2020-2021学年福建省中考数学模拟试卷及答案解析
- 格式:doc
- 大小:400.00 KB
- 文档页数:32
2020年福建省福州市中考数学模拟试卷一、选择题(每小题4分,共40分)1.9的立方根是()A.3B.±3C.D.2.如图,过直线外一点作已知直线的平行线,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等3.中国倡导“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口约为44亿人,数据44亿用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.44×10104.下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形B.平行四边形C.抛物线D.双曲线5.对于实数a,下列不等式一定成立的是()A.|a|>0B.>0C.a2+1>0D.(a+1)2>0 6.下列方差最大的一组数据是()A.6,6,6,6,6B.5,6,6,6,7C.4,5,6,7,8D.3,3,6,9,9 7.已知形状相同,大小不同两块含有30°角的三角板如图所示摆放,其中较小的一块三角板ACD的面积为2,则较大三角板ABC的面积为()A.4B.8C.10D.168.下列选项中,可说明“(a+b)3=a3+b3”是假命题的是()A.a=﹣1,b=1B.a=0,b=2C.a=﹣2,b=1D.a=2017,b=﹣20179.如图,将⊙O沿弦AB折叠得到所在圆的切线交⊙O于点C,若⊙O的半径为1,当AC取最大值时,则弦AB的长是()A.1B.C.D.210.已知函数y=,当y随x的增大而减小时,x的取值范围是()A.x≥1B.x≤﹣1C.﹣1≤x≤1D.x≤﹣1或x≥1二、填空题(每小题4分,共24分)11.化简分式的结果是.12.在一次“班班有诗词”竞赛活动中,某班10名学生的成绩折线统计图如图所示,若随机从这10名学生中抽取一人,则抽中概率最大的学生得分是.13.如图,若集合A表示四边形,集合B表示正多边形,则阴影部分表示.14.如图,△ABC中,AB=AC,∠A=36°,D为AC边上一点,将△CBD沿直线BD翻折,使翻折后的点C恰好仍在AC边上,∠CBD的度数是.。
福建省,2020~2021年中考数学压轴题精选解析福建省中考数学压轴题精选~~第1题~~(2020福建.中考真卷) 已知直线 交y轴于点A ,交轴于点B ,二次函数的图象过两点,交x 轴于另一点 ,,且对于该二次函数图象上的任意两点,,当 时,总有.(1)求二次函数的表达式;(2) 若直线,求证:当时,;(3) E 为线段上不与端点重合的点,直线 过点C 且交直线 于点F ,求与 面积之和的最小值.~~第2题~~(2019福建.中考真卷) 已知抛物y=ax +bx+c (b <0)与轴只有一个公共点.(1) 若公共点坐标为(2,0),求a 、c 满足的关系式;(2) 设A 为抛物线上的一定点,直线l :y=kx+1-k 与抛物线交于点B 、C 两点,直线BD 垂直于直线y =-1,垂足为点D.当k =0时,直线l 与抛物线的一个交点在 y 轴上,且△ABC 为等腰直角三角形.①求点A 的坐标和抛物线的解析式;②证明:对于每个给定的实数 k ,都有A 、D 、C 三点共线.~~第3题~~(2018福建.中考模拟) 已知二次函数y=ax ﹣4ax+1(1) 写出二次函数图象的对称轴:;(2) 如图,设该函数图象交x 轴于点A 、B (B 在A 的右侧),交y 轴于点C .直线y=kx+b 经过点B 、C .①如果k=﹣ ,求a 的值②设点P 在抛物线对称轴上,PC+PB 的最小值为 ,求点P 的坐标.~~第4题~~(2018福建.中考真卷) 已知抛物线y=ax +bx+c 过点A (0,2),且抛物线上任意不同两点M (x , y ),N (x , y )都满足:当x <x <0时,(x ﹣x )(y ﹣y )>0;当0<x <x 时,(x ﹣x )(y ﹣y )<0.以原点O 为圆心,O A 为半径的圆与抛物线的另两个交点为B ,C ,且B 在C 的左侧,△ABC 有一个内角为60°.(1) 求抛物线的解析式;2221122121212121212(2) 若MN 与直线y=﹣ 2x 平行,且M ,N 位于直线BC 的两侧,y >y ,解决以下问题:①求证:BC 平分∠MBN ;②求△MBC 外心的纵坐标的取值范围.~~第5题~~(2018福建.中考真卷)已知抛物线y=ax +bx+c 过点A (0,2).(1) 若点(﹣ ,0)也在该抛物线上,求a ,b 满足的关系式;(2) 若该抛物线上任意不同两点M (x ,y ),N (x ,y )都满足:当x <x <0时,(x ﹣x )(y ﹣y )>0;当0<x <x 时,(x ﹣x )(y ﹣y )<0.以原点O 为心,OA 为半径的圆与拋物线的另两个交点为B ,C ,且△ABC 有一个内角为60°.①求抛物线的解析式;②若点P 与点O 关于点A 对称,且O ,M ,N 三点共线,求证:PA 平分∠MPN .~~第6题~~(2017福建.中考真卷) 已知直线y=2x+m 与抛物线y=ax +ax+b 有一个公共点M (1,0),且a <b .(Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N .(ⅰ)若﹣1≤a≤﹣,求线段MN 长度的取值范围;(ⅱ)求△QMN 面积的最小值.福建省中考数学压轴题答案解析~~第1题~~答案:12211221212121212122解析:~~第2题~~答案:解析:答案:解析:答案:解析:~~第5题~~答案:解析:~~第6题~~答案:解析:。
最新福建省初中学业质量测查(第二次)数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:请认真作答,把答案准确地填写在答题卡上学校姓名考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.化简4的结果是( )A .2B .2C .-2D .±2 2.下列计算错误..的是( ) A .6a + 2a =8aB .a – (a – 3) =3C .a 2÷a 2 = 0D .a –1·a 2 = a3. 下列四个平面图形中,三棱锥的表面展开图的是( )A .B .C .D . 4.学校团委组织“阳光助残”捐款活动,九年级一班学生捐款情况如下表:捐款金额(元)5102050人数(人) 10 13 12 15 A .13 B .12 C .10 D .20 5.下列事件发生属于不可能事件的是( ) A .射击运动员只射击1次,就命中靶心B .画一个三角形,使其三边的长分别为8cm ,6cm ,2cmC .任取一个实数x ,都有|x |≥0D .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 6.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( ) A .8 B. 6 C. 4 D. 27.已知Rt △ABC 中,∠C =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到AD 的距离是( ) A .23 B .2 C .5 D .13136 E B O A (第6题图) (第7题图)二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若70A ︒∠=,则A ∠的余角是度.9.我国第一艘航母“辽宁舰”的最大排水量为68000吨,用科学记数法表示这个数据是 吨. 10.计算:2-x x +x-22=. 11.分解因式:xy 2 – 9x =.12.如图,点O 是正五边形ABCDE 的中心,则∠BAO 的度数为 . 13. 如图,在△ABC 中,两条中线BE ,CD 相交于点O ,则S △DOE :S △DCE =. 14.若关于x 的方程x 2+(k -2)x -k2=0的两根互为相反数,则k = .15.如果圆锥的底面周长....为2πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是 cm 2.(结果保留π)16.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连结DE .若DE :AC =3:5,则ABAD的值为 . 17.如图,在平面直角坐标系xoy 中,直线:l 3y kx k =-(0k <)与x 、y 轴的正半轴分别交于点A 、B ,动点D (异于点A 、B ) 在线段AB 上,DC ⊥x 轴于C .(1)不论k 取任何负数,直线l 总经过一个定点,写出该定点的坐标为 ;(2)当点C 的横坐标为2时,在x 轴上存在点P ,使得PB ⊥PD ,则k 的取值范围为 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:232(2)2sin 60---+o -(2π-1)0.19.(9分)先化简,再求值:2x (x +1)+(x ﹣1)2,其中x =23.(第17题图)20.(9分)如图,已知四边形ABCD 是菱形,DE ⊥AB 于E ,DF ⊥BC 于F .求证:△ADE ≌△CDF .21.(9分)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是 度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费? 22.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片的背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ). (1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式yx yy x xy x -+--2223有意义的(x ,y )出现的概率;(第20题图)23.(9分)如图,在平面直角坐标系xoy 中,抛物线12-+=bx ax y 经过点A (2,﹣1),它的对称轴与x 轴相交于点B . (1)求点B 的坐标;(2)如果直线y =x +1与抛物线的对称轴交于点C , 与抛物线在对称轴右侧交于点D ,且∠BDC =∠ACB ,求此抛物线的表达式.24.(9分)某公司采购某商品60箱销往甲乙两地,已知某商品在甲地销售平均每箱的利润1y (百元)与销售数量x (箱)的关系为⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 在乙地销售平均每箱的利2y (百元)与销售数量t (箱)的关系为⎪⎩⎪⎨⎧<≤+-≤<=)6030(8151),300(62t t t y(1)将y 2转换为以x 为自变量的函数,则y 2=;(2)设某商品获得总利润W (百元),当在甲地销售量x (箱)的范围是0<x ≤20时,求W 与x的关系式;(总利润=在甲地销售利润+在乙地销售利润)(3)经测算,在20<x ≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x 的值.25.(12分)如图,在平面直角坐标xoy 内,函数y =xm(x >0,m 是常数)的图象经过A (1,4),B (a ,b ),其中a >1.