框架结构ANSYS有限元分析报告
- 格式:pdf
- 大小:1.48 MB
- 文档页数:40
汽车经过130多年的发展,安全与节能已成为汽车设计的重要容。
在汽车结构中,车架作为整车的基体和主要承载部件,具有支撑连接汽车各零部件和承受来自汽车、外各种载荷的作用,其结构性能直接关系到整车性能的好坏。
本文以某运油车车架为研究对象,运用CATIA软件对车架模型进行简化与建立,利用ANSYS软件对车架模型进行参数定义,网格划分,作用力施加,自由度约束,并对车架进行了弯曲工况、扭转工况、急减速工况、急转弯工况的静态分析,并分析位移与应力图,为汽车安全与节能设计提供了理论支持。
同时对车架也进行了模态分析,得出车架的固有频率与振型,提高整车设计水平,对避免共振与提高乘坐舒适性提供了理论基础。
关键字:车架,有限元,ANSYS, 静态分析,模态分析The automobile which has developed for 130 years, security and energy saving has become the leading content for automobile deign. Among the many complex structures in automobile, the frame of the vehicle is the basic part and the main bearing part. It has the function of connecting all parts of the vehicle together and subjecting various loads from inside and outside the vehicle. The performance of frame structure affects whether the automobile property is good or not.In this paper, the frame of a fuel tanker is studied. We simplify and establish the model of frame by CATIA. The parameter of the frame is defined. The model of frame is meshed by ANSYS. Add the force and freedom of the model of frame by ANSYS. The static analysis of the frame includes the situation of bending, torsion, barking and swerve by ANSYS. According to the figure of displacement and stress, it provide theoretical support for the automobile design of security and energy saving. At the same time, the modal analysis of the frame is also studied. Based on the frame of natural frequency and vibration mode, it provide theoretical basis for avoiding resonance and improving ride comfort and improve the level of vehicle design.Keywords: Frame, Finite element, ANSYS, Static analysis, Modal analysis目录1 绪论 (1)1.1 概述 (1)1.2 研究背景 (1)1.3 有限元法的应用与发展 (2)1.4 选题的目的与意义 (2)1.5 本文的主要研究容 (3)2 基于CATIA与ANSYS的车架有限元建模 (4)2.1 有限元法简介 (4)2.2 CATIA软件简介 (6)2.3 车架几何模型建立 (7)2.3.1车架几何模型简化 (7)2.3.2 车架几何模型建立 (7)2.4 车架有限元模型建立 (10)2.4.1 网格划分前处理 (10)2.4.2 车架有限元网格的划分 (10)3 车架有限元静态分析 (13)3.1 汽车车架刚度理论 (13)3.1.1 汽车车架弯曲刚度 (13)3.1.2 汽车车架扭转刚度 (13)3.2 车架载荷分类与处理 (13)3.2.1 静载荷 (13)3.2.2 动载荷 (14)3.3 车架工况的有限元分析 (14)3.3.1 满载弯曲工况 (14)3.3.2 满载扭转工况 (16)3.3.3 紧急制动工况 (18)3.3.4 紧急转弯工况 (19)4 车架有限元模态分析 (21)4.1 模态分析简介 (21)4.2 模态分析基本理论 (21)4.3 车架的模态分析 (22)4.4 车架模态分析结果评价 (27)结论 (29)致 (31)参考文献 (32)1 绪论1.1 概述最初汽车的发展,通常运用经验判断和试验仿真进行结构分析。
三梁平面框架结构的有限元分析一、问题说明如图1所示的框架结构,其顶端受均布载荷作用,用有限元方法分析该结构的位移。
结构中各个部分的参数为:弹性模量E=300GPa,截面惯性矩I=6.5×105mm4,横截面积A=680mm2。
