1.4有理数的乘除法——第三课时
- 格式:doc
- 大小:82.26 KB
- 文档页数:2
1.4有理数的乘除法第3课时教学目标:1、经历探索有理数乘法的运算律的过程,发展学生观察、归纳、猜测的能力2、理解并掌握有理数乘法的运算律:乘法交换律、乘法结合律、分配律3、能运用乘法运算律简化计算,进一步提高学生的运算能力教学重难点:重点:运用乘法运算律进行乘法运算难点:运用乘法法则和乘法运算律进行乘法运算教学过程:一、创设情境,引入新课教师:计算5×(-6)和(-6)×5;[3×(-4)] ×(-5)和3×[(-4)×(-5)];5×[3+(-7)]和5×3+5×(-7),你有什么发现?学生:三组数的计算结果一样,我们可以得到乘法交换律、乘法结合律、分配律在有理数乘法中仍然成立。
二、讲授新课问题1:你能用语言描述乘法交换律、乘法结合律、分配律吗?学生:乘法交换律:两个数相乘,交换因数的位置,积相等。
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
问题2:如果用a、b、c分别表示任何一个有理数,那么,你能用这些字母表示这些运算律?乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)分配律:a(b+c)=ab+aca×b也可以写成a·b或ab。
当用字母表示乘数时,“×”号可以写成“·”或省略。
三、巩固知识比较例4中两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种解法运算量小?学生回答:解法1先算括号内的,再算乘法,解法2运用了乘法分配律,解法2的运算量较小。
四、总结本节课主要学习有理数乘法的运算律:乘法交换律、乘法结合律、分配律五、布置作业。
第3课时有理数的乘法运算律一、导学1.课题导入:在小学的数学学习中,学习乘法的交换律、结合律与分配律,那么学习了有理数后,这些运算律是否仍然适用呢?这就是这节课我们要研究的内容.2.学习目标:(1)知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.(2)过程与方法通过对问题的探索,培养观察、分析和概括的能力.(3)情感态度能面对数学活动中的困难,有学好数学的自信心.3.学习重、难点:重点:乘法的运算律.难点:灵活运用运算律进行计算.4.自学指导:(1)自学内容:教材第32页“练习”以下到教材第33页的内容.(2)自学时间:7分钟.(3)自学要求:认真阅读课文,体验运算律在计算中有什么作用.(4)自学参考提纲:①乘法交换律是:两个数相乘,交换因数的位置,积相等,写成数学式子为ab=ba,举两个数(至少有一个是负数)验证乘法交换律.3×(-4)=(-4)×3=-12②乘法结合律是:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等,写成数学式子为(ab)c=a(bc),举三个数(至少有一个数是负数)验证乘法结合律.[3×(-4)×5]=3×[(-4)×5]=-60③分配律是:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,写成数学式子为a(b+c)=ab+ac,举三个数(至少有一个数是负数)验证分配律.3×(-4+5)=3×(-4)+3×5=3④例4中,比较两种解法,他们在运算顺序上有什么区别?解法1、2运用了什么运算律?哪种解法更简便?解法1先算加减法,再算乘法;解法2先算乘法,再算加减法;运用了乘法分配律;第二种更简便.⑤下列式子的书写是否正确.a×b×c ab·2 m×(m+n)三个式子的书写均不正确.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:深入学生中了解学生自学中存在的问题.(2)差异指导:指导困难的学生,并引导小组讨论.2.生助生:学生相互帮助解决自学中的疑难问题.四、强化1.解题要领:①观察算式;②看是否可以进行简便运算;③运算顺序.2.代数式的书写要求:①数与字母相乘;②字母与字母相乘.3.计算:(1)(-85)×(-25)×(-4)(2)(-78)×15×(-117)(3)(910-115)×(-30)(4) (-65)×(-23)+(-65)×(+173)解:(1)-8500;(2)15;(3)-25;(4)-6.