直线平面平行、垂直的判定及其性质知识点
- 格式:doc
- 大小:645.00 KB
- 文档页数:9
平行线与垂直线知识点总结平行线和垂直线是几何中重要的概念。
它们之间存在一些关键性的属性和定理,了解这些知识点对于理解几何学的基础原理和解题技巧至关重要。
本文将对平行线和垂直线的定义、性质以及相关定理进行总结。
一、平行线1. 定义:平行线是在同一个平面中,永远不相交的两条直线。
用符号“//”表示两条平行线。
2. 性质:- 平行线之间存在等距离:两条平行线的任意两点之间的距离相等。
- 平行线的斜率相等:两条平行线的斜率是相等的。
- 平行线具有传递性:若直线a//b,b//c,则a//c。
3. 平行线的判定:- 垂直平分线判定法:如果两条线段的中垂线重合,则这两条线段平行。
- 角平分线判定法:如果两条角的角平分线平行,则两条角所在的直线平行。
- 逆否命题判定法:如果两条直线的对应角都不相等,则这两条直线平行。
- 同位角定理:两条平行线被一条横切线所交,所形成的同位角相等。
- 内错角定理:两条平行线被一条横切线所交,所形成的内错角互补。
- 外错角定理:两条平行线被一条横切线所交,所形成的外错角相等。
二、垂直线1. 定义:垂直线是在同一个平面中,相交时所成的角度为90度的两条直线。
2. 性质:- 垂直线之间的角度为90度。
- 垂直线的斜率乘积为-1。
- 垂直线上的任意线段之间距离相等。
3. 垂直线的判定:- 垂直平分线判定法:如果两条线段的中垂线垂直,则这两条线段垂直。
- 互相垂直的直线判定法:如果两条直线斜率的乘积为-1,则这两条直线垂直。
- 同位角定理:两条垂直线被一条直线所交,所形成的同位角相等。
- 内错角定理:两条垂直线被一条直线所交,所形成的内错角互补。
- 外错角定理:两条垂直线被一条直线所交,所形成的外错角相等。
总结:平行线和垂直线是几何学中十分重要的概念。
平行线具有等距离和相等斜率的特点,垂直线具有90度的角度和斜率乘积为-1的特点。
我们可以利用垂直线和平行线的性质来判断线段和直线的关系,以及解决各类几何题目。
立体几何知识点总结一、平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a)A∈l—点A在直线l上;A∉α—点A不在平面α内;b)l⊂α—直线l在平面α内;c)a⊄α—直线a不在平面α内;d)l∩m=A—直线l与直线m相交于A点;e)α∩l=A—平面α与直线l交于A点;f)α∩β=l—平面α与平面β相交于直线l.二、平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3 经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.公理4 平行于同一条直线的两条直线互相平行三、证题方法四、空间线面的位置关系共面平行—没有公共点(1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外) 相交—有且只有一公共点(3)平面与平面相交—有一条公共直线(无数个公共点)平行—没有公共点五、异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.六、线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,a ∥β④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b(线面垂直的性质定理)⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b(面面平行的性质公理)⑥中位线定理、平行四边形、比例线段……,α∩β=b,则a∥b.(线面平行的判定定理)③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.(公理4)(2)两直线垂直的判定①定义:若两直线成90°角,则这两直线互相垂直.②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,b⊂α,a⊥b.④三垂线定理和逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a⊄α,b⊂α,a∥b,则a∥α.(线面平行的判定定理)③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l⊂α,则l∥β.