相应的有限元分析模型见图2,利用梁板壳分析程序完成该模型的力学分析。
图1框架结构图2有限元分析模型二.Fortran程序的输入数据(1)Facile.11 4 3 6 0 12 42 1 11 1 11 3 51 2 2 3 3 40 0 0 0 1000 01000 1000 0 1000 0 0(2)Facile.2111 211 1111 0 0 0 1 03E5 1.6E5680 6.5E5 6.5E5 6.5E50 0(3)Facile.312 41 02 03 04 05 06 0 19 0 20 0 21 0 22 023 0 24 08 -1200 12 -200000 14 -1200 18 200000输出的数据文件为:Facile7和Facile8,其中各节点位移结果在文件Facile8中。
三.计算结果各节点的位移计算结果见表1。
四.Ansys分析结果Ansys计算结果如下图所示,图3为节点x方向的位移云图,图4为节点y 方向的位移云图,图5为节点转角云图。
图3 节点x方向的位移图4 节点y方向的位移图5 节点转角各节点的位移值见表2。
五.结果对比通过对比表1和表2中的数据可以发现,Fortran程序与Ansys分析的结果十分接近。
有限元分析实验报告(总16页)
一、实验介绍
《有限元分析实验》是一门介绍有限元(Finite Element,FE)分析技术和其应用的
实验课程。
本实验关注有限元分析的模拟原理和方法。
实验的主要内容是用有限元的概念
在ANSYS软件中进行结构力学分析。
主要涉及载荷分析、屈曲、几何非线性及拓扑优化等
内容。
二、实验仪器及软件
1.仪器设备:绘图仪、计算机、网络线缆
2.软件:ANSYS 、AutoCAM
三、设计要求
1.以ANSYS软件进行结构力学分析。
2.针对给定结构,设计并进行一维载荷分析,并对多自由度系统非线性载荷进行考虑,考虑实验/实测材料材料屈曲与应变的变形行为。
3.由于结构的复杂性,需要进行拓扑优化,提高结构的刚度和强度,并最终获得合理
的设计。
四、实验结果
通过软件模拟的过程,获得了结构的建模、载荷变形、板材截面结构的优化和变形分
析等数据。
通过这些数据,结构的刚度和强度得到了大幅增强,可以很好地满足设计要求。
在材料变形分析方面,不论是应变还是屈曲方面,力与变形之间的关系也得到了明确的表示,用于进一步对其进行后续实验处理。
五、结论
通过本次实验,我们能够得出以下几个结论:
1.通过有限元(Finite Element,FE)分析的模拟,我们可以更有效地求解复杂的结
构力学问题,从而提高能源利用效率。
2.有限元分析不仅可以识别结构的局部变形行为,还可以用于优化结构,提高其刚度
和强度。
3.有限元可以用于几何非线性及拓扑优化方面的研究,具有重要的技术意义和应用价值。
ANSYS有限元分析报告1. 简介在工程设计领域,有限元分析是一种常用的数值分析方法,通过将复杂的结构划分为有限数量的单元,然后对每个单元进行力学和物理特性的计算,最终得出整个结构的响应。
ANSYS是一款流行的有限元分析软件,提供了丰富的工具和功能,可用于解决各种工程问题。
本文将介绍ANSYS有限元分析的基本步骤和流程,并以一个实际案例为例进行说明。
2. 步骤2.1 确定分析目标首先要确定分析的目标。
这可以是结构的强度分析、振动分析、热传导分析等。
根据目标的不同,还需确定所需的加载条件和边界条件。
2.2 几何建模在进行有限元分析之前,需要进行几何建模。
在ANSYS中,可以使用几何建模工具创建和编辑结构模型。
这包括定义几何形状、尺寸和位置等。
2.3 网格划分网格划分是有限元分析的关键步骤。
通过将结构划分为多个单元,可以将结构分解为有限数量的离散部分,从而进行数值计算。
在ANSYS中,可以使用网格划分工具进行自动或手动划分。
2.4 材料属性定义在进行有限元分析之前,需要定义材料的物理和力学属性。
这包括弹性模量、泊松比、密度等。
ANSYS提供了一个材料库,可以选择常见材料的预定义属性,也可以手动定义。
2.5 加载和边界条件定义在进行有限元分析之前,需要定义加载和边界条件。
加载条件可以是力、压力、温度等。
边界条件可以是支撑、固定或自由。
2.6 求解和结果分析完成前面的步骤后,可以开始求解分析模型。
ANSYS将应用数值方法来解决有限元方程组,并计算结构的响应。
一旦求解完成,可以进行结果分析,包括位移、应力、应变等。
2.7 结果验证和后处理在对结果进行分析之前,需要对结果进行验证。
可以使用已知的理论结果或实验数据进行比较,以确保分析结果的准确性。
完成验证后,可以进行后处理,生成报告或结果图表。
3. 案例分析在本案例中,将针对一个简单的悬臂梁进行有限元分析。
3.1 确定分析目标本次分析的目标是确定悬臂梁在给定加载条件下的应力分布和变形。
《ANSYS程序应用》上机实验报告学院:机械工程学院系:机械工程专业:机械工程及自动化年级机工0911班姓名:刘老四学号: 094057333333 组_______ 实验时间:指导教师签字:成绩:A N S Y S程序应用基础一、实验目的和要求1.了解ANSYS软件的界面和基本功能,初步掌握使用ANSYS软件求解问题基本步骤;初步掌握使用ANSYS软件求解杆系结构静力学问题的方法;2. 初步掌握使用ANSYS软件求弹性力学平面问题的方法。
二、实验设备和软件台式计算机,ANSYS11.0软件。