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)求m 的值;(2)求证:DC ∥AB ;(3)当AD =BC 时,求直线AB 的函数表达式.(第23题图).26.(14分)如图,矩形ABCD的边AB=3,AD=4,点E从点A出发,沿射线AD移动,以CE 为直径作圆O,点F为圆O与射线BD的公共点,连结EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连结CG.(1)求证:四边形EFCG是矩形;(2)求tan∠CEG的值;(3)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,求四边形EFCG面积的取值范围;(第26题图)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1.B2.C3.B4.D5.B6.A7.C二、填空题(每小题4分,共40分)8.20;9. 46.810⨯;10. 1;11. (3)(y3)x y+-;12. 54°;13. 1:3;14. 2;15. 3π;16. 12;17.(1)(3,0);(2)303k-≤<.三、解答题(共89分)18.(本小题9分)解:原式23431=--+-……………………(8分)3=-……………………(9分)19.(本小题9分)解:原式=2x2+2x+x2﹣2x+1,……………………(6分)=3x2+1……………………(7分)当x=2时,原式=3×(2)2+1………………(8分)=37.……………………(9分)20.(本小题9分)解:∵四边形ABCD是菱形,∴AD=CD;∠A=∠C,……………………(6分)又∵DE⊥AB于E,DF⊥BC于F,∴∠AED=∠CFD=90°; ……………………(8分)在△ADE和△CDF中,∠A=∠C,∠AED=∠CFD, AD=CD;∴△ADE≌△CDF.……………………(9分)21.(本小题9分)解:(1)200,36.……………………(4分)画图如图:……………………(6分)(2)根据题意得:296×10+80×12+200×15+224×12=9608(元) 答:开展本次活动共需9608元经费. ……………………(9分) 22.(本小题9分) 解:(1)列表如下:-2 -1 1 -2 (-2,-2) (-2,-1) (-2,1) -1 (-1,-2) (-1,-1) (-1,1) 1 (1,-2) (1,-1) (1,1)……………………(5分)(2)由上表可知,所有等可能的情况共有9种,……………………(6分)∵使分式yx yy x xy x -+--2223有意义,∴x ≠y 且x ≠-y;……………………(7分)∴满足条件的点有4种,…………………(8分) 则P=49.………………(9分) (树状图略)23.(本小题9分)解:(1)∵抛物线经过点A (2,-1),∴ 4a +2b -1=-1,即 b =-2a ,………………(1分)∵-2b a =-22a a-=1,………………(2分) ∴点B 的坐标是(1,0). ………………(3分) (2)(解法1)如图2所示.由(1)得,抛物线的对称轴是x =1,可得直线y =x +1与x 轴的交点为E (-1,0), 与抛物线的对称轴的交点C (1,2),∴BE =BC =2, ∴△EBC 是等腰直角三角形;…………(4分)连结AB ,则∠ABC =∠BCD =135 º,且AB 2; 又∵∠BDC =∠ACB ,∴△ABC ∽△BCD .∴AB BCBC CD=,∴2BC AB CD =•;………………(5分) 过D 作DH ⊥BC 于H ,则CH =HD ,设点D 的坐标为(m ,m +1),在Rt △CHD 中,∵m >1, CH =HD =m -1,∴CD 221(m )- ∴22221(m )- , 解得m =3,………………(5分) ∴点D (3,4),………………(7分)把D (3,4)坐标代入抛物线y =ax 2-2ax -1得 9a -6a -1=4,解得a =53.………………(8分) (图2)∴此抛物线的表达式为y =53x 2-103x -1.………………(9分) (解法2)如图3所示.由(1)得,抛物线的对称轴是x =1,可得直线y =x +1与x 轴、y 轴的交点为E (-1,0), F (0,1),与抛物线的对称轴的交点C (1,2), ∴BE =BC ,BE ⊥BC ,∴△EBC 是等腰直角三角形.………………(4分) 连结BF ,则BF ⊥EC ,且BF =2;过A 作AG ⊥BC 于G ,则∠DFB =∠CGA =90º, 又∵∠BDF =∠ACG ,∴△BDF ∽△ACG . ∴BD BF AC AG =∴2213+=2 ∴BD =25.………………(5分)过D 作DH ⊥BC 于H ,设点D 的坐标为(m ,m +1),在Rt △BDH 中,BH 2+HD 2=BD 2, ∴(m +1)2+(m -1)2=20,解得m =±3(负数不合题意,舍去),∴点D (3,4)………………(7分) 把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4,解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)24.(本小题9分)解:(1)⎪⎩⎪⎨⎧<≤≤<+=)6030(6),300(41512x x x y ……………………(2分)(2)综合⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 和(1)中 y 2,当对应的x 范围是0<x ≤20 时,W 1=(110x +5)x +(115x +4)(60-x )……………………(4分) =130x 2+5x +240;……………………(6分) (3)当20<x ≤30 时,W 2=(-140x +75)x +(115x +4)(60-x )……………………(7分) (图3)=-11120x 2+75x +240……………………8分 ∵x =-2b a =45011>30,∴W 在20<x ≤30随x 增大而增大 ∴当x =30时,W 2取得最大值为832.5(百元).……………………………(9分)25.(本小题12分) 解:(1)∵函数xmy =(x >0,m 是常数)图象经过)4,1(A ∴4=m ……………………(2分)(2)(解法1) 设AC BD ,交于点E ,则在Rt △AEB 中,tan ∠EAB =1;444BE a aAE a-==-在Rt △CED 中,tan ∠ECD =1;44DE aCE a==……………………(5分) ∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(解法2)设AC BD ,交于点E ,根据题意,可得B 点的坐标为)4,(aa ,D 点的坐标为)4,0(a ,E 点的坐标为)4,1(a ……………………(3分),a AE 44-=,4;CE a =1,1;EB a ED =-=……………………(4分)∴441;4AE a a CEa-==-∴1-==a ED EB CE AE ……………………(5分) 又∵;AEB CED ∠=∠∴△AEB ∽△CED ∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(3)(解法1)∵AB DC // ∴当BC AD =时,有两种情况:①当BC AD //时,由中心对称的性质得:BE =DE ,则11=-a ,得2=a . ∴点B 的坐标是(2,2).……………………(8分)设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数表达式是.62+-=x y ……………………(9分) ②当AD 与BC 所在直线不平行时,由轴对称的性质得:AC BD =, ∴4=a ,∴点B 的坐标是(4,1).……………………(10分) 设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入, 得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分) (解法2)当BC AD =时,AD 2=BC 2.在Rt △AED 中,222DE AE AD +=;在Rt △BEC 中,222CE BE BC +=∴222244(4)1(1)(),a aa-+=-+……………………(8分) 整理得:32216320,a a a ---=∴(2)(4)(4)0;a a a -+-= ∴244a a a ==-=或或,∴24a a ==或……………………(9分)① 当2=a 时,点B 的坐标是(2,2).设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入, 得⎩⎨⎧+=+=b k b k 22,4解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数解析式是62+-=x y .……………………(10分) ②当4=a 时,点B 的坐标是(4,1).设直线AB 的函数解析式为b kx y +=,分别把点B A ,的坐标代入, 得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分)26.(本小题14分)解:(1)证明:∵CE 为⊙O 的直径,∴∠CFE =∠CGE =90°.……………………(1分)∵EG ⊥EF ,∴∠FEG =90°.∴∠CFE =∠CGE =∠FEG =90°.……………………(2分)∴四边形EFCG 是矩形.……………………(3分)(2)由(1)知四边形EFCG 是矩形.∴CF ∥EG ,∴∠CEG =∠ECF ,∵∠ECF =∠EDF ,∴∠CEG =∠EDF ,……………………(4分)在Rt △ABD 中,AB =3,AD =4,∴tan 34AB BDA AD ∠==,……………………(5分) ∴tan ∠CEG = 34;……………………(6分) (3)∵四边形EFCG 是矩形,∴FC ∥EG .∴∠FCE =∠CEG .∴tan ∠FCE =tan ∠CEG =34 ∵∠CFE =90°,∴EF =34CF ,……………………(7分) ∴S 矩形EFCG = 234CF ;……………………(8分) 连结OD ,如图2①,∵∠GDC =∠CEG ,∠FCE =∠FDE ,∴∠GDC =∠FDE .∵∠FDE +∠CDB =90°,∴∠GDC +∠CDB =90°.∴∠GDB =90°……………………(9分)(Ⅰ)当点E 在点A (E ′)处时,点F 在点B (F ′)处,点G 在点D (G ′)处,如图2①所示. 此时,CF =CB =4.……………(10分)(Ⅱ)当点F 在点D (F ″)处时,直径F ″G ″⊥BD ,如图2②所示,此时⊙O 与射线BD 相切,CF =CD =3.……………(11分)(Ⅲ)当CF ⊥BD 时,CF 最小,如图2③所示.S △BCD =12BC ×CD =12BD ×CF , ∴4×3=5×CF ∴CF =125.……………(12分) ∴125≤CF ≤4.……………(13分) ∵S 矩形EFCG =234CF ,∴34×(125)2≤S 矩形EFCG ≤34×42. ∴10825≤S 矩形EFCG ≤12.……………(14分)。