(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m⊂α,n⊂α,m∩n=B,l⊥m,l⊥n,则l⊥α.(线面垂直判定定理)③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l⊂β,l⊥a,则l⊥α.(面面垂直的性质定理)(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b⊂α,a∩b=P,a∥β,b ∥β,则α∥β.(面面平行判定定理)推论:一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b⊂α,c,d⊂β,a∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°⇔α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l⊂α,则α⊥β.(面面垂直判定定理)七、空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.1、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a ′∥a,b ′∥b,则a ′和b ′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小. 2、直线和平面所成的角——斜线和射影所成的锐角 (1)取值范围0°≤θ≤90° (2)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ. ②解含θ的三角形,求出其大小. 3、二面角及二面角的平面角(1)半平面 直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角 条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180° (3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD 是二面角α-AB-β的平面角.平面角∠PCD 的大小与顶点C 在棱AB 上的位置无关. ②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB ⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD ⊥α,平面PCD ⊥β. ③找(或作)二面角的平面角的主要方法.(i)定义法 (ii)垂面法 (iii)三垂线法 (Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值. 八.空间的各种距离 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S ·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.直线和平面的距离、平行平面的距离将线面、面面距离转化为点面距离,然后运用解三角形或体积法求解之.空间直线和平面(一)知识结构(二)平行与垂直关系的论证1、线线、线面、面面平行关系的转化:线线∥线面∥面面∥公理4 (a//b,b//ca//c)线面平行判定αβαγβγ//,//==⇒⎫⎬⎭a ba b面面平行判定1a ba ba//,//⊄⊂⇒⎫⎬⎭ααα面面平行性质a ba b Aa b⊂⊂=⇒⎫⎬⎪⎭⎪ααββαβ,//,////线面平行性质aaba b////αβαβ⊂=⇒⎫⎬⎪⎭⎪面面平行性质1αβαβ////aa⊂⇒⎫⎬⎭面面平行性质αγβγαβ//////⎫⎬⎭⇒A bα aβabα2. 线线、线面、面面垂直关系的转化:a a OA a PO a PO a AO⊂⊥⇒⊥⊥⇒⊥αα在内射影则面面垂直判定线面垂直定义l a l a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪ b a a b a , αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪ a a面面垂直定义αβαβαβ =--⇒⊥⎫⎬⎭l l ,且二面角成直二面角3. 平行与垂直关系的转化:面面∥面面平行判定2 线面垂直性质2面面平行性质3a b a b //⊥⇒⊥⎫⎬⎭ααa b a b ⊥⊥⇒⎫⎬⎭αα//a a ⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//a a ⊥⊥⎫⎬⎭a4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。
