第5讲 系统的能控性和能观性
- 格式:ppt
- 大小:2.32 MB
- 文档页数:35
第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。
可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。
二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。
判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。
对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。
第三章:控制系统的能控性及能观测性(第五讲)内容介绍:能控性和能观测性定义、判据、对偶关系、标准型、结构分解。
能控性和能观测性是现代控制理论中最基本概念,是回答:“输入能否控制状态的变化”及“状态的变化能否由输出反映出来”这样两个问题。
换句话说,能控性是“能否找到一向量u(t)有效控制x(t)变化”。
能观测性问题是:“能否通过输出y(t)观测到状态的变化。
”一、能控性定义及判据 给出一个多变量系统(多输入、多输出)若系统G(s)在适当的控制u(t)作用下,每个状态都受影响,亦在有限的时间内能使系统G 由任意初始状态转移到零状态,或者说在有限的时间内能使系统由零状态转移到任意指定状态。
这说明:输入对状态的控制能力强,反之若G 的某一状态根本不受影响,那么在有限时间内就无法利用控制使这个状态变量发生变化。
说明输入对状态控制能力差。
可见:反映输入对状态控制能力的概念是能控性概念。
1. 定义:若对系统,在时刻的任意状态x()都存在一个有限的时间区间(ξt t ,0)(0t t 〉ξ)和定义在[]ξt ,t 0上适当的控制u(t),使在u(t)作用下x()=0。
则称系统在时刻是状态能控的。
如果系统在有定义的时间区域上的每一时刻都能控,称系统为完全能控。
()x u x 01011012=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=考查能控性?状态变量图(信号流图):y2由于u 的作用只影响不影响,故()t x 2为不能控。
某一状态不能控,则称系统不能控。
2.判据:u 1 : y1:对线性定常系统=Ax+Bu ,若对某一时刻能控,则称系统完全能控。
设: p输出 n n A *、p n B *、n m C *给出一定理:由=Ax+Bu 所描述的系统是状态完全能控的必要且充分条件为下列n ×np 阵的秩等于n 。
=BAB ……B A n 1-称为能控性阵。
换言之:系统的状态完全能控的必要且充分的条件是能控性阵的秩为n 。
第4章 控制系统的能控性和能观性第1节 能控性和能观性的定义◆设线性连续时变系统为()()x A t x B t u =+ ()y C t x =如果在[f t t ,0]上,对任意初始状态00)(x t x =,必能找到控制作用()u t ,能使)(t x 由0x 转移到0)(=f t x ,则称系统在0t 时刻是状态完全能控的,简称系统能控。
如果由[f t t ,0]上的)t y (,能惟一地确定0t 时刻的初始状态00)(x t x =,则称系统在0t 时刻是状态完全能观的,简称系统能观。
注意:能控性描述入)(t u 支配状态)(t x 的能力,能观性描述)(t y 反映)(t x 的能力。
能控性和能观性的定义要求初始状态的任意性。
◆线性定常连续系统x Ax Bu =+ y Cx =的能控性和能观性与0t 无关,常取00=t 。
对线性定常系统,能控性实质上是描述)(t u 支配模态(1,2,,)i te i n λ=的能力,若有任一模态不受输入的控制,系统便不能控;能观性实质上是)(t y 反映模态(1,2,,)i te i n λ=的能力,若有任一模态在输出中得不到反映,系统便不能观。
第2节 线性时变系统的能控性能观性判据1、格拉姆矩阵判据n 阶线性时变连续系统((),(),())S A t B t C t 在0t 时刻能控的充要条件是能控性格拉姆(Gramian )矩阵000(,)(,)()()(,)d ft t tC f t W t t t t B t B t t t t =ΦΦ⎰满秩;在0t 时刻能观的充要条件是能观性格拉姆矩阵000(,)(,)()()(,)d ft t tO f t W t t t t C t C t t t t =ΦΦ⎰满秩。
证明:1)能控性判据证明◆充分性证明。
假设),(0f C t t W 满秩,则),(01f ct t W -存在。
用构造法。
对任意的初始状态0()x t ,系统的状态解为00()()(,)(,)(()d tt x t t B u t t x t ττττ=-Φ+Φ⎰)]d )((),()()[,(0000ττττu B t t x t t tt )⎰Φ+Φ-=选择0100((),)(,))ttCf u t B t t t t W t x t -=-Φ()(代入系统状态解式并令f t t =,则有1000000()(,)[()(,)()()(,)(,)()d ]ft t tf f Cf t x t t t x t t t B t B t t t W t t x t t -=-Φ-ΦΦ⎰)()],(),()[,(00100t x t t W t t W I t t f Cf C f --Φ-=0)(])[,(00=-Φ-=t x I I t t f充分性得证。
第五章线性动态方程的可控性和可观测性5.1 引言5.2 时间函数的线性无关性5.3 线性动态方程的可控性5.4 线性动态方程的可观测性5.5 线性动态方程的规范分解5.6约当形(若当型)动态方程的可控性和可观测性其中:11,,,−−====A PAP B PB C CP E E(1)(1)]][B AB AB P[B AB A B n n −−=而证完。
其可控性矩阵的秩为n 1<n (n 为x 的维数),系统不可控,但可分解出n 1维的可控子系统,有以下定理c c c y x u=+C E 是可控的,且与原动态方程有相同的传递函数矩阵:1⎢⎥⎣⎦cn x定理的证明说明:(同时说明了变换矩阵的构造方法)11111[]−+=P""n n nq q q q 1)列写出动态方程的可控性矩阵U ,其秩为n 1;2)从U 中选取n 1个线性无关的列向量11+"n nq q 112,,,"n q q q 作为变换阵的逆矩阵的前n 1列,再补充n −n 1个n 维的列向量得到:1[]−##"#n B AB AB⎢⎥⎢⎥⎢⎥⎣⎦A0#1q A 0#2q A 0#1n q A *#11n q +A *#nq A c A 0⎢⎥⎢⎥⎣⎦B0#0#0#0c讨论: 1. 不可控状态不出现在系统的传递函数阵中,这进 一步说明了作为输入输出描述的传递函数矩阵不 能完全反映系统内部信息,它只能反映方程的可 控的部分;2. 经等价变换后系统的动态方程为:⎡ Ac x = ⎢ ⎣ 0tA 12 ⎤ ⎡B c ⎤ ⎥ x + ⎢ ⎥u Ac ⎦ ⎣ 0 ⎦该系统的零状态响应为:⎡e Ac (t −τ ) ∗ ⎤ ⎡B1 ⎤ x (t ) = ∫ ⎢ ⎥ ⎥ u(τ )d τ Ac (t −τ ) ⎢ e ⎥ t0 ⎢ ⎣ 0 ⎦⎣ 0 ⎦ t ⎡e Ac (t −τ ) B1 ⎤ = ∫⎢ ⎥ u(τ )d τ 0 ⎦ t0 ⎣ A c (t − τ ) 这说明,不可控制振型所对应的全部模式 e 与控制作用无耦合关系,这是为什么称不可控振型为 系统的输入解耦零点的原因。