2021年福建省莆田市中考数学二检试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)计算(﹣1)2021的结果()A.﹣2021B.﹣1C.1D.20212.(4分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.3.(4分)据统计,2020年莆田市常住人口约为2910000人,将2910000用科学记数法表示为()A.2.91×105B.2.91×106C.29.1×105D.0.291×107 4.(4分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.5.(4分)下列运算中正确的是()A.a5+a5=2a10B.3a3•2a2=6a6C.a6÷a2=a3D.(﹣2ab)2=4a2b26.(4分)如图,AB是⊙O的直径,CD是⊙O的弦,连接AC、AD、BD,若∠CAB=35°,则∠ADC的度数为()A.35°B.55°C.65°D.70°7.(4分)《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?假设井深为x尺,则符合题意的方程应为()A.B.3x+4=4x+1C.D.3(x+4)=4(x+1)8.(4分)科技馆为某机器人编制了一个程序,如果机器人在平地上按照图中所示的程序行走,那么该机器人所走的总路程为()A.6米B.12米C.16米D.20米9.(4分)如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.若△ABC的三边所围成的区域面积记为S1,黑色部分面积记为S2,其余部分面积记为S3,则下列关系式正确的是()A.S1=S2B.S2=S3C.S2+S3=S1D.S22+S32=S1210.(4分)二次函数y=ax2+bx+c的最大值为a﹣b+c,且M(﹣4,c),N(﹣3,m),P(1,m),Q(2,n),R(3,n+1)中只有两点不在该二次函数图象上,下列关于这两点的说法正确的是()A.这两点一定是M和N B.这两点一定是Q和RC.这两点可能是M和Q D.这两点可能是P和Q二、填空题:本大题共6小题,每小题4分,共24分.11.(4分)如果一个扇形的圆心角为90°,弧长为π,那么该扇形的半径为.12.(4分)若x=,则4x2+4x=.13.(4分)为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条中有5条鱼是有记号的,则鱼塘中的鱼估计大约有条.14.(4分)某雷达探测目标得到的结果如图所示,若记图中目标A的位置为(3,30°),目标B的位置为(2,180°),目标C的位置为(4,240°),则图中目标D的位置可记为.15.(4分)莆田湄洲岛,是亿万妈祖信徒敬仰的圣地,这里的妈祖庙更是名扬四海.在湄洲妈祖庙的正殿前方上建造了一尊巨型石雕妈祖像,面向台湾海峡,为海峡两岸同胞共同瞻仰.小颖想测量雕像的高,她先测得雕像的影长为4.1m,并在同一时刻测得一根长为1.4m的竹竿的影长是0.4m.请你帮她算一下,石雕妈祖像高是m.16.(4分)在平面直角坐标系中,若原点O关于直线y=﹣x+k的对称点O'在双曲线y=上,则k的值为.三、解答题:本大题共9小题,共86分.解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.(8分)计算:20210+|1﹣|﹣2cos45°.18.(8分)如图,点C,E,F,B在同一直线上,AB∥CD,AE=DF,下列3个条件:①∠A=∠D;②BF=CE;③AE∥DF,选出能推出AB=CD的一个条件.已知:如图,AB ∥CD,AE=DF,(写出一种情况即可);求证:AB=CD.19.(8分)先化简,再求值:,其中x=3.20.(8分)如图,△ABC中,AB=AC,∠BAC=40°,将线段AB绕点A逆时针旋转60°得到线段AD,连接BD.(1)根据题意,补全图形(要求:尺规作图,保留痕迹,不写作法);(2)求∠DBC的度数.21.(8分)2021年3月23日,莆田市校园读书月活动暨第一届校园阅读论坛正式启动,开启了莆田市“书香校园、智慧阅读”2.0版的新篇章.某初中校组织全校1000名学生参加“数学文化知识竞赛”,从全校随机抽取100名学生调查学生的答题情况,得到成绩统计表:分数段50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数61030504(1)根据上表数据,下列结论正确的是(写出所有正确结论的序号);①众数落在80≤x<90分数段②中位数落在80≤x<90分数段③平均数落在80≤x<90分数段④极差落在30<x≤50分数段(2)学校从90≤x≤100分数段的4名学生中随机抽取2名进行学习交流.已知4名学生中,1名来自七年级,1名来自八年级,2名来自九年级,求抽到的2名学生来自不同年级的概率.22.(10分)如图,△ABC中,以BC为直径的⊙O交AB于点D,∠A=∠BCD.(1)求证:AC为⊙O的切线;(2)在BC上取点E,使BE=BD,过点E作EF∥AB交AC于点F.若EF=BD,求sin A 的值.23.(10分)鞋业是福建省莆田市的支柱产业、当家产业,历经30多年的发展,莆田已经成为世界知名运动鞋制造基地.某鞋厂准备生产A,B两种品牌运动鞋共100万双,已知生产每双A种品牌和B种品牌运动鞋共需成本185元,且每双B种品牌运动鞋成本比A 种高15元.(1)求A,B两种品牌运动鞋每双的成本分别是多少元;(2)“闽宁对口扶贫协作援宁群体”遵循“优势互补、互惠互利、长期协作、共同发展”的方针,该鞋厂主动扛起对口帮扶宁夏脱贫攻坚的历史使命,每售出1双A种品牌运动鞋就捐出a元.根据市场供需情况,计划生产A种品牌运动鞋至少60万双,B种品牌运动鞋至少20万双.已知A,B两种品牌运动鞋每双售价分别为115元和125元,该鞋厂将如何安排生产才能获得最大利润?24.(12分)如图1,矩形ABCD中,AB=4,BC=8,点E为BC边上的动点,连接DE.过点E作EF⊥BD于点F,点G为DE的中点,连接CF,CG,GF.(1)求证:∠FGC=2∠BDC;(2)设BE=x,△GFC的面积为S,①求S与x的函数关系式;②如图2,点M,N分别在AD,CD上,且DM=,DN=1,连接GM,GN,当GM+GN取最小值时,求S的值.25.(14分)已知函数y1=mx2+(1﹣m)x和y2=nx2+(1﹣n)x(m>0,n<0)的图象在第一象限内的交点为A,且函数y1,y2的图象分别与x轴正半轴交于点B,C.(1)求点A的坐标;(2)若∠BAC=90°,①求证:mn=﹣1;②函数y1,y2图象的顶点分别为M,N,设△ABC的外心为点P,△OMN的内心为点Q.问是否存在m,n的值,使得O,P,Q三点共线?若存在,求m,n的值;若不存在,说明理由.2021年福建省莆田市中考数学二检试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)计算(﹣1)2021的结果()A.﹣2021B.﹣1C.1D.2021【分析】直接根据有理数的乘方的运算法则计算即可.【解答】解:原式=﹣1.故选:B.2.(4分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是3个小正方形,第二层右边2个小正方形,第三层右边2个小正方形,故选:D.3.(4分)据统计,2020年莆田市常住人口约为2910000人,将2910000用科学记数法表示为()A.2.91×105B.2.91×106C.29.1×105D.0.291×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:2910000=2.91×106.故选:B.4.(4分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各图形分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,本选项不符合题意;B、不是轴对称图形,是中心对称图形,本选项不符合题意;C、既是中心对称图形,又是轴对称图形,本选项符合题意;D、不是轴对称图形,是中心对称图形,本选项不符合题意.故选:C.5.(4分)下列运算中正确的是()A.a5+a5=2a10B.3a3•2a2=6a6C.a6÷a2=a3D.(﹣2ab)2=4a2b2【分析】根据整式运算即可求出答案.【解答】解:(A)a5+a5=2a5,故A错误;(B)3a3•2a2=6a5,故B错误;(C)a6÷a2=a4,故C错误;故选:D.6.(4分)如图,AB是⊙O的直径,CD是⊙O的弦,连接AC、AD、BD,若∠CAB=35°,则∠ADC的度数为()A.35°B.55°C.65°D.70°【分析】先求出∠CDB,由∠ADB=90°,可得∠ADC.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,又∵∠CDB=∠CAB=35°(圆周角定理),∴∠ADC=90°﹣35°=55°.故选:B.7.(4分)《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?假设井深为x尺,则符合题意的方程应为()A.B.3x+4=4x+1C.D.3(x+4)=4(x+1)【分析】设井深为x尺,根据绳子的长度固定不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设井深为x尺,依题意,得:3(x+4)=4(x+1).故选:D.8.(4分)科技馆为某机器人编制了一个程序,如果机器人在平地上按照图中所示的程序行走,那么该机器人所走的总路程为()A.6米B.12米C.16米D.20米【分析】先判断出机器人所走过的路线是正多边形,然后用多边形的外角和除以每一个外角的度数求出多边形的边数,再根据周长公式列式进行计算即可得解.【解答】解:根据题意得,机器人所走过的路线是正多边形,∵每一次都是左转30°,∴多边形的边数=360°÷30°=12,周长=12×1=12米.故选:B.9.(4分)如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.若△ABC的三边所围成的区域面积记为S1,黑色部分面积记为S2,其余部分面积记为S3,则下列关系式正确的是()A.S1=S2B.S2=S3C.S2+S3=S1D.S22+S32=S12【分析】设AB=c,AC=b,BC=a,S3为以BC为直径的半圆减去△ABC的面积,S1为以AB、AC为直径的两个半圆的面积的和减去S3,然后根据圆的面积公式和勾股定理可确定S2=S1.【解答】解:设AB=c,AC=b,BC=a,S3=π•(a)2﹣S1=πa2﹣S1,S2=π•(c)2+π•(b)2﹣S3=πc2+πb2﹣S3=π(c2+b2)﹣(πa2﹣S1),∵c2+b2=a2,∴S2=S1.故选:A.10.(4分)二次函数y=ax2+bx+c的最大值为a﹣b+c,且M(﹣4,c),N(﹣3,m),P(1,m),Q(2,n),R(3,n+1)中只有两点不在该二次函数图象上,下列关于这两点的说法正确的是()A.这两点一定是M和N B.这两点一定是Q和RC.这两点可能是M和Q D.这两点可能是P和Q【分析】二次函数y=ax2+bx+c的最大值为a﹣b+c,说明a<0,对称轴x=﹣1,假设选项成立,逐项判断即可得到答案.