五、评价1.学生的自我评价(围绕三维目标):交流本节课学习中的得与失.2.教师对学生的评价:(1)表现性评价:对本节课学习过程中的积极表现与不足进行总结. (2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课主要学习乘法运算律在有理数乘法中的运用,教学时要强调在学习过程中自主探究,合作交流,让学生在学习过程中体会自主探究,合作交流的乐趣,形成主动探索问题的习惯.一、基础巩固(60分)1.(10分)计算(-100015)×(5-10)的值为(D)A.1000B.1001C.4999D.50012.(10分)下列计算(-55)×99+(-44)×99-99正确的是(C)A.原式=99×(-55-44)=-9801B.原式=99×(-55-44+1)=-9702C.原式=99×(-55-44-1)=-9900D.原式=99×(-55-44-99)=-196023.(40分)计算.(1)(-19)×(-98)×0×(-25)(2)(-0.2)×(-0.4)×(-212)×(-15)(3)15×(-56)×145×(-114)(4)(-100)×(-4)×(-1)×0.25解:(1)0;(2)0.04;(3)2258;(4)-100二、综合应用(30分)4.(30分)计算.(1)4×(-96)×0.25×(-1 48)(2)(8-113-0.04)×(-34)(3)(+3313)×(-2.5)×(-7)×(+4)×(-0.3)(4)791314×(-7)(5)(-14)×23-3.14×(-27)+(-13)×14+57×3.14解:(1)2;(2)-4.97;(3)-700;(4)-11192;(5)-10.86三、拓展延伸(10分)5.(10分)利用分配律可以得到-2×6+3×6=(-2+3)×6,如果用a表示任意一个数,那么利用分配律可以得到-2a+3a等于什么?类似地:2ab-5ab又等于什么呢?解:-2a+3a=(-2+3)a;2ab-5ab=(2-5)ab.第一章测评(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分.下列各题给出的四个选项中,只有一项符合题意)1.(2018·湖北咸宁中考)咸宁冬季里某一天的气温为-3 ℃~2 ℃,则这一天的温差是()A.1 ℃B.-1 ℃C.5 ℃D.-5 ℃2.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克3.下列说法正确的有()①一个数不是正数就是负数;②海拔-155 m表示比海平面低155 m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个B.2个C.3个D.4个4.小灵做了以下4道计算题:①-6-6=0;②-3-|-3|=-6;③3÷×2=12;④0-(-1)2 020=-1.则她做对的道数是()A.1B.2C.3D.45.(2018·黑龙江齐齐哈尔中考)“厉害了,我的国!”2018年1月18日,国家统计局对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶.把82万亿用科学记数法表示为()A.8.2×1013B.8.2×1012C.8.2×1011D.8.2×1096.有理数a,b,c在数轴上对应的点如图所示,则下列式子正确的是()A.ac>bcB.|a-b|=a-bC.-a<-b<cD.-a-c>-b-c7.已知①1-22;②|1-2|;③(1-2)2;④1-(-2),其中相等的是()A.②和③B.③和④C.②和④D.①和②8.若(-ab)2 019>0,则下列各式正确的是()A.<0B.>0C.a>0,b<0D.a<0,b>0二、填空题(本大题共4小题,每小题4分,共16分)9.-2的相反数是,倒数是,绝对值是.10.在数轴上,与-3对应的点距离4个单位长度的点有个,它们表示的数是.11.近似数20.995精确到百分位是.12.某品种兔子,一对兔子每个月能繁殖3对小兔子,而每对小兔子一个月后也能繁殖3对新小兔子,总之,所有的每对兔子都是每月繁殖3对小兔子.如果开始只有一对兔子,那么半年后有对兔子(不考虑意外死亡).三、解答题(本大题共5小题,共52分)13.