三、实验内容1.应用ANSYS程序求解杆系结构静力问题2.应用ANSYS程序求解平面应力问题——直角支架结构3.应用ANSYS程序求解平面应变问题——厚壁圆筒承受压力要求:(1)建立有限元模型;(2)施加约束和载荷并求解;(3)对计算结果进行分析处理。
四、实验结果1.应用ANSYS程序求解杆系结构静力问题题 6.1 在相距a=10m的刚性面之间,有两根等截面杆铰接在2号点,杆件与水平面夹角为300,在铰接处有一向下的集中力F=1000N,杆件材料的弹性模量E=210GPa,泊松比为0.3,截面积A=0.001m2,如图 6.2所示,试利用二维杆单元LINK1确定集中力位置处的位移。
杆件变形很小,可以按小变形理论计算。
由030tan 2a b,可得b=2.89m 。
图1.0 约束图图1.1 变形和未变形图形表1.0 点位移矢量列表2.应用ANSYS程序求解平面应力问题6.3.1 直角支架结构问题直角支架结构问题是一个简单的单一载荷步的直角支架结构静力分析例题,图6.57中左侧的孔是被沿圆周完全固定的,一个成锥形的压力施加在下面右端孔的下半圆处大小为由50psi到150psi。
已知如图6.57所示的支架两端都是直径为2in的半圆,支架厚度th=0.5in,小孔半径为0.4in,支架拐角是半径为0.4in的小圆弧,支架是由A36型的钢制成,杨氏模量正=30×106psi,泊松比为0.27。
有限元分析作业作业名称轴类零件静态受力分析姓名学号班级题目:图1上图1为一个轴类零件模型。
板的材料参数为:弹性模量E=200GPa,泊松比u=0.25:此模型在左侧表面施加固定位移约束,在右侧的右侧表面施加20Mpa的局部压力载荷。
题目分析:此题是一个静态的受力分析,没有涉及到温度、膨胀系数之类,属于一个比较简单的受力分析。
用solidworks软件绘制三维模型,并导入到ANSYS中,对其进行材料的设定,网格划分,施加约束、载荷并求解。
分析过程:1.定义单位、文件名、储存路径及标题定义工作文件名:执行File-Chang Jobname-3080611075更改工作文件储存路径:执行File-Chang Directory-D:\ANSYS定义工作标题:执行File-Change Tile-0012.定义分析类型、单元格类型及材料属性a)定义分析类型GUI:Main Menu | Preference,如图2图2b)选择单元格类型考虑到分析实体的结构相对复杂,选用中间节点的四面体单元,solid92,如图3图3c)定义材料属性,如图4图43.建立模型并导入到ANSYSa)在solidworks中建立三维模型(省略),另存为*.x_t格式。
如图5图5b)将上述模型导入到ANSYS执行File-Import—PRAR…—浏览上述模型,如图6图64.网格划分:a)考虑到零件的复杂性,采用智能网格划分,精度为1,其他选项为默认,如图7图7b)划分结果,图8图85.约束加载a)添加位置约束Solution-apply-structural-displacement-on areas(对两小圆孔表面面进行约束),如图9图9b)添加载荷Solution-define load-structural-press-on areas在大圆孔左侧表面施加20Mpa的载荷(压力),如图10图10 图11c)求解Solution-Current LS图解a)位移图解Main Menu: General Postproc -> Plot Results -> Contour Plot-Nodal Solution—Displacement vector sum,如图11图11其中位移最大的节点是2124, 其数值如下图12:2123 -0.10873E-04 0.95816E-07-0.81077E-07 0.10874E-042124 -0.11007E-04-0.54780E-07-0.85639E-07 0.11008E-04图12b)应力图解Main Menu: General Postproc -> Plot Results -> Contour Plot-Nodal Solution—von Mises stress,如图13图13其中应力最大的节点是1400, 其数值如下图14:1399 0.48174E+08 0.92384E+06-0.18997E+08 0.67171E+08 0.59756E+081400 0.48836E+08 0.27616E+06-0.19776E+08 0.68612E+08 0.61105E+081401 0.45827E+08 0.15004E+07-0.18950E+08 0.64777E+08 0.57355E+08图14结论ANSYS具有强大而广泛的分析功能:广泛应用于结构、热、电磁、声学、流体等多物理场及多场相互耦合的线性、非线性问题。
有限元分析实验报告引言有限元分析是一种工程设计和分析的常用方法。
它通过将结构或物体分割为有限数量的单元,利用数值方法计算每个单元的行为,最终得出整体结构的行为。
本实验使用有限元分析方法来研究一个特定的结构或物体。
实验目的本实验的目的是使用有限元分析方法研究一个给定的结构或物体。
通过实验,我们将探索结构的强度、刚度和变形等性能,评估其设计的合理性,并提出改进的建议。
实验步骤实验的步骤如下:1.准备工作:收集和整理所需的材料和数据,包括结构的几何形状、材料特性和加载条件等。
确保所收集的数据准确无误。
2.建立有限元模型:将结构的几何形状转化为有限元模型。
根据结构的复杂程度和要求,选择合适的单元类型和网格密度。
使用有限元软件,如ANSYS、ABAQUS等,建立有限元模型。