【解答】解:∵二次函数y=ax2+bx+c的最大值为a﹣b+c,∴抛物线开口向下,对称轴为x=﹣1,A、若M和N不在该二次函数图象上,则由题意知P(1,m),Q(2,n),R(3,n+1)一定在图象上,而x>﹣1时y随x增大而减小,这与Q(2,n),R(3,n+1)矛盾,故A不符合题意;B、若Q和R不在该二次函数图象上,则M(﹣4,c)一定在图象上,而抛物线与y轴交点(0,c)一定在图象上,这样抛物线对称轴为x==﹣2,这与抛物线对称轴为x=﹣1矛盾,故B不符合题意;C、M和Q可能不在该二次函数图象上,故C符合题意;D、若P和Q不在该二次函数图象上,则M(﹣4,c)一定在图象上,同B理由,故D不符合题意;故选:C.二、填空题:本大题共6小题,每小题4分,共24分.11.(4分)如果一个扇形的圆心角为90°,弧长为π,那么该扇形的半径为2.【分析】设该扇形的半径为R,根据弧长公式得到=π,然后解方程即可.【解答】解:设该扇形的半径为R,根据题意得=π,解得R=2.故答案为2.12.(4分)若x=,则4x2+4x=1.【分析】先把已知条件变形得到2x+1=,两边平方得到4x2+4x+1=2,从而得到4x2+4x 的值.【解答】解:∵x=,∴2x=﹣1,即2x+1=,∴(2x+1)2=2,即4x2+4x+1=2,∴4x2+4x=1.故答案为1.13.(4分)为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条中有5条鱼是有记号的,则鱼塘中的鱼估计大约有1200条.【分析】首先求出有记号的5条鱼在200条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:∵×100%=2.5%∴30÷2.5%=1200(条).故答案为:1200.14.(4分)某雷达探测目标得到的结果如图所示,若记图中目标A的位置为(3,30°),目标B的位置为(2,180°),目标C的位置为(4,240°),则图中目标D的位置可记为(5,120°).【分析】根据坐标的意义,第一个数表示距离,第二个数表示度数,根据图形写出即可.【解答】解:由图可知,图中目标D的位置可记为(5,120°).故答案为:(5,120°).15.(4分)莆田湄洲岛,是亿万妈祖信徒敬仰的圣地,这里的妈祖庙更是名扬四海.在湄洲妈祖庙的正殿前方上建造了一尊巨型石雕妈祖像,面向台湾海峡,为海峡两岸同胞共同瞻仰.小颖想测量雕像的高,她先测得雕像的影长为4.1m,并在同一时刻测得一根长为1.4m的竹竿的影长是0.4m.请你帮她算一下,石雕妈祖像高是14.35m.【分析】根据题意作出图形,然后根据相似三角形的性质可得答案.【解答】解:根据题意,作出如下图形:石雕妈祖像身高为AB,影长为BE,同一时刻竹竿为CD,竹竿的影子为ED.设石雕妈祖像身高为xm,∵AB∥CD,∴△ABE∽△CDE,∴,∴x=14.35,∴石雕妈祖像身高为14.35m,故答案为:14.35.16.(4分)在平面直角坐标系中,若原点O关于直线y=﹣x+k的对称点O'在双曲线y=上,则k的值为.【分析】连接OO′,根据对称的性质可得OO′与直线y=﹣x+k垂直,再利用对称的性质列出方程可得答案.【解答】解:如图,设直线OO′关系式为y=ax,O′(m,n),∴a=,设OO′中点为N,则N(,),由对称性可得N在直线y=﹣x+k上,且OO′与直线y=﹣x+k垂直,∴,解得:k=,m=,n=.故答案为:.三、解答题:本大题共9小题,共86分.解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.(8分)计算:20210+|1﹣|﹣2cos45°.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=1+﹣1﹣2×=1+﹣1﹣=0.18.(8分)如图,点C,E,F,B在同一直线上,AB∥CD,AE=DF,下列3个条件:①∠A=∠D;②BF=CE;③AE∥DF,选出能推出AB=CD的一个条件.已知:如图,AB ∥CD,AE=DF,①或③(写出一种情况即可);求证:AB=CD.【分析】若选择①,由AB∥CD可得∠B=∠C,由AAS定理可得△ABE≌△DCF,利用全等三角形的性质定理可得结果;若选择③,由AE∥DF可得∠AEB=∠DFC,可证得△ABE≌△DCF,利用全等三角形的性质定理可得结果.【解答】解:若选①,证明如下:∵AB∥CD,∴∠B=∠C,∵在△ABE与△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;若选③,∵AB∥CD,∴∠B=∠C,∵AE∥DF,∴∠AEB=∠DFC,∵在△ABE与△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD.故答案为:①或③.19.(8分)先化简,再求值:,其中x=3.【分析】直接将括号里面通分运算,进而利用分式的性质化简得出答案.【解答】解:原式=÷=•=,当x=3时,原式==.20.(8分)如图,△ABC中,AB=AC,∠BAC=40°,将线段AB绕点A逆时针旋转60°得到线段AD,连接BD.(1)根据题意,补全图形(要求:尺规作图,保留痕迹,不写作法);(2)求∠DBC的度数.【分析】(1)分别以A、B为圆心,以AB为半径在AB的右侧画弧,两弧相交于点D;(2)根据等腰三角形的性质和三角形内角和计算出∠ABC=70°,再根据旋转的性质得到△ABD为等边三角形,则∠ABD=60°,然后计算∠ABC﹣∠ABD即可.【解答】解:(1)如图,线段AD,BD即为所求作;(2)∵AB=AC,∠BAC=40°,∴∠ABC=70°,由旋转可知:∠BAD=60°,AB=AD,∴△ABD为等边三角形,∴∠ABD=60°,∴∠DBC=∠ABC﹣∠ABD=70°﹣60°=10°.21.(8分)2021年3月23日,莆田市校园读书月活动暨第一届校园阅读论坛正式启动,开启了莆田市“书香校园、智慧阅读”2.0版的新篇章.某初中校组织全校1000名学生参加“数学文化知识竞赛”,从全校随机抽取100名学生调查学生的答题情况,得到成绩统计表:分数段50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数61030504(1)根据上表数据,下列结论正确的是②④(写出所有正确结论的序号);①众数落在80≤x<90分数段②中位数落在80≤x<90分数段③平均数落在80≤x<90分数段④极差落在30<x≤50分数段(2)学校从90≤x≤100分数段的4名学生中随机抽取2名进行学习交流.已知4名学生中,1名来自七年级,1名来自八年级,2名来自九年级,求抽到的2名学生来自不同年级的概率.【分析】(1)由众数、中位数、平均数以及极差的定义求解即可;(2)画树状图,共有12种结果,且每种结果出现的可能性相同,其中抽到的2名学生来自不同年级的结果有10种,再由概率公式求解即可.【解答】解:(1)①由众数的定义得:众数不一定落在80≤x<90分数段,故不正确;②由中位数的定义得:中位数落在80≤x<90分数段,故②正确;③平均数不一定落在80≤x<90分数段,故③不正确;④由极差的定义得:极差落在30<x≤50分数段,故④正确;故答案为:②④;(2)分别记七,八年级的学生为A和B,记九年级同学为C、D,则根据题意,画如下的树状图:共有12种结果,且每种结果出现的可能性相同,其中抽到的2名学生来自不同年级的结果有10种,∴P(不同年级)=.22.(10分)如图,△ABC中,以BC为直径的⊙O交AB于点D,∠A=∠BCD.(1)求证:AC为⊙O的切线;(2)在BC上取点E,使BE=BD,过点E作EF∥AB交AC于点F.若EF=BD,求sin A 的值.【分析】(1)根据BC为直径,可得∠BDC=90°,根据等腰三角形的性质可得∠ACB =90°,进而可得AC为⊙O的切线;(2)设CE=x,BE=y,则BC=x+y,EF=BD=y.利用锐角三角函数列式计算即可得结论.【解答】(1)证明:∵BC为直径,∴∠BDC=90°,∴∠A+∠ACD=90°.∵∠A=∠BCD,∴∠BCD+∠ACD=90°.∴∠ACB=90°,∴AC为⊙O的切线;(2)解:∵EF∥AB,∴∠A=∠EFC.∵∠A=∠BCD,∴∠BCD=∠EFC.设CE=x,BE=y,则BC=x+y,EF=BD=y.∴,,∴,∴x2+xy﹣y2=0,∴()2+﹣1=0,∴.23.(10分)鞋业是福建省莆田市的支柱产业、当家产业,历经30多年的发展,莆田已经成为世界知名运动鞋制造基地.某鞋厂准备生产A,B两种品牌运动鞋共100万双,已知生产每双A种品牌和B种品牌运动鞋共需成本185元,且每双B种品牌运动鞋成本比A 种高15元.(1)求A,B两种品牌运动鞋每双的成本分别是多少元;(2)“闽宁对口扶贫协作援宁群体”遵循“优势互补、互惠互利、长期协作、共同发展”的方针,该鞋厂主动扛起对口帮扶宁夏脱贫攻坚的历史使命,每售出1双A种品牌运动鞋就捐出a元.根据市场供需情况,计划生产A种品牌运动鞋至少60万双,B种品牌运动鞋至少20万双.已知A,B两种品牌运动鞋每双售价分别为115元和125元,该鞋厂将如何安排生产才能获得最大利润?【分析】(1)设生产A种品牌运动鞋成本m元,B种运动鞋成本n元,根据题意列方程组求解即可;(2)设生产A种品牌运动鞋x万双,则生产B种品牌运动鞋(100﹣x)万双,根据题意列不等式组求出x的取值范围;设总利润为w元,根据题意求出w与x的函数关系式,再根据一次函数的性质解答即可.【解答】解:(1)设生产A种品牌运动鞋成本m元,B种运动鞋成本n元,依题意,得,解得,答:生产A种运动鞋成本85元,B种运动鞋成本100元.(2)设生产A种品牌运动鞋x万双,则生产B种品牌运动鞋(100﹣x)万双,设总利润为w元,则w=(115﹣85)x+(125﹣100)(100﹣x)﹣ax=(5﹣a)x+2500.又∵,解得60≤x≤80.①当5﹣a>0时,w随x的增大而增大,∴当a<5,x=80时,w max=2900﹣80a;②当5﹣a=0,即a=5时,w=2500;③当5﹣a<0时,w随x的增大而减小,∴当a>5,x=60时,w max=2800﹣60a.综上所述,当a<5时,鞋厂将选择生产A种运动鞋80万双,B种运动鞋20万双能获得最大利润;当a=5时,利润均为2500万元;当a>5时,鞋厂将选择生产A种运动鞋60万双,B种运动鞋40万双能获得最大利润.24.(12分)如图1,矩形ABCD中,AB=4,BC=8,点E为BC边上的动点,连接DE.过点E作EF⊥BD于点F,点G为DE的中点,连接CF,CG,GF.(1)求证:∠FGC=2∠BDC;(2)设BE=x,△GFC的面积为S,①求S与x的函数关系式;②如图2,点M,N分别在AD,CD上,且DM=,DN=1,连接GM,GN,当GM+GN取最小值时,求S的值.【分析】(1)如图1,先根据直角三角形斜边中线可得FG=CG,法一:根据等腰三角形的性质和三角形外角的性质可得结论;法二:根据FG=GE=GC=GD,可知E,F,D,C四点共圆,根据同弧所对的圆周角和圆心角的关系可得结论;(2)①法一:如图2,过G作GH⊥CF于点H,证明△FGH∽△BDC,令GH=a,则FH=2a,FC=4a,FG=,DE=,根据三角形面积公式和勾股定理可得结论;法二:如图3,连接AC交BD于点O,证明△FGC∽△BOC,根据相似三角形的性质得,结合勾股定理可得结论;法三:如图4,过点F作FK⊥BC于点K,同理得△BFK∽△FEK∽△BDC,则==2,根据面积差和三角形面积公式可得结论;②如图5,分别取BD,CD中点O,P,作点N关于OP的对称点N',连接MN'交OP于点G,此时GM+GN的最小值为MN',可知DN=NP=N'P=1,DN'=3,根据三角形中位线定理可得EC=2PG=3,得x=5,代入S与x的函数关系式中可得结论.