9.3.6 划分⽹格9.3.7 施加约束9.3.8 设置分析类型9.3.9 设置分析选项9.3.10 求解9.3.11 观察固有频率结果9.3.12 读⼊数据结果9.3.13 观察振型等值线结果。