平行1.直线与平面平行的判定(1)直线与平面平行的定义:如果一条直线与一个平面没有公共点,我们就说这条直线与这个平面平行.(2)直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.符号表示为:.注意:这个定理是证明直线与平面平行最常用的一个定理,也就是说欲证明一条直线与一个平面平行,一是说明这条直线不在这个平面内,二是要证明已知平面内有一条直线与已知直线平行.2.两个平面平行的判定(1)两个平面平行的定义:两个平面没有公共点,则两个平面平行.(2)平面与平面的平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.符号表示为:.注意:这个定理的另外一种表达方式为“如果一个平面内有两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行”.(3)平行于同一平面的两个平面互相平行.即.3.直线与平面平行的性质(1) 直线与平面平行的性质定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.符号表示为:.注意:如果一条直线和一个平面平行,那么这条直线和平面内的无数条直线平行,但不能误解为“如果一条直线与一个平面平行,那么这条直线就和平面内的任意一条直线平行”.(2)直线与平面平行的性质:过平面内一点的直线与该平面平行的一条直线平行,则这条直线在这个平面内.符号表示为:若,点,且,则.4.平面与平面平行的性质(1)如果两个平面平行,那么其中一个平面内的任意直线均平行与另一个平面.此结论可以作为定理用,可用来判定线面平行.(2)两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(3)夹在两个平行平面间的平行线段相等.垂直1.直线与平面垂直的判定(1)直线与平面垂直的定义如果一条直线和一个平面内的任意一条直线都垂直,我们就说这条直线和这个平面垂直,其中直线叫作平面的垂线,平面叫作直线的垂面.注意:①定义中的“任意一条直线”和“所有直线”是同义语,不能改成“无穷多条直线”.②如果或,那么直线l不可能与平面内的任意一条直线都垂直.由此可知,当时,直线l和一定相交,它们唯一的交点叫做垂足.(2)直线和平面垂直的判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直与这个平面.(3)关于垂直的存在唯一性命题1:过一点有且只有一条直线和已知平面垂直.命题2:过一点有且只有一个平面和已知直线垂直.2.平面与平面垂直的判定(1)平面与平面垂直的定义:两个平面相交,如果所成的二面角是直二面角,则称这两个平面互相垂直.(2)两个平面垂直的判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 符号表示为:.3.直线与平面垂直的性质如果两条直线同垂直于一个平面,那么这两条直线平行. 符号表示:. 作用:可作线线平行的判定定理. 4.平面与平面垂直的性质(1)两个平面垂直的性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. 符号表示为:.(2)如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面. (3)三个两两垂直的平面的交线两两垂直.(4)如果两个平面垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内.空间几何定理公理总结:1.平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 公理4 同平行于一条直线的两条直线互相平行。
平行线与垂直线的性质及判定方法平行线和垂直线是几何学中常见的重要概念。
对于这两种线相互之间的性质以及如何准确判定它们的方法,本文将进行详细介绍。
一、平行线的性质及判定方法平行线是指在同一个平面内永远不会相交的两条直线。
关于平行线的性质和判定方法,我们可以从以下几个方面进行说明。
1. 平行线的性质1.1 不同于同一直线上的两点,同一平面上不同直线上的两点无法连线。
1.2 平行线之间的距离始终相等。
1.3 平行线对应的内角、外角相等。
1.4 平行线的斜率相等或者不存在。
2. 平行线的判定方法2.1 通过观察法判定平行线:如果两条直线的方向相同或者相互平行,它们就是平行线。
可以通过观察直线的倾斜角度或者倾斜方向来判断。