3.定义边界条件:根据实际应用场景,定义结构的边界条件。
这些条件包括约束边界条件和加载边界条件。
约束边界条件用于限制结构的自由度,加载边界条件用于施加外部载荷。
4.分析结构的行为:使用有限元软件进行结构的强度、刚度和变形等分析。
根据加载和边界条件,计算结构在不同工况下的应力、位移和应变等结果。
5.结果分析和讨论:评估结构的性能,比较不同工况下的结果,分析结构的弱点和改进的空间。
提出改进的建议,并讨论其可能的影响和成本。
6.撰写实验报告:根据实验结果和讨论,撰写实验报告。
报告应包括实验目的、方法、结果和讨论等部分。
确保报告的结构清晰,表达准确。
结果与讨论根据实验的结果和讨论,我们得出以下结论:1.结构的强度:分析结果显示,结构在给定的加载条件下具有足够的强度,能够承受预期的载荷。
然而,在某些关键部位,应力集中现象可能会导致局部的应力超过材料的极限强度。
2.结构的刚度:结构的刚度是指结构在受力下的变形情况。
分析结果显示,结构在加载后会发生一定的变形,但变形量较小,不会对结构的正常功能产生明显的影响。
3.结构的优化:根据分析结果和讨论,我们提出了改进结构的建议。
有限元分析实验报告有限元分析实验报告一、实验基本要求根据实验指导书的要求能够独立的使用ANSYS 软件操作并在计算机上运行,学会判断结果及结构的分析,学会建立机械优化设计的数学模型,合理选用优化方法,独立的解决机械优化设计的实际问题。
二、实验目的1. 加深对机械优化设计方法的理解2. 掌握几种常用的最优化设计方法3. 能够熟练使用ANSYS 软件操作,培养学生解决案例的能力4. 培养学生灵活运用优化设计方法解决机械工程中的具体实例三、实验软件及设备计算机一台、一种应用软件如ANSYS四、实验内容实验报告例题实训1——衍架的结构静力分析图2-2所示为由9个杆件组成的衍架结构,两端分别在1,4点用铰链支承,3点受到一个方向向下的力F y , 衍架的尺寸已在图中标出,单位: m。
试计算各杆件的受力。
其他已知参数如下: 弹性模量(也称扬式模量)E=206GPa;泊松比μ=0.3;作用力F y =-1000N;杆件的2横截面积A=0.125m.一、 ANSYS8.0的启动与设置图2-2 衍架结构简图1.启动。
点击:开始>所有程序> ANSYS8.0> ANSYS ,即可进入ANSYS 图形用户主界面。
图2-4 Preference 参数设置对话框2.功能设置。
电击主菜单中的“Preference ”菜单,弹出“参数设置”对话框,选中“Structural ”复选框,点击“OK ”按钮,关闭对话框,如图2-4所示。
本步骤的目的是为了仅使用该软件的结构分析功能,以简化主菜单中各级子菜单的结构。
3.系统单位设置。
由于ANSYS 软件系统默认的单位为英制,因此,在分析之前,应将其设置成国际公制单位。
在命令输入栏中键入“/UNITS,SI ”,然后回车即可。
(注:SI 表示国际公制单位)二单元类型,几何特性及材料特性定义1.定义单元类型。
2.定义几何特性。
3.定义材料特性。
三衍架分析模型的建立1.生成节点。
基于ANSYS的车架有限元分析报告一、引言车架是汽车的重要组成部分之一,它承载着车身、引擎等重要部件,并且需要具备良好的强度和刚度特性。
为了确保车架设计的合理性和安全性,有限元分析方法被广泛应用于车架的设计和优化过程中。
本报告通过使用ANSYS软件对车型的车架进行有限元分析,旨在揭示其结构的力学性能,并提出相应的优化建议。
二、建模与网格划分首先,根据实际情况对车架进行几何建模,包括车架材料的选择、主要结构的划分等。
然后,采用ANSYS软件对车架进行网格划分,以保证有限元分析的准确性和计算效率。
在划分网格时,应根据不同结构部位的重要程度和应力集中程度进行细致划分,以获得较为准确的应力分布。
三、材料属性设置车架材料的力学性能参数对有限元分析结果具有重要影响。
在本次分析中,我们选取了一种常用的高强度钢材料作为车架的材料,并设置相应的材料属性。
这些属性包括弹性模量、泊松比、密度等参数。
要注意的是,这些参数需要结合实际情况和材料测试数据进行设置,以确保分析结果的准确性。
四、约束条件设置在有限元分析中,约束条件的设置对于分析结果的准确性至关重要。
在车架分析中,我们通常可以假设一些约束条件,比如悬挂点的约束、底盘支撑点的固定等。
这些约束条件可以对车架进行限制,并模拟实际使用中的约束情况。
五、载荷设置在有限元分析中,合理地设置载荷条件对于车架分析的准确性和可靠性也非常重要。
可以根据实际情况对不同工况下的载荷进行设置,比如车辆加速、制动、转弯等。
这些载荷会对车架产生不同的应力和变形,从而可以评估车架在不同工况下的强度和刚度特性。
六、分析结果与讨论通过ANSYS的有限元分析,我们可以获得车架在不同工况下的应力分布、变形情况等。
根据实际情况,可以评估车架结构的强度和刚度,并分析其受力情况和问题所在。
在本次分析中,我们得出了车架各个关键部位的最大应力和变形情况,并进一步进行了分析和讨论。
根据分析结果,我们可以找出车架结构中的问题,并提出相应的优化建议,比如增加固定支撑处的材料厚度、调整关键连接点的设计等。
ANSYS框架结构分析报告报告材料ANSYS是由美国ANSYS公司推出的有限元分析软件,广泛应用于工程设计和计算领域。
其框架结构是软件的核心部分,包括各个模块之间的关系、数据传递流程、计算模型的构建等。
本文将对ANSYS框架结构进行分析,并探讨其特点、优势和应用情况。
一、ANSYS框架结构概述1.前处理模块:用于几何建模、网格划分、加载和约束条件设置等,是整个分析过程中的准备阶段。