【解答】(1)证明:如图1,∵四边形ABCD是矩形,∴∠DCE=90°,在Rt△DCE中,G为DE中点,∴CG=DE.∵EF⊥BD,∴∠EFD=90°,∴FG=DE,∴FG=CG,法一:∵FG=DG=CG,∴∠GFD=∠GDF,∠GCD=∠GDC,∴∠FGE=2∠GDF,∠CGE=2∠GDC,∴∠FGC=∠FGE+∠CGE=2∠BDC;法二:∵FG=GE=GC=GD,∴E,F,D,C四点共圆,∴∠FGC=2∠BDC;(2)①法一:如图2,过G作GH⊥CF于点H,∵FG=CG,∴∠FGC=2∠FGH,∵∠FGC=2∠BDC,∴∠BDC=∠FGH,∵∠GHF=∠DCB=90°,∴△FGH∽△BDC,∴,令GH=a,则FH=2a,FC=4a,FG=,DE=,∴S===2a2,∵CE=8﹣x,CD=4,∴DE2=CE2+CD2=(8﹣x)2+42=,∴,∴.法二:如图3,连接AC交BD于点O,则OB=OC=OD,∴∠BOC=2∠BDC=∠FGC.∵,∴△FGC∽△BOC,∴,∵BC=8,CD=4,∴BD==,BO=,,∵,∴.法三:如图4,过点F作FK⊥BC于点K,∵EF⊥BD,CD⊥BC,同理得△BFK∽△FEK∽△BDC,∴==2,∴KE=BE=x,∴FK=x,∴,∵点G为DE中点,∴S△DEF=2S△DFG,S△DCE=2S△DCG,∴,∵S△FEC==(8﹣x)x=﹣+x,∴;②如图5,分别取BD,CD中点O,P,∵点E在线段CB上运动,G为DE中点,∴点G在线段OP上运动,∴作点N关于OP的对称点N',连接MN'交OP于点G,此时GM+GN的最小值为MN'.∵DN=NP=N'P=1,∴DN'=3,∵,∴,∵PG∥BC,DP=CP,∴EC=2PG=3,∴BE=BC﹣EC=5,即x=5,∵,∴S=×25﹣+8=.25.(14分)已知函数y1=mx2+(1﹣m)x和y2=nx2+(1﹣n)x(m>0,n<0)的图象在第一象限内的交点为A,且函数y1,y2的图象分别与x轴正半轴交于点B,C.(1)求点A的坐标;(2)若∠BAC=90°,①求证:mn=﹣1;②函数y1,y2图象的顶点分别为M,N,设△ABC的外心为点P,△OMN的内心为点Q.问是否存在m,n的值,使得O,P,Q三点共线?若存在,求m,n的值;若不存在,说明理由.【分析】(1)综合两个二次函数的解析式列方程组,解出可得点A的坐标;(2)①根据y1=0可得点B的坐标为(,0),同理得C(,0),作辅助线,构建相似三角形,证明△ABD∽△CAD,列比例式代入可得结论;②先利用配方法得函数y1,y2图象的顶点分别为M,N,作辅助线,构建直角三角形,利用三角函数列等式可得m+n=2,联立方程组解出可得结论.【解答】(1)解:联立,得(m﹣n)x2+(n﹣m)x=0,∴(m﹣n)(x2﹣x)=0,∵m>0,n<0,∴m≠n,∴x2﹣x=0,解得x1=0,x2=1,当x=1时,y1=y2=1,∴A(1,1);(2)①证明:令y1=0,得mx2+(1﹣m)x=0,解得x1=0,x2=,∴B(,0),同理得C(,0),过点A作AD⊥BC于点D,∴∠ADB=∠ADC=90°,∴∠ABD+∠BAD=90°,∵∠BAC=∠BAD+∠DAC=90°,∴∠ABD=∠DAC,∴△ABD∽△CAD,∴,∴AD2=BD•CD,∵,,∴=1,∴mn=﹣1;②解:∵y1=mx2+(1﹣m)x=m(x﹣)2﹣,y2=nx2+(1﹣n)x=n(x﹣)2﹣,∴函数y1,y2图象的顶点分别为M,N,如图2,过点M作ME⊥x轴于点E,过点N作NF⊥x轴于点F,则,,∵∠BAC=90°,∴Rt△ABC外心P在x轴上,∴当O,P,Q三点共线时,Q也在x轴上,此时,∠NOF=∠MOE,∴,∴m+n=2,联立,解得:,(舍去),∴存在m=,n=,使O,P,Q三点共线.。
福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)(2020•福建)−15的相反数是( ) A .5B .15C .−15D .﹣52.(4分)(2020•福建)如图所示的六角螺母,其俯视图是( )A .B .C .D .3.(4分)(2020•福建)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .144.(4分)(2020•福建)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C.D.5.(4分)(2020•福建)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.36.(4分)(2020•福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.37.(4分)(2020•福建)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.(4分)(2020•福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=39.(4分)(2020•福建)如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC =60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.(4分)(2020•福建)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2020•福建)|﹣8|=.12.(4分)(2020•福建)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.(4分)(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.(4分)(2020•福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.(4分)(2020•福建)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.(4分)(2020•福建)设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD 可以是平行四边形; ②四边形ABCD 可以是菱形; ③四边形ABCD 不可能是矩形; ④四边形ABCD 不可能是正方形.其中正确的是 .(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(8分)(2020•福建)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②18.(8分)(2020•福建)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .求证:∠BAE =∠DAF .19.(8分)(2020•福建)先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1. 20.(8分)(2020•福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)(2020•福建)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD̂上不与B ,D 重合的点,sin A =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.22.(10分)(2020•福建)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)(2020•福建)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得CD ∥AB ,且CD =2AB ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.24.(12分)(2020•福建)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P . (1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:EP PF=PC CF.25.(14分)(2020•福建)已知直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,BC =4,且对于该二次函数图象上的任意两点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2. (1)求二次函数的表达式;(2)若直线l 2:y =mx +n (n ≠10),求证:当m =﹣2时,l 2∥l 1;(3)E 为线段BC 上不与端点重合的点,直线l 3:y =﹣2x +q 过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)(2020•福建)−15的相反数是( ) A .5B .15C .−15D .﹣5【解答】解:−15的相反数是15,故选:B .2.(4分)(2020•福建)如图所示的六角螺母,其俯视图是( )A .B .C .D .【解答】解:从上面看,是一个正六边形,六边形的中间是一个圆. 故选:B .3.(4分)(2020•福建)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14【解答】解:∵D ,E ,F 分别是AB ,BC ,CA 的中点, ∴DE =12AC ,DF =12BC ,EF =12AB , ∴DF BC=EF AB=DE AC=12,∴△DEF ∽△ABC , ∴S △DEF S △ABC=(DE AC)2=(12)2=14,∵等边三角形ABC 的面积为1, ∴△DEF 的面积是14,故选:D .4.(4分)(2020•福建)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A .等边三角形是轴对称图形,不是中心对称图形; B .平行四边形不是轴对称图形,是中心对称图形; C .圆既是轴对称图形又是中心对称图形; D .扇形是轴对称图形,不是中心对称图形. 故选:C .5.(4分)(2020•福建)如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A.10B.5C.4D.3【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.6.(4分)(2020•福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.3【解答】解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.7.(4分)(2020•福建)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)【解答】解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a⋅1a=1,故本选项符合题意;故选:D.8.(4分)(2020•福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=3【解答】解:依题意,得:3(x﹣1)=6210 x.