2.2 通过斜率判定平行线:计算两条直线的斜率,如果它们的斜率相等或者不存在,那么这两条直线即为平行线。
2.3 通过平行线定理判定平行线:平行线定理是指如果有一直线与两条平行线相交,那么这两条直线也是平行线。
二、垂直线的性质及判定方法垂直线是指在同一个平面上与另一条直线相交时,两条直线之间的角度为90度。
下面我们来介绍垂直线的性质和判定方法。
1. 垂直线的性质1.1 垂直线之间相交的角度为90度。
1.2 垂直线上的两条线段的长度相等。
1.3 垂直线的斜率的乘积为-1,其中一个垂直线的斜率不存在。
2. 垂直线的判定方法2.1 通过观察法判定垂直线:如果两条直线的交角为90度,它们就是垂直线。
可以通过观察直线之间的交角来判断。
2.2 通过斜率判定垂直线:计算两条直线的斜率,如果斜率的乘积为-1,其中一个直线的斜率不存在,那么这两条直线即为垂直线。
2.3 通过垂直线定理判定垂直线:垂直线定理是指如果两条直线相互垂直,则它们的斜率乘积为-1。
综上所述,平行线与垂直线在几何学中有着重要的性质和判定方法。
对于平行线来说,我们可以通过观察法、斜率以及平行线定理来判定。
而对于垂直线来说,我们可以通过观察法、斜率以及垂直线定理来判定。
平行线与垂直线的认识知识点总结平行线和垂直线是几何学中常见的两种线性关系,它们在我们的日常生活和数学研究中都起到重要的作用。
本文将对平行线和垂直线的概念、性质和应用进行总结,以帮助读者更好地理解和运用这两种线性关系。
一、平行线的概念和性质1. 平行线的定义:两条直线在平面内不相交,并且它们的所有点到另一直线的距离相等,则称这两条直线为平行线。
2. 平行线的判定:有以下几种方法可以判定两条直线是否平行:- 通过观察直线的方程是否满足平行线的定义;- 通过观察直线的斜率是否相等;- 通过观察直线的平行关系是否可以推导出等比例关系。
3. 平行线的性质:- 平行线之间不存在交点;- 平行线的斜率相等;- 平行线的夹角为180度;- 平行线之间的距离在平面上保持不变。
二、垂直线的概念和性质1. 垂直线的定义:两条直线相交,且相交的角度为90度,则称这两条直线为垂直线。
2. 垂直线的判定:有以下几种方法可以判定两条直线是否垂直:- 通过观察直线的方程是否满足垂直线的定义;- 通过观察直线的斜率之积是否为-1;- 通过观察直线之间的角度是否为90度。
3. 垂直线的性质:- 垂直线之间存在交点;- 垂直线的斜率之积为-1;- 垂直线之间的角度为90度;- 垂直线的斜率为正无穷和负无穷。
三、平行线和垂直线的应用1. 平行线的应用:- 在建筑设计中,平行线的概念被广泛运用于保持建筑物的平衡和稳定性;- 在地理测量中,通过观察地平线和水平线的关系,可以判断两条线是否平行;- 在艺术创作中,平行线的运用可以帮助构建透视效果。
2. 垂直线的应用:- 在建筑施工中,垂直线的运用可以保证建筑物的结构稳定;- 在地理测量中,通过使用测量仪器可以确定地表的垂直线;- 在数学和物理实验中,垂直线的概念被广泛运用于实验数据的分析和计算。
总结起来,平行线和垂直线是几何学中重要的概念,它们在日常生活和学术研究中都起到了至关重要的作用。
通过对平行线和垂直线的概念、性质和应用的总结,希望读者能够更好地理解和运用这两种线性关系,进一步提升数学和几何学方面的知识和能力。
线面、面面平行和垂直的八大定理之蔡仲巾千创作
一、线面平行。
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条
直线与这个平面平行。
符合暗示:
2、性质定理:如果一条直线与平面平行,经过这条直线的平面和
这个平面相交,那么这条直线和交线平行。
符号暗示:
二、面面平行。
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个
平面内的两条相交直线,那么这两个平面平行。
符号暗示:
2、性质定理:如果两个平面平行同时与第三个平面相交,那它们
的交线平行。
符号暗示:(更加实用的性质:一个平面内的任一直线平行另一平面)
三、线面垂直。
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂
直,那么这条直线垂直这个平面。
符号暗示: α⊥⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=⊥⊥a M c b b a c a
$:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号暗示: 2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)