用户可以通过前处理模块构建计算模型,并设置相关参数。
2.求解器:包括结构力学、流体力学、热传导等不同类型的求解器,用于模拟各种工程问题的场景。
ANSYS提供了多种数值求解方法和算法,以满足不同类型问题的求解需求。
3.后处理模块:用于结果分析和可视化展示,可以生成各种结果图表和动画,帮助用户深入理解问题的本质,进而做出合理的决策。
二、ANSYS框架结构特点1.模块化设计:ANSYS软件采用模块化设计,各个功能模块之间相对独立,用户可以根据具体需求选择需要的功能,灵活组合使用。
2.多物理场耦合:ANSYS支持多物理场耦合分析,如结构-热耦合、结构-流体耦合等,能够模拟现实工程问题中的复杂物理现象。
3.并行计算能力:ANSYS软件可以充分利用计算机集群的并行处理能力,加快大规模计算任务的求解速度,提高工程分析效率。
4. 多平台支持:ANSYS软件可以在不同操作系统上运行,如Windows、Linux等,且支持多种编程语言和脚本语言,方便用户在不同环境下进行工程分析。
5.用户友好性:ANSYS提供了丰富的用户界面和操作指引,使用户能够快速上手并进行高效的分析工作,同时还提供了各种学习资源和技术支持。
三、ANSYS框架结构应用情况1.结构分析:ANSYS可以对各种结构进行静力、动力、热力等多物理场耦合分析,帮助工程师评估结构的强度、刚度、稳定性等性能指标。
2.流体力学模拟:ANSYS提供了丰富的流体力学求解器,可以模拟流体的流动、湍流、传热等现象,为工程师提供优化设计方案。
1、三维托架实体受力分析三维托架实体受力分析:托架顶面承受50psi的均匀分布载荷。
托架通过有孔的表面固定在墙上,托架是钢制的,弹性模量E=29×106psi,泊松比v=0.3.试通过ANSYS输出其变形图及其托架的von Mises应力分布。
1.1、定义单元及材料1、新建单元类型运行主菜单Preproccssor—ElementType—Add/Edit/Delete命令,接着在对话框中单击“Add”按钮新建单元类型。
2、定义单元类型先选择单元形式为Strucral Mass Solid,在右边的滚动框中单击“Brick 8node 185”,然后确定,完成单元类型选择。
3、设置材料属性执行Main Menu/Preproccssor/Material/Props/ Material Models命令,将弹出Define MaterialModel Behavior的对话框。
依次双击Structural,Linear,Elastic,和Isotropic,将弹出1号材料的弹性模量EX和泊松比PRXY的定义对话框。
在EX文本框中输入2.9E7,PRXY文本框中输入0.3.定义材料的弹性模量为2.9E7,泊松比为0.3,单击“OK”按钮,关闭对话框。
完成对材料模量的定义。
1.2、创建几何模型1、生成托架执行Main Menu/Preproccssor/Modeling/Create/Areas/Rectangle/By Dimensions创建剖面,在由面生成体,最后生成三角托架.2、生成两个小圆孔执行执行Main Menu/Preproccssor/Modeling/Create/Areas/Circle/Soild Circle命令,在弹出的对话框中填入圆心位置、半径、高度,确认生成。
3、执行面相减操作执行Main Menu/Preproccssor/Modeling/Operate/Booleans/Subtract/Aeras命令,弹出拾取框。
ANSYS有限元分析报告1. 引言有限元分析(Finite Element Analysis, FEA)是一种常用的工程分析方法,可以用于预测材料和结构在各种工况下的行为和性能。
本报告旨在通过使用ANSYS软件进行有限元分析,对某一具体的工程问题进行模拟和分析,并得出相应的结论和建议。
2. 问题描述本次有限元分析的问题是研究某结构在受载情况下的应力分布和变形情况。
具体而言,我们关注的结构是一个柱形零件,其材料为XXX,尺寸为XXX。
该结构在受到垂直向下的均布载荷时,会发生弯曲变形和应力集中现象。
我们的目标是通过有限元方法对该结构进行分析,预测其应力分布情况,并评估其承载能力。
3. 模型建立我们使用ANSYS软件来建立和分析该结构的有限元模型。
首先,我们将导入该零件的几何数据,然后通过ANSYS的建模工具创建相应的有限元模型。
在建立模型的过程中,我们需要注意几何尺寸、材料特性、约束条件和加载方式等参数的设定,以确保模型的准确性和可靠性。
4. 材料属性和加载条件在进行有限元分析之前,我们需要确定材料的特性和加载条件。
根据提供的信息,我们将采用XXX材料的力学特性进行模拟。
同时,我们假设该结构受到均布载荷的作用,其大小为XXX。
这些参数将在后续的分析中使用。
5. 模型网格划分在进行有限元分析之前,我们需要对模型进行网格划分。
网格的密度和质量将直接影响分析结果的准确性和计算效率。
在本次分析中,我们将采用适当的网格划分策略,以满足准确性和计算效率的要求。
6. 模型分析和结果通过ANSYS软件进行有限元分析后,我们得到了该结构在受载情况下的应力分布和变形情况。
根据分析结果,我们可以观察到应力集中区域和变形程度,并根据材料的特性进行评估。
同时,我们可以通过对加载条件的变化进行分析,预测该结构的承载能力和安全系数。
7. 结论和建议根据有限元分析的结果,我们得出以下结论和建议:•该结构在受均布载荷作用下发生应力集中现象,需要对其进行加强和优化设计。