故选:A .9.(4分)(2020•福建)如图,四边形ABCD 内接于⊙O ,AB =CD ,A 为BD ̂中点,∠BDC =60°,则∠ADB 等于( )A .40°B .50°C .60°D .70°【解答】解:∵A 为BD ̂中点, ∴AB ̂═AD ̂, ∵AB =CD , ∴AB̂=CD ̂, ∴AB̂=AD ̂=CD ̂, ∵圆周角∠BDC =60°,∴∠BDC 对的BĈ的度数是2×60°=120°, ∴AB̂的度数是13×(360°﹣120°)=80°, ∴AB̂对的圆周角∠ADB 的度数是12×80°=40°, 故选:A .10.(4分)(2020•福建)已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y =ax 2﹣2ax 上的点,下列命题正确的是( ) A .若|x 1﹣1|>|x 2﹣1|,则y 1>y 2 B .若|x 1﹣1|>|x 2﹣1|,则y 1<y 2 C .若|x 1﹣1|=|x 2﹣1|,则y 1=y 2D .若y 1=y 2,则x 1=x 2【解答】解:∵抛物线y =ax 2﹣2ax =a (x ﹣1)2﹣a , ∴该抛物线的对称轴是直线x =1,当a >0时,若|x 1﹣1|>|x 2﹣1|,则y 1>y 2,故选项B 错误; 当a <0时,若|x 1﹣1|>|x 2﹣1|,则y 1<y 2,故选项A 错误; 若|x 1﹣1|=|x 2﹣1|,则y 1=y 2,故选项C 正确; 若y 1=y 2,则|x 1﹣1|=|x 2﹣1|,故选项D 错误;故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2020•福建)|﹣8|= 8 .【解答】解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.12.(4分)(2020•福建)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为 13 .【解答】解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为13, 故答案为:13. 13.(4分)(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 4π .(结果保留π)【解答】解:S 扇形=90⋅π⋅42360=4π, 故答案为4π.14.(4分)(2020•福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为 ﹣10907 米.【解答】解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.15.(4分)(2020•福建)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC = 30 度.【解答】解:正六边形的每个内角的度数为:(6−2)⋅180°6=120°,所以∠ABC =120°﹣90°=30°,故答案为:30.16.(4分)(2020•福建)设A ,B ,C ,D 是反比例函数y =k x 图象上的任意四点,现有以下结论:①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形;④四边形ABCD 不可能是正方形.其中正确的是 ①④ .(写出所有正确结论的序号)【解答】解:如图,过点O 任意作两条直线分别交反比例函数的图象于A ,C ,B ,D ,得到四边形ABCD .由对称性可知,OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当OA =OC =OB =OD 时,四边形ABCD 是矩形.∵反比例函数的图象在一,三象限,∴直线AC 与直线BD 不可能垂直,∴四边形ABCD 不可能是菱形或正方形,故选项①④正确,故答案为①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2020•福建)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②【解答】解:解不等式①,得:x ≤2,解不等式②,得:x >﹣3,则不等式组的解集为﹣3<x ≤2.18.(8分)(2020•福建)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .求证:∠BAE =∠DAF .【解答】证明:四边形ABCD 是菱形,∴∠B =∠D ,AB =AD ,在△ABE 和△ADF 中,{AB =AD ∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴∠BAE =∠DAF .19.(8分)(2020•福建)先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1. 【解答】解:原式=x+2−1x+2•x+2(x+1)(x−1)=1x−1,当x =√2+1时,原式=√2+1−1=√22. 20.(8分)(2020•福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.【解答】解:(1)设销售甲种特产x 吨,则销售乙种特产(100﹣x )吨,10x +(100﹣x )×1=235,解得,x =15,∴100﹣x =85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w 万元,销售甲种特产a 吨,w =(10.5﹣10)a +(1.2﹣1)×(100﹣a )=0.3a +20,∵0≤a ≤20,∴当a =20时,w 取得最大值,此时w =26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.(8分)(2020•福建)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sin A =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.【解答】解:(1)连接OB ,如图1,∵AB 与⊙O 相切于点B ,∴∠ABO =90°,∵sin A =12,∴∠A =30°,∴∠BOD =∠ABO +∠A =120°,∴∠BED =12∠BOD =60°;(2)连接OF ,OB ,如图2,∵AB 是切线,∴∠OBF =90°,∵BF =3√3,OB =3,∴tan ∠BOF =BF OB =√3,∴∠BOF =60°,∵∠BOD =120°,∴∠BOF =∠DOF =60°,在△BOF 和△DOF 中,{OB =OD ∠BOF =∠DOF OF =OF,∴△BOF ≌△DOF (SAS ),∴∠OBF =∠ODF =90°,∴DF 与⊙O 相切.22.(10分)(2020•福建)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×650=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:150×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.(10分)(2020•福建)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.【解答】解:(1)如图,四边形ABCD即为所求;(2)如图,∵CD ∥AB ,∴∠ABP =∠CDP ,∠BAP =∠DCP ,∴△ABP ∽△CDP ,∴AB CD =AP PC ,∵AB ,CD 的中点分别为M ,N ,∴AB =2AM ,CD =2CN ,∴AM CN =AP PC ,连接MP ,NP ,∵∠BAP =∠DCP ,∴△APM ∽△CPN ,∴∠APM =∠CPN ,∵点P 在AC 上,∴∠APM +∠CPM =180°,∴∠CPN +∠CPM =180°,∴M ,P ,N 三点在同一条直线上.24.(12分)(2020•福建)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC .①判断DF 和PF 的数量关系,并证明;②求证:EP PF =PC CF .【解答】解:(1)∵△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,∴AB =AD ,∠BAD =90°,△ABC ≌△ADE ,在Rt △ABD 中,∠B =∠ADB =45°,∴∠ADE =∠B =45°,∴∠BDE =∠ADB +∠ADE =90°.(2)①DF =PF .证明:由旋转的性质可知,AC =AE ,∠CAE =90°,在Rt △ACE 中,∠ACE =∠AEC =45°,∵∠CDF =∠CAD ,∠ACE =∠ADB =45°,∴∠ADB +∠CDF =∠ACE +∠CAD ,即∠FPD =∠FDP ,∴DF =PF .②证明:过点P 作PH ∥ED 交DF 于点H ,∴∠HPF =∠DEP ,EP PF =DH HF ,∵∠DPF =∠ADE +∠DEP =45°+∠DEP ,∠DPF =∠ACE +∠DAC =45°+∠DAC ,∴∠DEP =∠DAC ,又∵∠CDF =∠DAC ,∴∠DEP =∠CDF ,∴∠HPF =∠CDF ,又∵FD =FP ,∠F =∠F ,∴△HPF ≌△CDF (ASA ),∴HF =CF ,∴DH =PC ,又∵EP PF =DH HF , ∴EP PF =PC CF .25.(14分)(2020•福建)已知直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,BC =4,且对于该二次函数图象上的任意两点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.(1)求二次函数的表达式;(2)若直线l 2:y =mx +n (n ≠10),求证:当m =﹣2时,l 2∥l 1;(3)E 为线段BC 上不与端点重合的点,直线l 3:y =﹣2x +q 过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.【解答】解:(1)∵直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,∴点A (0,10),点B (5,0),∵BC =4,∴点C (9,0)或点C (1,0),∵点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.∴当x ≥5时,y 随x 的增大而增大,当抛物线过点C (9,0)时,则当5<x <7时,y 随x 的增大而减少,不合题意舍去, 当抛物线过点C (1,0)时,则当x >3时,y 随x 的增大而增大,符合题意, ∴设抛物线解析式为:y =a (x ﹣1)(x ﹣5),过点A (0,10),∴10=5a ,∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣5)=2x 2﹣12x +10;(2)当m =﹣2时,直线l 2:y =﹣2x +n (n ≠10),∴直线l 2:y =﹣2x +n (n ≠10)与直线l 1:y =﹣2x +10不重合,假设l 1与l 2不平行,则l 1与l 2必相交,设交点为P (x P ,y P ),∴{y P=−2x P+n y P =−2x P +10 解得:n =10,∵n =10与已知n ≠10矛盾,∴l 1与l 2不相交,∴l 2∥l 1;(3)如图,、∵直线l 3:y =﹣2x +q 过点C ,∴0=﹣2×1+q ,∴q =2,∴直线l 3,解析式为L :y =﹣2x +2,∴l 3∥l 1,∴CF ∥AB ,∴∠ECF =∠ABE ,∠CFE =∠BAE ,∴△CEF ∽△BEA ,∴S △CEF S △ABE =(CE BE )2, 设BE =t (0<t <4),则CE =4﹣t ,∴S △ABE =12×t ×10=5t ,∴S △CEF =(CE BE )2×S △ABE =(4−t t )2×5t =5(4−t)2t, ∴S △ABE +S △CEF =5t +5(4−t)2t =10t +80t −40=10(√t 2√2√t )2+40√2−40, ∴当t =2√2时,S △ABE +S △CEF 的最小值为40√2−40.。