四、面面垂直。
1、判定定理:经过一个平面的垂线的平面与该平面垂直。
2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,。
垂直和平行线的性质和判定垂直和平行线是几何学中常用的概念,它们具有独特的性质和判定条件。
本文将介绍垂直和平行线的一些基本性质,并探讨如何判定两条线是否垂直或平行。
一、垂直线的性质和判定垂直线是指两条直线相互交于一点,且交角为90度的线段。
垂直线的性质如下:1. 垂直线与平面上的任意一条直线相交,所成的角都是90度。
根据这个性质,我们可以通过观察两条线段的交角来判断它们是否垂直。
如果两条线段交角为90度,则它们是垂直线。
2. 垂直线的斜率乘积为-1。
斜率是直线的一个重要属性,可以用斜率来判断两条直线是否垂直。
对于两条直线,如果它们的斜率乘积等于-1,则说明它们是垂直线。
3. 垂直线上的点到另一条直线的距离最短。
这是垂直线的特殊性质之一,垂直线上的任意一点到另一条直线的距离都是最短的。
二、平行线的性质和判定平行线是指在同一个平面内,没有相交点,且永远保持相同的距离的直线。
平行线的性质如下:1. 平行线的斜率相等。
这是判断两条线是否平行的最常用方法。
对于两条直线,如果它们的斜率相等,则说明它们是平行线。
2. 平行线上的对应角相等。
如果两条平行线被一条横截线相交,那么对应角也是相等的。
这是平行线性质中的重要定理之一。
3. 平行线上的任意两点到另一条直线的距离相等。
这是平行线的另一个重要特性,平行线上的任意两点到另一条直线的距离都是相等的。
三、垂直和平行线的判定方法1. 通过斜率判定通过比较两条线的斜率可以判断它们的关系。
如果两条线的斜率乘积为-1,则它们是垂直线;如果两条线的斜率相等且不为无穷大,则它们是平行线。
2. 通过角度关系判定如果两条直线相交的角度为90度,则它们是垂直线。
如果两条直线被一条横截线相交,且对应角相等,则它们是平行线。
3. 通过距离判定如果两条直线上的任意一点到另一条直线的距离相等,则说明它们是平行线。
如果垂直线上的任意一点到另一条直线的距离最短,则说明它们是垂直线。
综上所述,垂直和平行线具有各自独特的性质和判定条件。
小学六年级数学重点知识平行线与垂直线的性质及判定方法小学六年级数学重点知识:平行线与垂直线的性质及判定方法在小学六年级的数学学习中,平行线与垂直线是一个重要的知识点。
了解平行线与垂直线的性质及判定方法,对于解决几何问题和数学推理具有重要意义。
本文将介绍平行线与垂直线的性质以及判定方法,并提供相关例题进行说明。
一、平行线的性质平行线是指在同一个平面上,永远不会相交的两条直线。
平行线具有以下性质:1. 直线与平行线的交角关系当一条直线与两条平行线相交时,相交的两个角分别为内角和外角。
性质如下:- 内角:当直线与两条平行线相交时,内角相等。
- 外角:当直线与两条平行线相交时,外角相等且它们之和为180°。
2. 平行线的性质定理平行线具有以下性质定理:- 平行线定理:如果一条直线与另一条直线分别平行,那么这两条直线之间的所有直线都是平行线。
- 平行线的性质:如果一条直线与平行线的其中一线相交,那么它与另一条平行线的关系也是相应的。
比如,如果线l与平行线m相交,并且线l与另一条平行线n的关系为垂直,那么线m与线n也是垂直的。
二、垂直线的性质垂直线是指两条直线之间的夹角为900的直线。
垂直线具有以下性质:1. 垂直线的性质定理垂直线具有以下性质定理:- 垂直线定理:如果两条直线相互垂直,那么它们之间的所有直线也与这两条直线垂直。
- 直线与垂直线的交角关系:当一条直线与两条互相垂直的直线相交时,它与这两条直线的夹角分别为90°。
三、平行线和垂直线的判定方法判定两条直线是否平行或垂直,有以下几种方法:1. 观察法通过观察两条直线的方向、形状和位置来判断其关系。
如果两条直线的方向完全相同或者互为相反方向,则它们平行;如果两条直线交叉形成直角,则它们垂直。
2. 使用角度利用两条直线的交角来判定其关系。
如果两条直线的交角为90°,则它们垂直;如果两条直线的交角为180°,则它们是平行线。
直线平面平行、垂直的判定及其性质知识点在几何学中,我们经常会遇到直线和平面之间的关系。
其中,直线与平面可以有平行关系或垂直关系。
本文将介绍直线和平面平行、垂直的判定方法,并讨论它们的性质。
一、直线和平面的基本概念回顾在论述直线和平面的平行、垂直关系之前,我们需要先回顾一些基本概念。
1. 直线直线是由无限多个点按一定方向排列而成的,没有始点和终点。
直线可由一个点和一个方向确定。