分析报告实例一和实例二建模过程遵从ansys的基本建模步骤:(1)建立有限元模型在ANSYS中建立有限元模型的过程大致可分为以下3个主要步骤:①建立或导入几何模型②定义材料属性③划分网格建立有限元模型(2)施加载荷并求解在ANSYS中施加载荷及求解的过程大致可以分为以下3个主要步骤:①定义约束②施加载荷③设置分析选项并求解(3)查看分析结果在ANSYS中查看分析结果的过程大致可以分为以下2个主要步骤:①查看分析结果②检验分析结果(验证结果是否正确)实例分析一:例一所要分析的问题是平面带孔平板在均布载荷作用下板内的应力情况分布。
实例类型为ANSYS结构分析,分析类型为线性静力分析。
通过在ansys中基本的实体建模操作,布尔运算和网格细化,施加均布载荷,到最后的求解,方可得到显示变形后形状和应力等值线图、单元信息列表等等结果。
下面查看分析结果,对于静力分析主要是模型位移及等效应力等值线图或者节点结果数据列表。
模型变形图如下所示:最大变形量图如下所示:等效应力等值线图如下所示:列表显示位移结果数据如下所示:列表显示节点应力值如下所示:实例分析二:例二所要分析的问题是大坝在约束和载荷作用下的应力,应变情况。
实例类型为ANSYS结构分析,分析类型为线性静力分析。
通过在ansys中基本的实体建模操作,网格划分,施加载荷,到最后的求解,方可得到显示变形后形状和应力等值线图等结果。
下面查看分析结果,对于静力分析主要是模型位移及等效应力等值线图或者节点结果数据列表。
模型变形图如下所示:最大变形量图如下所示:等效应力等值线图如下所示:列表显示位移结果数据如下所示:列表显示节点应力值如下所示:以下是两个结构的*.log文件:Plane:/BATCH/COM,ANSYS RELEASE 12.0.1UP20090415 17:04:30 03/24/2011 /CWD,'E:\Ansys.work\3-24-plane'/TITLE,plane/REPLOT!*/NOPR/PMETH,OFF,0KEYW,PR_SET,1KEYW,PR_STRUC,1KEYW,PR_FLUID,0KEYW,PR_MULTI,0/GO!*/COM,/COM,Preferences for GUI filteringhave been set to display:/COM, Structural!*/PREP7!*ET,1,PLANE82!*KEYOPT,1,3,3KEYOPT,1,5,0KEYOPT,1,6,0!*!*MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,EX,1,,2e5MPDATA,PRXY,1,,0.3!*R,1,20,!*SAVEFINISH/SOLFINISH/PREP7 BLC4,0,0,200,100CYL4,100,50,20 ASBA, 1, 2 SAVEAESIZE,ALL,20, TYPE, 1MAT, 1REAL, 1 ESYS, 0 SECNUM,!*MSHAPE,0,2DMSHKEY,0!*CM,_Y,AREAASEL, , , , 3 CM,_Y1,AREACHKMSH,'AREA' CMSEL,S,_Y!*AMESH,_Y1!*CMDELE,_YCMDELE,_Y1CMDELE,_Y2!*SAVEFINISH/SOL!*ANTYPE,0FLST,2,1,4,ORDE,1 FITEM,2,4!*/GODL,P51X, ,ALL,0FLST,2,1,4,ORDE,1 FITEM,2,2/GO!*SFL,P51X,PRES,-1,/STATUS,SOLUSOLVEFINISH/POST1PLDISP,0!*/EFACET,1PLNSOL, U,SUM, 0,1.0/RGB,INDEX,100,100,100, 0 /RGB,INDEX, 80, 80, 80,13 /RGB,INDEX, 60, 60, 60,14 /RGB,INDEX, 0, 0, 0,15/REPLOTFINISH! /EXIT,ALLDam:/BATCH/COM,ANSYS RELEASE 12.0.1UP20090415 20:54:59 03/24/2011 /TITLE,dam_fenxi!*/NOPR/PMETH,OFF,0KEYW,PR_SET,1KEYW,PR_STRUC,1KEYW,PR_FLUID,0KEYW,PR_MULTI,0/GO!*/COM,/COM,Preferences for GUI filteringhave been set to display:/COM, Structural!*/PREP7!*ET,1,PLANE42!*KEYOPT,1,1,0KEYOPT,1,2,0KEYOPT,1,3,2KEYOPT,1,5,0KEYOPT,1,6,0!*!* MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,EX,1,,2.1e11 MPDATA,PRXY,1,,0.3SAVEK,1,0,0,,K,2,1,0,,K,3,1,5,,K,4,0.45,5,,FLST,2,4,3FITEM,2,1FITEM,2,2FITEM,2,3FITEM,2,4A,P51XFLST,5,2,4,ORDE,2 FITEM,5,1FITEM,5,3CM,_Y,LINELSEL, , , ,P51XCM,_Y1,LINECMSEL,,_Y!*LESIZE,_Y1, , ,15, , , , ,1 !