2021年福建省漳州市中考数学二检试卷一、选择题(共10小题).1.﹣5的绝对值是()A.5B.﹣5C.D.﹣2.如图所示的几何体的左视图是()A.B.C.D.3.我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度约为7100米/秒.将7100用科学记数法表示为()A.7100B.0.71×104C.71×102D.7.1×1034.下列给出的等边三角形、平行四边形、正五边形、正六边形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图,在△ABC中,AB=5,BC=6,AC的垂直平分线分别交BC、AC于点D、E,则△ABD的周长为()A.8B.11C.16D.176.如图,数轴上表示实数的点可能是()A.点M B.点N C.点P D.点Q7.某校准备为八年级学生开设A、B、C、D、E、F共6门选修课,随机抽取了部分学生对“我最喜欢的一门选修课”进行调查,并将调查结果绘制成如图所示的统计图表(不完整).下列说法正确的是()选修课A B C D E F人数404880A.这次被调查的学生人数为480人B.喜欢选修课C对应扇形的圆心角为60°C.喜欢选修课A的人数最少D.这次被调查的学生喜欢选修课F的人数为80人8.如图,四边形ABCD内接于⊙O,∠ABD=35°,∠ACB=45°,则∠BAD等于()A.100°B.90°C.80°D.70°9.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A.B.C.D.10.若直线y=kx+k+2与x轴的交点位于x轴正半轴上,则它与直线y=2x﹣1交点的横坐标a的取值范围为()A.a<B.0<a<C.<a<D.a>二、填空题:本题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置.11.计算:20210=.12.分解因式:a2﹣9=.13.在菱形ABCD中,若对角线AC=8,BD=5,则菱形ABCD的面积为.14.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色三角形区域的概率是.15.如图,将一个含30°角的三角尺ABC绕点A按顺时针方向旋转得到△ADE,使点B的对应点D恰好落在BC边上,若AB=,则CD的长为.16.已知直线y=ax与双曲线y=相交于点P(x1,y1),Q(x2,y2),则x1x2+2x1的最大值是.三、解答题:本题共9小题,共86分.请在答题卡的相应位置解答.17.解方程:=.18.先化简,再求值:[(x+2y)2﹣x(x﹣2y)]÷2y,其中x=3,y=﹣1.19.如图,在正方形ABCD中,点E,F分别在BC,CD边上,AE=BF.求证:CE=DF.20.如图,在△ABC中,∠ACB=90°.(1)在AB上求作点D,使△CDB∽△ACB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BC=5,AC=12,求BD长.21.为落实省体育中考的要求,增强学生的身体素质.某校计划今年购买一批篮球和实心球共100个,已知去年篮球的单价为80元,实心球的单价为36元.由于物价上涨,预计今年篮球的价格比去年上涨20%,实心球的价格不变,若购买蓝球的总费用不低于购买实心球的总费用,为了完成这项采购计划,该校今年至少应投入多少元?22.为迎接建党100周年,甲、乙两位学生参加了知识竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录这8次成绩(单位:分),并按成绩从低到高整理成如表所示,由于表格被污损,甲的第5个数据看不清,但知道甲的中位数比乙的众数大3.甲78798182x889395乙7580808385909295(1)求x的值;(2)现要从中选派一人参加竞赛,从统计或概率的角度考虑,你认为选派哪位学生参加合适?请说明理由.23.如图,AB为⊙O的直径,点C、D在⊙O上,且=,过点D作DE⊥AC,交AC 的延长线于点E,连接AD.(1)求证:ED是⊙O的切线;(2)若⊙O的半径为3,AC=2,求CD的长.24.如图,在矩形ABCD中,AB=2BC,点P、Q分别在AB、CD上,将矩形ABCD沿PQ折叠,使点B落在AD边上的点E处,点C落在点F处,EF交CD于点G,连接BE交PQ于点H.(1)求证:∠APE=∠GQF;(2)求证:PQ=BH;(3)若sin∠GQF=,PQ=3,求FG的长.25.已知面积为1的等腰直角三角形的三个顶点均在抛物线y=ax2+bx(a、b为常数,且a >0)上,其中直角顶点与抛物线顶点重合.(1)求a的值;(2)若直线y=t(t≤4)与抛物线y=ax2+bx(a>0)有公共点.①求t的取值范围;②求关于t的函数y=at2+bt(﹣2<b<2)的最大值.参考答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣5的绝对值是()A.5B.﹣5C.D.﹣解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.2.如图所示的几何体的左视图是()A.B.C.D.解:从左面看,底层是两个小正方形,中层和上层的右边分别是一个小正方形.故选:B.3.我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度约为7100米/秒.将7100用科学记数法表示为()A.7100B.0.71×104C.71×102D.7.1×103解:将7100用科学记数法表示为:7.1×103.故选:D.4.下列给出的等边三角形、平行四边形、正五边形、正六边形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项不合题意;B、平行四边形不是轴对称图形,是中心对称图形,故本选项不合题意;C、正五边形是轴对称图形,不是中心对称图形,故本选项不合题意;D、正六边形中既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.5.如图,在△ABC中,AB=5,BC=6,AC的垂直平分线分别交BC、AC于点D、E,则△ABD的周长为()A.8B.11C.16D.17解:∵DE是线段AC的垂直平分线,∴DA=DC,∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=11,故选:B.6.如图,数轴上表示实数的点可能是()A.点M B.点N C.点P D.点Q解:∵<<.∴3<<4.数轴上在这个范围内的只有点P.故选:C.7.某校准备为八年级学生开设A、B、C、D、E、F共6门选修课,随机抽取了部分学生对“我最喜欢的一门选修课”进行调查,并将调查结果绘制成如图所示的统计图表(不完整).下列说法正确的是()选修课A B C D E F人数404880A.这次被调查的学生人数为480人B.喜欢选修课C对应扇形的圆心角为60°C.喜欢选修课A的人数最少D.这次被调查的学生喜欢选修课F的人数为80人解:由统计图可得,这次被调查的学生有:80÷20%=400(人),故选项A错误;喜欢选修课C对应扇形的圆心角为:360°×=43.2°,故选项B错误;喜欢选修课A的人数最少,故选项C正确;这次被调查的学生喜欢选修课F的人数为:400﹣40﹣48﹣80﹣400×(15%+25%)=72(人),故选项D错误;故选:C.8.如图,四边形ABCD内接于⊙O,∠ABD=35°,∠ACB=45°,则∠BAD等于()A.100°B.90°C.80°D.70°解:∵∠ACB=45°,∴∠ADB=∠ACB=45°,∵∠ABD=35°,∴∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣35°﹣45°=100°,故选:A.9.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A.B.C.D.解:设合伙人数为x人,羊价为y钱,根据题意,可列方程组为:.故选:A.10.若直线y=kx+k+2与x轴的交点位于x轴正半轴上,则它与直线y=2x﹣1交点的横坐标a的取值范围为()A.a<B.0<a<C.<a<D.a>解:∵直线y=kx+k+2与x轴的交点位于x轴正半轴上,∴k≠0.令y=kx+k+2=0,解得:x=>0,即﹣1﹣>0,得.①当k>0时,解得k<﹣2,与题设矛盾;②当k<0时,解得k>﹣2,所以﹣2<k<0.当直线y=kx+k+2与直线y=2x﹣1相交时,kx+k+2=2x﹣1,解得:x=,即a=,又a===,∵﹣2<k<0,∴0<﹣k<2,∴2<2﹣k<4,∴<,∴<,∴.故选:C.二、填空题:本题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置.11.计算:20210=1.解:20210=1.故答案为:1.12.分解因式:a2﹣9=(a+3)(a﹣3).解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).13.在菱形ABCD中,若对角线AC=8,BD=5,则菱形ABCD的面积为20.解:菱形ABCD的面积===20,故答案为:20.14.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色三角形区域的概率是.解:由图可知,黑色区域为等腰直角三角形,腰长为,∴黑色三角区的面积为:×=5,飞镖游戏版的面积为:25,∴击中黑色三角形区域的概率是:=.故答案为:.15.如图,将一个含30°角的三角尺ABC绕点A按顺时针方向旋转得到△ADE,使点B的对应点D恰好落在BC边上,若AB=,则CD的长为.解:由旋转得:AD=AB=,∵在Rt△ABC中,∠C=30°,∠CAB=90°,∴∠B=60°,∵AD=AD,∴∠ADB=∠B=60°,∵∠DAB+∠ADB+∠B=180°,∴∠DAB=∠ADB=∠B=60°,∴AD=AB=DB=,在Rt△CAB中,∠C=30°,∠CAB=90°,∴AB=BC,∴BC=2AB=2,∴CD=BC﹣BD=2﹣=.故CD的长为.16.已知直线y=ax与双曲线y=相交于点P(x1,y1),Q(x2,y2),则x1x2+2x1的最大值是1.