在数学中,直线通常用两个点A和B表示,记作AB。
2. 平面平面是二维几何体,具有无限多个点,且任意两点之间可以连成一条直线。
平面由三个非共线的点决定。
在数学中,我们通常用大写字母P、Q、R等表示平面上的点。
二、直线和平面的平行判定1. 平行直线与平面的关系如果一条直线与一个平面内的直线平行,那么它也与这个平面平行。
同样地,如果一条直线与一个平面内的直线垂直,那么它也与这个平面垂直。
2. 平行直线的判定方法直线之间的平行关系有多种判定方法。
下面介绍两种常见的方法:(1) 借助平面间的平行关系进行判定两条直线平行的充要条件是,它们在同一个平面内,且与该平面的一条直线平行。
(2) 借助直线的倾斜角进行判定两条直线平行的充要条件是,它们的倾斜角相等或互补。
三、直线和平面的垂直判定1. 垂直直线与平面的关系如果一条直线与一个平面内的直线垂直,那么它与这个平面垂直。
2. 垂直直线的判定方法直线与平面垂直的判定方法有多种。
下面介绍两种常见的方法:(1) 借助直线和平面的夹角进行判定直线与平面垂直的充要条件是,直线与平面内的两条相交直线成对应的垂直角。
(2) 借助直线的方向向量进行判定直线与平面垂直的充要条件是,直线的方向向量与平面的法向量垂直。
四、直线平面平行、垂直关系的性质1. 性质1:平行或垂直关系具有传递性若直线a与直线b平行,直线b与直线c平行,那么直线a与直线c也平行。
同样的,若直线m与直线n垂直,直线n与直线p垂直,那么直线m与直线p也垂直。
一、直线、平面平行的判定及其性质
知识点一、直线与平面平行的判定
ⅰ.直线和平面的位置关系(一条直线和一个平面的位置关系有且只有以下三种)
位置关系直线在平面直线与平面相交直线与平面平行
公共点有无数个公共点有且只有一个公共点没有公共点
符号表示a⊂αa∩α=A a||α
图形表示
注:直线和平面相交或平行的情况统称为直线在平面外
ⅱ.思考:如图,设直线b在平面α,直线a在平面α外,猜想在什么条件下直线a与平面α平行.(a||b)
直线与平面平行的判断
判定
文字描述直线和平面在空间平面永无交点,则
直线和平面平行(定义)
平面外的一条直线一次平面的一条直线平
行,则该直线与此平面平行
图形
条件
a与α无交点
结论
a∥αb∥α
线线平行,则线面平行(线与面的平行问题一定要排除现在直线的情况)※判定定理的证明
知识点二、直线与平面平行的性质
性质
文字描述一条直线与一个平面平行,
则这条直线与该平面无交点
一条直线和一个平面平行,则
过这条直线的任一平面与此平
面相交,这条直线和交线平行.
图形
条件a∥αa∥αa⊂βα∩β=b
结论
a∩α=∅a∥b
线面平行,则线线平行
特别提示
证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通过“线线”平行,证得“线面”平行;②利用两平面平行的性质定理,通过“面面”平行,证得“线面”平行.
知识点三、平面与平面平行的判定
判定
文字描述如果两个平面无公共
点,责成这两个平面平
行一个平面有两条相交
直线与另一个平面平
行,那么这两个平面平
如果两个平面同时垂直于
一条直线,那么这两个平
面垂直。
行.图形
条件α∩β=∅a,b⊂β
a∩b=P
a∥α
b∥αl⊥αl⊥β
结论α∥βα∥βα∥β
知识点四、平面与平面平行的性质
性质
文字描述如果两个平行平面同时和第
三平面相交,那么他们的交
线平行如果两个平面平行,那么其中一个平面的直线平行于另一个平面
图形
条件α∥β
β∩γ=b α∥βa⊂β
α∩γ=a
结论a∥b a∥α
二、直线、平面垂直的判定及其性质
定义判定
语言描述
如果直线l和平面α的任意一条直线都垂
直,我们就说直线l与平面互相垂直,一条直线与一个平面的两条相交直线都垂直,则这条直线与该平面垂直.
记作l ⊥α
图形
条件 b 为平面α的任一直线,而l 对这一直线总有l ⊥α
l ⊥m ,l ⊥n ,m ∩n =B ,m ⊂α,n ⊂α
结论
l ⊥α l ⊥α
要点诠释:定义中“平面
的任意一条直线”就是指“平面
的所有直线”,这与“无数
条直线”不同(线线垂直
线面垂直)
知识点二、直线和平面垂直的性质
性质
语言描述 一条直线垂直于一个平面,那么这条直线垂直于这个平面的所有直线
垂直于同一个平面的两条直线平行.
图形
条件
结论
知识点三、二面角
Ⅰ.二面角::从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle ). 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --)
二面角的平面角的三个特征:ⅰ.
