频分两路复用系统设计

  • 格式:doc
  • 大小:873.98 KB
  • 文档页数:17

下载文档原格式

  / 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

一、设计原理 (2)

2.1 频分复用的概述 (2)

2.2 频分复用原理 (2)

2.3频分复用的的特点与优点: (5)

二、设计流程图 (6)

三、单元电路设计 (7)

1、调制电路 (7)

2、解调电路 (7)

3、加法器电路 (8)

4、滤波电路 (9)

5、电源电路 (10)

四、System View仿真及仿真原理结果分析 (11)

五、总结及实习心得 (15)

总原理图 (16)

参考文献: (17)

一、设计原理

2.1 频分复用的概述

频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。

频分复用是利用各路信号在频率域不相互重叠来区分的。若相邻信号之间产生相互干扰,将会使输出信号产生失真。为了防止相邻信号之间产生相互干扰,应合理选择载波频率fc1, fc2, …, fcn,并使各路已调信号频谱之间留有一定的保护间隔。若基带信号是模拟信号,则调制方式可以是DSB、 AM、SSB、VSB或FM等,其中SSB方式频带利用率最高。若基带信号是数字信号,则调制方式可以是ASK、FSK、PSK等各种数字调制。

2.2 频分复用原理

在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽宽得多。如果一个信道只传送一路信号是非常浪费的,

为了能够充分利用信道的带宽,就可以采用频分复用的方法。在频分复用系统中,信道的可用频带被分成若干个互不交叠的频段,每路信号用其中一个频段传输,因而可以用滤波器将它们分别滤出来,然后分别解调接收。如图1.2所示。

图1.2频分复用组成框图

(1)发送端

由于消息信号往往不是严格的限带信号,因而在发送端各路消息首先经过低通滤波,以便限制各路信号的最高频率,为了分析问题的方便,这里我们假设各路的调制信号fm 的频率都相等。然后对各路信号进行线性调制,各路调制器的载波频率不同。

在选择载频时,应考虑到边带频谱的宽度。同时,为了防止邻路信号间的相互干扰,还应留有一定的保护频带,即fc(i+1)=fci +(fm+fg) ,i=1,2….n 其中: fc(i+1) 与 fci分别为第i+1 路

与 i路的载频频率;fm 每一路调制信号的最高频率,本设计中为3400Hz;fg 邻路间保护带。

(2)接收端

在频分复用系统的接收端,首先用带通滤波器(BPF)来区分各路信号的频谱,然后,通过各自的相干解调器解调,再经低通滤波后输出,便可恢复各路的调制信号。

分别对发送端和接收端进行原理分析:

1、发送端

由于消息信号往往不是严格的限带信号,因而在发送端各路消息首先经过低通滤波,以便限制各路信号的最高角频率,为了分析问题的方便,这里我们假设各路的都相等。然后对各路信号进行线性调制,各路调制器的载波频率不同。在选择载频时,应考虑到边带频谱的宽度。同时,为了防止邻路信号间的相互干扰,还应留有一定的保护频带,即

其中:与分别为第路与路的载频的频率;

每一路的最高频率;

邻路间保护频带。

邻路间的保护频带越大,则在邻路信号干扰指标相同的情况下,对带通滤波器的技术指标的要求就可以放宽一些。但这时占用的总的频带就要加宽,这对提高信道复用率不利。因此,实际中,通常提高带通滤波器的技术指标,尽量减小邻路间的保护频带。

各路已调信号相加送入信道之前,为了避免它们的频谱重叠,还要经过带通滤波器。在信道中传送的路信号的总的频带宽度最小应等于

2、接收端

在频分复用系统的接收端,首先用带通滤波器将各种信号分别提取,然后解调,再经低通滤波后输出。

2.3频分复用的的特点与优点:

(1)优点

信道复用率高,分路方便,因此,频分多路复用是目前模拟通信中常采用的一种复用方式,特别是在有线和微波通信系统中应用十分广泛。

(2)主要问题

频分多路复用中的主要问题是各路信号之间的相互干扰,即串扰。引起串扰的主要原因是滤波器特性不够理想和信道中的非线性特

性造成的已调信号频谱的展宽。调制非线性所造成的串扰可以部分地由发送带通滤波器消除,但信道传输中非线性所造成的串扰则无法消除。因而在频分多路复用系统中对系统线性的要求很高。合理选择载波频率,并在各路已调信号频谱之间留有一定的保护间隔,也是减小串扰的有效措施。

二、设计流程图

根据设计要求,两路调制信号频率为300—3400HZ,分别用196KHZ、384KHZ的载波进行调制,为此,调制信号较少,不必用群结构的多重调制,系统框图如2.1所示:

图如2.1 频分复用总设计框图

预滤波器为了限制已调信号带宽,300~3400HZ的语音学信号,预滤波器设为4KHZ的低通滤波器,第一路双边带调制信号为192KHZ,通过带通滤波器去上边带,一路调制频率为192.3~196KHZ,同理第二路调制信号频率为384.3~387KHZ,两路调制信号通过一个多路加法器,在一条信道上传输。

在接收端,首先通过频带分别为192.3~196KHZ、384.3~387KHZ的带通滤波器过滤出两路调制信号,对第一路调制信号乘以载波,192KHZ,还原出第一路信号,对第二路信号乘以载波信号384KHZ,还原第二路信号。从而实现频分复用。