(12分)计算:(1)(-49)-(+91)-(-5)+(-9);(2)-17+17÷(-1)11-52×(-0.2)3;(3)-5-.14.(10分)某人用400元购买了8套儿童服装,准备以一定价格出售.如果每套儿童服装以55元的价格为标准,实际出售时超出的记作正数,不足的记作负数,记录如下:+2,-4,+2,+1,-2,-1,0,-2.(单位:元)(1)通过计算说明当他卖完这8套儿童服装后是盈利还是亏损.(2)每套儿童服装的平均售价是多少元?15.(10分)观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,……(1)说出等式左边各个幂的底数与右边幂的底数之间有什么关系;(2)利用上述规律,计算13+23+33+43+…+1003的值.16.(10分)利用运算律有时能进行简便计算.例198×12=(100-2)×12=1 200-24=1 176;例2-16×233+17×233=(-16+17)×233=233.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×118+999×-999×18.17.(10分)如图,小玉有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题:-3 -5 0 +3 +4(1)从中抽出2张卡片,使这2张卡片上的数字的乘积最大,则应如何抽取?最大的乘积是多少?(2)从中抽出2张卡片,使这2张卡片上的数字相除的商最小,则应如何抽取?最小的商是多少?(3)从中抽出2张卡片,使这2张卡片上的数字经过加、减、乘、除、乘方中的一种运算后,得到一个最大的数,则应如何抽取?最大的数是多少?(4)从中抽出4张卡片,用学过的运算方法,要使结果为24,则应如何抽取?写出运算式子(一种即可).参考答案第一章测评一、选择题1.C2-(-3)=5 ℃.2.C3.A4.C5.A6.D7.A因为①1-22=1-4=-3;②|1-2|=|-1|=1;③(1-2)2=(-1)2=1;④1-(-2)=1+2=3,所以相等的是②和③.8.A因为(-ab)的奇次幂大于0,所以-ab>0,则ab<0,即a,b异号,商为负数,但不能确定a,b谁正谁负.二、填空题9.2-210.2-7和1满足要求的点有2个,分别位于-3的两侧且到-3对应的点的距离都是4,右边的数为-3+4=1,左边的数为-3-4=-7.11.21.00精确到百分位即保留两位小数,根据四舍五入法可得20.995≈21.00.12.4 096结合乘方的定义可知:开始有兔子的对数是1,1个月后有4对兔子,以后每一个月后每一对兔子都变成4对兔子,依次类推,可得6个月后有46对小兔子.三、解答题13.解(1)原式=-49-91+5-9=-49-91-9+5=-149+5=-144.(2)原式=-17+17÷(-1)-25×=-17+(-17)-=-34+=-33.(3)原式=-5-=-5-=-5-=-5+=-4.14.解(1)售价总额为55×8+2-4+2+1-2-1+0-2=440-4=436(元).436-400=36(元),即当他卖完这8套儿童服装后盈利了36元.答:他卖完这8套儿童服装后是盈利.(2)436÷8=54.5(元).答:每套儿童服装的平均售价是54.5元.15.解(1)左边各个幂的底数之和等于右边幂的底数.(2)原式=(1+2+3+4+…+100)2=5 0502=25 502 500.16.解(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985.(2)原式=999×=999×100=99 900.17.解(1)抽取-3,-5,最大的乘积是15.(2)抽取-5,+3,最小的商是-.(3)抽取-5,+4,最大的数为(-5)4=625.(4)答案不唯一,如抽取-3,-5,0,+3,运算式子为{0-[(-3)+(-5)]}×(+3)=24.有理数的减法教学目标1.经历探索有理数减法法则的过程,理解有理数的减法法则.2.能熟练进行有理数的减法的运算,并灵活应用有理数减法解决实际问题,培养运算能力,增强应用数学的意识.3.通过把减法运算转化为加法运算,向学生渗透转化思想. 教学过程 一、情境导入下图是2015年1月30日北京天气预报网上的北京天气情况,从下图我们可以得知北京从周五到下周二的最高温度为6℃,最低温度为-8℃.