点在棱上
ⅱ. 线在面 ⅲ.
与棱垂直
Ⅱ.二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角.
作用:衡量二面角的大小;围:00
0180θ<<.
知识点四、平面和平面垂直的定义和判定
定义判定
文字描述两个平面相交,如果它们所成的二面角是
直二面角,就说这两个平面垂直.
一个平面过另一个平面的垂线,则这两个
平面垂直
图形
结果α∩β=l α-l-β=90o α⊥β
(垂直问题中要注意题目中的文字表述,特别是“任何”“随意”“无数”等字眼)
知识点五、平面和平面垂直的性质
面面垂直线面垂直(如果两个平面垂直,那么一个平面垂直于它们交线的直线与一个面平垂直)
例题
1.如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的
几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥
A1 D1,则下列结论中不正确的是
A. EH∥FG
B.四边形EFGH是矩形
C. Ω是棱柱
D. Ω是棱台
2能保证直线a与平面α平行的条件是( A )
A.a⊄α,b⊂α,a∥b B .b⊂α,a∥b
C. b⊂α,c∥α,a∥b,a∥c
D. b⊂α,A∈a,B∈a,C∈b ,D∈b且AC=BD
3下列命题正确的是( D F )
A. 平行于同一平面的两条直线平行
B. 若直线a ∥α,则平面α有且仅有一条直线与a 平行
C. 若直线a ∥α,则平面α任一条直线都与a 平行
D. 若直线a ∥α,则平面α有无数条直线与a 平行
E. 如果a 、b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面
F. 如果直线a 、b 和平面α满足a ∥b ,a ∥α,b ⊄α,那么b ∥α
4在空间,下列命题正确的是 (A )平行直线的平行投影重合 (B )平行于同一直线的两个平面平行 (C )垂直于同一平面的两个平面平行 (D )垂直于同一平面的两条直线平行
5已知m 、n 为两条不同的直线,a 、β为两个不同的平面,则下列命题中正确的是
A .,,m n αα⊂⊂m ∥β,n ∥β⇒a ∥β
B .a ∥β,,m n αβ⊂⊂⇒m ∥n
C .m ⊥a,m ⊥n ⇒n ∥a
D .n ∥m,n ⊥a ⇒m ⊥a 6.下列命题中错误的是
(A )如果平面α⊥平面β,那么平面α一定直线平行于平面β
(B )如果平面α垂直于平面β,那么平面α一定不存在直线垂直于平面β (C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ (D )如果平面α⊥平面β,那么平面α所有直线都垂直于平面β
8.求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面. 已知:空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点 求证:EF ‖平面BCD
8题图9题图
9.如图,在椎体P-ABCD中,ABCD是边长为1的棱形,
且∠DAB=60 ,,PB=2,
E,F分别是BC,PC的中点.
(1) 证明:AD ⊥平面DEF;
(2) 求二面角P-AD-B的余弦值.
课堂练习
A组
3.m、n是空间两条不同的直线,α、β是两个不同的平面,下面四个命题中,真命题的序号是________.
①m⊥α,n∥β,α∥β⇒m⊥n;
②m ⊥n ,α∥β,m ⊥α⇒n ∥β; ③m ⊥n ,α∥β,m ∥α⇒n ⊥β; ④m ⊥α,m ∥n ,α∥β⇒n ⊥β.
4.如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2,
AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。
(1) 证明:直线EE 1//平面FCC 1;
5. 在长方体ABCD —A1B1C1D1中.
(1)作出过直线AC 且与直线BD1平行的截面,并说明理由.
(2)设E 、F 分别是A1B 和B1C 的中点,求证直线EF//平面ABCD.
6. 在图中所示的一块木料中,棱BC 平行于平面A ’C ’ .
(1)要经过平面 的一点P 和棱BC 将木料据开,应怎样画线? (2)所画的线和平面AC 是什么位置关系?
C A '
'E
A
B
C
F E 1
A 1
B 1
C 1
D 1 D。