*FLST,5,2,4,ORDE,2 FITEM,5,2FITEM,5,4CM,_Y,LINELSEL, , , ,P51XCM,_Y1,LINECMSEL,,_Y!*LESIZE,_Y1, , ,20, , , , ,1!*TYPE, 1MAT, 1REAL,ESYS, 0SECNUM,!*MSHAPE,0,2DMSHKEY,1!*CM,_Y,AREAASEL, , , , 1CM,_Y1,AREACHKMSH,'AREA'CMSEL,S,_Y!*AMESH,_Y1!*CMDELE,_YCMDELE,_Y1CMDELE,_Y2!*SAVE*DEL,_FNCNAME*DEL,_FNCMTID*DEL,_FNCCSYS*SET,_FNCNAME,'dam'*SET,_FNCCSYS,0! /INPUT,dam.func,,,1*DIM,%_FNCNAME%,TABLE,6,3,1,,,,%_FNCCSYS% !! Begin of equation: 1000*{X}*SET,%_FNCNAME%(0,0,1), 0.0, -999*SET,%_FNCNAME%(2,0,1), 0.0*SET,%_FNCNAME%(3,0,1), 0.0*SET,%_FNCNAME%(4,0,1), 0.0*SET,%_FNCNAME%(5,0,1), 0.0*SET,%_FNCNAME%(6,0,1), 0.0*SET,%_FNCNAME%(0,1,1), 1.0, -1, 0, 1000, 0, 0, 2*SET,%_FNCNAME%(0,2,1), 0.0, -2, 0, 1, -1, 3, 2 *SET,%_FNCNAME%(0,3,1), 0, 99, 0, 1, -2, 0, 0! End of equation: 1000*{X}!-->FINISH/SOLFLST,2,1,4,ORDE,1FITEM,2,4/GO!*!*SFL,P51X,PRES, %DAM%FLST,2,1,4,ORDE,1FITEM,2,1!*/GODL,P51X, ,ALL,0FLST,2,1,4,ORDE,1FITEM,2,2!*/GODL,P51X, ,ALL,0/STATUS,SOLUSOLVEFINISH/POST1PLDISP,1!*/EFACET,1PLNSOL, U,SUM, 0,1.0!*/EFACET,1PLNSOL, S,EQV, 0,1.0PLNSOL,S,EQV!*ANCNTR,10,0.5PLNSOL,U,SUM!*ANCNTR,10,0.5!*PRNSOL,U,COMPPRRSOL,FINISH! /EXIT,ALL。
三梁平面框架结构的有限元分析针对【典型例题】3.3.7(1)的模型,即如图3-19所示的框架结构,其顶端受均布力作用,用有限元方法分析该结构的位移。
结构中各个截面的参数都为:113.010Pa E =⨯,746.510m I -=⨯,426.810m A -=⨯,相应的有限元分析模型见图3-20。
在ANSYS 平台上,完成相应的力学分析。
图3-19 框架结构受一均布力作用(a ) 节点位移及单元编号 (b ) 等效在节点上的外力图3-20 单元划分、节点位移及节点上的外载解答 对该问题进行有限元分析的过程如下。
1.基于图形界面的交互式操作(step by step)(1) 进入ANSYS(设定工作目录和工作文件)程序 →ANSYS → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname (设置工作文件名): beam3→Run → OK(2) 设置计算类型ANSYS Main Menu: Preferences… → Structural → OK(3) 选择单元类型ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete… →Add… →beam :2D elastic 3 →OK (返回到Element Types 窗口) →Close(4) 定义材料参数ANSYS Main Menu:Preprocessor →Material Props →Material Models→Structural →Linear →Elastic→Isotropic: EX:3e11 (弹性模量) →OK →鼠标点击该窗口右上角的“ ”来关闭该窗口(5) 定义实常数以确定平面问题的厚度ANSYS Main Menu: Preprocessor →Real Constant s… →Add/Edit/Delete →Add →Type 1 Beam3→OK→Real Constant Set No: 1 (第1号实常数), Cross-sectional area:6.8e-4 (梁的横截面积) →OK →Close(6) 生成几何模型生成节点ANSYS Main Menu: Preprocessor →Modeling →Creat→Nodes→In Active CS→Node number 1 →X:0,Y:0.96,Z:0 →Apply→Node number 2 →X:1.44,Y:0.96,Z:0 →Apply→Node number 3 →X:0,Y:0,Z:0→Apply→Node number 4 →X:1.44,Y:0,Z:0→OK生成单元ANSYS Main Menu: Preprocessor →Modeling →Create →Element →Auto Numbered →Thru Nodes →选择节点1,2(生成单元1)→apply →选择节点1,3(生成单元2)→apply →选择节点2,4(生成单元3)→OK(7)模型施加约束和外载左边加X方向的受力ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Force/Moment →On Nodes →选择节点1→apply →Direction of force: FX →V ALUE:3000 →OK→上方施加Y方向的均布载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Beams →选取单元1(节点1和节点2之间)→apply →V ALI:4167→V ALJ:4167→OK左、右下角节点加约束ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement →On Nodes →选取节点3和节点4 →Apply →Lab:ALL DOF →OK(8) 分析计算ANSYS Main Menu:Solution →Solve →Current LS →OK →Should the Solve Command be Executed? Y→Close (Solution is done! ) →关闭文字窗口(9) 结果显示ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape … →Def + Undeformed →OK (返回到Plot Results)(10) 退出系统ANSYS Utility Menu: File→Exit …→Save Everything→OK(11) 计算结果的验证与MA TLAB支反力计算结果一致。
ANSYS有限元分试验报告ANSYS试验报告一、ANSYS简介:ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, AutoCAD等,是现代产品设计中的高级CAE工具之一。
本实验我们用的是ANSYS12.1软件。
二、试验题目:我们组做的是第六组题目,具体题目如下:(6)如图所示,L/B=10,a= 0.2B ,b= (0.5-2)a,比较b 的变化对最大应力 x的影响;并与(5)比较。
三、题目分析:该问题是平板受力后的应力分析问题。
我们通过使用ANSYS软件求解,首先要建立上图所示的平面模型,然后在平板一段施加位移约束,另一端施加载荷,最后求解模型,用图形显示,即可得到实验结果。
四、ANSYS求解:求解过程以b=0.5a=0.02为例:1.建立工作平面,X-Y平面内画长方形,L=1,B=0.1,a=0.02,b=0.5a=0.01;(操作流程:preprocessor→modeling→create→areas→rectangle)2.根据椭圆方程,利用描点法画椭圆曲线,为了方便的获得更多的椭圆上的点,我们利用C++程序进行编程。
程序语句如下:运行结果如下:本问题(b=0.5a=0.01)中,x在[0,0.02]上每隔0.002取一个点,y 值对应于第一行结果。
由点坐标可以画出这11个点,用reflect命令关于y轴对称,然后一次光滑连接这21个点,再用直线连接两个端点,便得到封闭的半椭圆曲线。
(操作流程:create→keypoints→on active CS→依次输入椭圆上各点坐标位置→reflect→create→splines through keypoints→creat→lines→得到封闭曲线)。
3.由所得半椭圆曲线,生成半椭圆面。
ANSYS实验分析报告本次实验是利用ANSYS软件对一个弯曲结构进行有限元分析。
主要目的是研究在不同载荷下,该结构的应力和变形情况。
以下是本次实验的过程与结果分析。
一、建立模型首先,我们在ANSYS中建立出该结构的三维模型。
我们通过几何体建模的方法,将其仿真为一个由四个梁柱组成的简单框架结构。
具体的建模操作如下:1. 在“DesignModeler”中选择几何体建模,先建立底部两个支撑,分别为长方体和正方体,通过旋转复制成两组,组成左右两侧的支撑。
2. 手动建立横向梁和纵向柱,将其分别连接在底部的支撑之间,形成框架的主体。
3. 将上部吊挂点也建立为长方体,通过旋转复制成两组,分别连接在左右两侧的支撑之上。
4. 最后,将整个模型导出为STEP文件,方便之后进行后续的有限元分析。
二、设定边界条件在进行有限元分析之前,我们需要确定边界条件。
在本次实验中,我们将底部的两个支撑固定不动,作为模型的固支部分。
三、设置载荷接下来,我们将模型的上部吊挂点承载了一个垂直向下的载荷,模拟在实际使用中被吊载的情况。
我们对载荷大小和方向进行了多次调整,使得其尽可能满足实际情况,并且能够顺利完成有限元分析。
四、进行有限元分析有了模型和边界条件的设定,我们开始进行有限元分析。
在ANSYS中,我们选择了静力学模块,并且设置了相应的分析参数(包括材料属性、单元类型等)。
分析过程中,我们关注了应力和变形两个方面的计算,通过查看各个节点的数值以及色彩分布图,能够更清晰地了解结构的状态。
五、结果分析通过分析,我们获得了如下两个方面的结果:1. 应力分布我们观察到,该结构的应力主要集中在上部吊挂点以及梁柱连接处,尤其是梁柱连接处的应力相对较大且分布比较均匀。
而在其余区域,则几乎没有应力产生或仅产生了很小的应力。
2. 变形情况在载荷作用下,该结构的变形情况较为明显,上部吊挂点相对底部固支发生了垂直方向的变形,同时某些连接处也出现了微小的变形。