那么它的温差怎么算?6-(-8)=?二、合作探究探究点一:有理数的减法运算计算:(1)(-3)-(+7); (2)13-12;(3)0-(-10).解析:每个小题均是两个数的差,直接利用有理数的减法法则,先把减法转化为加法,再计算.解:(1)(-3)-(+7)=(-3)+(-7)=-10; (2)13-12=13+(-12)=-16; (3)0-(-10)=0+10=10.方法总结:进行有理数的减法运算时,将减法转化为加法,再根据有理数加法的法则进行运算.要特别注意减数的符号,这是易错点,同时统一成加法后还应注意选择合适的运算律,使运算简便.探究点二:有理数减法的应用在1986~2014年(即第10~17届)的八届亚运会中,我国运动员取得了骄人的成绩.将我国运动员夺得的奖牌数以2002年的308枚为基准,超过的枚数记为正数,不足的枚数记为负数,记录情况如下表:问奖牌最多的一届比最少的一届多多少枚?解析:观察表格发现,奖牌最多的是2010年,最少的是1986年,所以108-(-86)=194(枚).即奖牌数最多的一届比最少的一届多194枚.解:由题可知108-(-86)=194,即奖牌最多的一届比最少的一届多194枚.方法总结:找出奖牌最多的数量与最少的数量是解题的关键.探究点三:应用有理数减法法则判定正负性已知有理数a<0,b<0,且|a|>|b|,试判定a-b的符号.解析:判断a-b的符号,可能不好理解,不妨把它转化为加法a-b=a+(-b),利用加法法则进行判定.解:因为a<0,b<0,所以-b>0.又因为a-b=a+(-b),所以a与-b是异号两数相加,那么它们和的符号由绝对值较大的加数的符号决定,因为|a|>|b|,即|a|>|-b|,所以取a的符号,而a<0,因此a-b的符号为负号.方法总结:此类问题如果是填空或选择题,可以采用“特殊值”法进行判断,若是解答题,可以通过运算法则来解答.三、板书设计教学过程本课时在学习了有理数加法法则的基础上,探索有理数的减法法则.教学过程中,强调学生自主探索和合作交流,经历观察、归纳、积累等思维过程,体验从特殊到一般的数学思想方法,培养学生的转化思想,同时升华学生的情感态度和价值观.11。
七年级数学上册 1.4 有理数的乘除法教学设计(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册1.4 有理数的乘除法教学设计(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册1.4有理数的乘除法教学设计(新版)新人教版的全部内容。
1.4 有理数的乘除法第1课时有理数的乘法(一)错误!1.经历探索有理数乘法法则的过程,掌握有理数的乘法法则.2.能够运用有理数乘法法则计算两个数的乘法.3.能说出有理数乘法的符号法则,能用例子说明法则的合理性.错误!两个有理数相乘的符号法则.错误!从不同角度概括算式的规律.错误!(设计者:)错误!错误!错误!错误!错误!错误!一、创设情景明确目标1.计算(1)2+2+2+2=(2)(-2)+(-2)+(-2)+(-2)+(-2)=2.你能将上面两个算式写成乘法算式吗?二、自主学习指向目标自学教材第28至30页,完成下列问题:1.有理数的乘法法则:两数相乘,同号__得正__,异号__得负__,并把__绝对值相乘__.任何数与0相乘都得0.2.互为倒数:乘积是__1__的两个数互为倒数.3.有理数乘法运算时,应注意,先__确定符号__,再__确定积的绝对值__.4.几个有理数相乘,如果其中一个因数为0,则积为__0__.三、合作探究达成目标错误!有理数的乘法法则活动一:阅读教材第28至29页,思考:1.说一说三个“思考”中各有什么规律?2.从符号和绝对值两个角度观察教材中的算式,可以得出什么结论?3.有理数乘法法则分几种情况进行归纳的?例1 计算:(1)(-3)×9;(2)8×(-1);(3)(-\f(1,2))×(-2); (4)(-5)×(-7).【展示点评】要得到一个数的相反数,只要将它乘以-1即可.题(3)中两个因数互为倒数.【小组讨论】计算两个有理数相乘的一般步骤有哪些?法则是怎样的?【反思小结】两个有理数相乘先确定积的符号,再把绝对值相乘.其法则是:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0。