解:∵y=ax与y=相交于点P(x1,y1),Q(x2,y2),且这两个函数图象都是关于原点对称的中心对称图形,∴点P与点Q关于原点对称,∴x2=﹣x1,∴x1x2+2x1=x1•(﹣x1)+2x1=﹣x12+2x1,设m=﹣x12+2x1,则m是x1的二次函数,∵﹣1<0,开口向下,二次函数有最大值,∴m有最大值,m最大==1,即x1x2+2x1的最大值为1,故答案为:1.三、解答题:本题共9小题,共86分.请在答题卡的相应位置解答.17.解方程:=.解:方程两边都乘以(x+1)(2x﹣1)将分式方程化为整式方程,得4x﹣2=3x+3.…(1分)移项,得4x﹣3x=3+2,合并同类项得,x=5.…检验:当x=5时,(x+1)(2x﹣1)=(5﹣1)(2×5﹣1)=36≠0,∴x=5是原方程的根.…故原分式方程的根是x=5.18.先化简,再求值:[(x+2y)2﹣x(x﹣2y)]÷2y,其中x=3,y=﹣1.解:原式=(x2+4xy+4y2﹣x2+2xy)÷2y=(6xy+4y2)÷2y=3x+2y,当x=3,y=﹣1时,原式=3×3+2×(﹣1)=7.19.如图,在正方形ABCD中,点E,F分别在BC,CD边上,AE=BF.求证:CE=DF.【解答】证明:在正方形ABCD中,AB=BC=CD,∠B=∠BCD=90°,∵AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在△BCE和△CDF中,,∴△BCE≌△CDF(HL),∴CE=DF.20.如图,在△ABC中,∠ACB=90°.(1)在AB上求作点D,使△CDB∽△ACB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BC=5,AC=12,求BD长.解:(1)根据作图过程可知CD⊥AB,∴∠BDC=90°,∵∠ACB=90°,∴∠BDC=∠ACB,又∵∠CBD=∠ABC,∴△CDB~△ACB;(2)在Rt△ABC中,∠ACB=90°,BC=5,AC=12,∴AB===13,由(1)可知△CDB~△ACB,∴=,即=,∴BD=.21.为落实省体育中考的要求,增强学生的身体素质.某校计划今年购买一批篮球和实心球共100个,已知去年篮球的单价为80元,实心球的单价为36元.由于物价上涨,预计今年篮球的价格比去年上涨20%,实心球的价格不变,若购买蓝球的总费用不低于购买实心球的总费用,为了完成这项采购计划,该校今年至少应投入多少元?解:设完成计划需购买x个篮球,需要投入的费用为w元,依题意得:w=80(1+20%)x+36(100﹣x)=60x+3600.∵购买蓝球的总费用不低于购买实心球的总费用,∴80(1+20%)x≥36(100﹣x),解得:x≥27.又∵x是整数,∴x的最小值为28.∵k=60>0,∴w随x的增大而增大,∴当x=28时,w的最小值为60×28+3600=5280.答:为了完成这项采购计划,该校今年至少应投入5280元.22.为迎接建党100周年,甲、乙两位学生参加了知识竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录这8次成绩(单位:分),并按成绩从低到高整理成如表所示,由于表格被污损,甲的第5个数据看不清,但知道甲的中位数比乙的众数大3.甲78798182x889395乙7580808385909295(1)求x的值;(2)现要从中选派一人参加竞赛,从统计或概率的角度考虑,你认为选派哪位学生参加合适?请说明理由.解:(1)依题意可知甲的中位数为,乙的众数为80,∴=80+3,解得x=84;(2)解法一:派甲参赛比较合适.理由如下:=×(70×2+80×4+90×2+8+9+1+2+4+8+3+5)=85,=×[(78﹣85)2+(79﹣85)2+(81﹣85)2+(82﹣85)2+(84﹣85)2+(88﹣85)2+(93﹣85)2+(95﹣85)2]=35.5,=×[(75﹣85)2+(80﹣85)2+(80﹣85)2+(83﹣85)2+(85﹣85)2+(90﹣85)2+(92﹣85)2+(95﹣85)2]=41,因为=,<,所以甲的成绩较稳定,派甲参赛比较合适.解法二:派乙参赛比较合适.理由如下:从概率的角度看,甲获得85以上(含85分)的概率P1=,乙获得8以上(含85分)的概率P2==,因为P1<P2,所以派乙参赛比较合适.注:本小题的结论及理由均不唯一,如果考生能从统计或概率的角度分析,给出其它合理回答,同样给分.23.如图,AB为⊙O的直径,点C、D在⊙O上,且=,过点D作DE⊥AC,交AC 的延长线于点E,连接AD.(1)求证:ED是⊙O的切线;(2)若⊙O的半径为3,AC=2,求CD的长.【解答】解法一:(1)如图,连接OD.∵=,∴∠CAD=∠DAB,∵OA=OD,∴∠DAB=∠ODA.∴∠CAD=∠ODA,∴AE∥OD.∵DE⊥AE,∴DE⊥OD,∵OD为⊙O的半径,∴ED是⊙O的切线;(2)解:如图,连接BC,交OD于点F,∵AB为⊙O的直径,∴∠ACB=90°,∵⊙O的半径为3,∴AB=6.∵AC=2,∴BC==4,∵AE∥OD,OA=OB,∴BF=CF=2,OF=AC=1,∠BFO=∠ACB=90°,∴FD=OD﹣OF=3﹣1=2,在Rt△CFD中,CD===2.解法二:(1)如图,连接OD.∵=,∴∠DAB=∠CAD.∠DOB=2∠DAB,∵∠EAB=∠DAB+∠CAD=2∠DAB,∴∠DOB=∠EAB,∴AE∥OD,∵DE⊥AE,∴DE⊥OD.∵OD为⊙O的半径,∴ED是⊙O的切线,(2)解:同解法一.24.如图,在矩形ABCD中,AB=2BC,点P、Q分别在AB、CD上,将矩形ABCD沿PQ折叠,使点B落在AD边上的点E处,点C落在点F处,EF交CD于点G,连接BE交PQ于点H.(1)求证:∠APE=∠GQF;(2)求证:PQ=BH;(3)若sin∠GQF=,PQ=3,求FG的长.解:(1)在矩形ABCD中,∠A=∠ABC=∠C=∠D=90o.∴∠AEP+∠APE=90°,由折叠的性质,得∠PEF=∠ABC=90°,∴∠AEP+∠DEG=90°,∴∠DEG=∠APE,∵∠F=∠C=∠D=90o,∠DGE=∠FGQ,∴∠DEG=∠GQF,∴∠APE=∠GQF;(2)作QM⊥AB于M,HN⊥AB于N,如图:∵QM⊥AB于M,∴QM=BC,∠PQM+∠QPM=90°,AE∥HN∥BC,∵矩形ABCD沿PQ折叠,使点B落在AD边上的点E处,点C落在点F处,∴PQ⊥BE,EH=BH=BE,∴AN=BN=AB,∵AB=2BC,∴BC=AB,∴QM=BC=BN,∵∠PQM+∠QPB=90°,∠HBP+∠QPB=90°,∴∠PQM=∠HBP,∵∠QMP=∠BNH=90°,∴△PQM≌△HBN(ASA),∴PQ=BH;(3)∵∠APE=∠GQF,∴sin∠APE=sin∠GQF=,设EA=3k,EP=5k,则AP=4k,∴BP=EP=5k,AB=AP+BP=9k,∵PQ=3,∴BE=2BH=2PQ=6,在Rt△ABE中,AE2+AB2=BE2,∴(3k)2+(9k)2=(6)2,∴k=2或k=﹣2(舍去),∴EA=6,EP=10,AP=8,AB=18,∴AD=9,∴DE=AD﹣EA=3,∵∠A=∠D,∠DEG=∠APE,∴△EAP∽△GDE,∴=,即=,∴GE=,∴FG=EF﹣GE=9﹣=.25.已知面积为1的等腰直角三角形的三个顶点均在抛物线y=ax2+bx(a、b为常数,且a >0)上,其中直角顶点与抛物线顶点重合.(1)求a的值;(2)若直线y=t(t≤4)与抛物线y=ax2+bx(a>0)有公共点.①求t的取值范围;②求关于t的函数y=at2+bt(﹣2<b<2)的最大值.解:(1)因为抛物线y=ax2+bx=a(x+)2﹣,顶点坐标为,(﹣,﹣),所以根据抛物线的对称性,面积为1的等腰直角三角形一个顶点(﹣+1,﹣+1)在抛物线上,∴﹣+1=a(﹣+1+)2﹣,解得a=1.(2)①∵y=x2+bx与直线y=t(t≤4)有公共点,∴把y=t代入y=x2+bx中,得x2+bx﹣t=0由题意,得△≥0,即b2+4t≥0,解得t≥﹣,∴t的取值范围是﹣≤t≤4,②因为y=t2+bt开口向上,且对称轴为直线直线t=﹣,所以抛物线上离对称轴越远的点,对应的函数值越大,∵﹣2<b<2,∴对称轴的范围:﹣1≤﹣≤1,由①知﹣≤t≤4,∵﹣2<b<2,∴﹣1≤﹣≤0,∴直线x=4离对称轴t=﹣最远,∵开口向上时,抛物线上离对称轴越远的点对应的函数值越大,所以当t=4时,y的最大值为16+4b,综上,函数y=at2+bt(﹣2<b<2)的最大值为16+4b.。
2021-2022中考数学模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式组310x x <⎧⎨-≤⎩中两个不等式的解集,在数轴上表示正确的是A .B .C .D .2.如图,AB 是O 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒3.如图,PA 、PB 是O 的切线,点D 在AB 上运动,且不与A ,B 重合,AC 是O 直径.62P ∠=︒,当//BD AC时,C ∠的度数是( )A .30B .31︒C .32︒D .33︒4.如图,小明从A 处出发沿北偏西30°方向行走至B 处,又沿南偏西50°方向行走至C 处,此时再沿与出发时一致的方向行走至D 处,则∠BCD 的度数为( )A.100°B.80°C.50°D.20°5.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是()A.0 B.C.2+D.2﹣6.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=27.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158 159 160 160 160 161 169乙组158 159 160 161 161 163 165以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大8.下列命题是真命题的是()A.如果a+b=0,那么a=b=0 B16±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等9.为了配合“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A.140元B.150元C.160元D.200元10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.下列各数中,为无理数的是()A .38B.4C.13D.212.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()A.2P q+B.2P qPq+C.2+2p qP q Pq+++D.2+2p q pqP q+++二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6-的相反数是_____,倒数是_____,绝对值是_____ 14.已知,则=_____.15.(2017四川省攀枝花市)若关于x的分式方程7311mxx x+=--无解,则实数m=_______.16.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.17.若直角三角形两边分别为6和8,则它内切圆的半径为_____.18.如图,边长为6cm的正三角形内接于⊙O,则阴影部分的面积为(结果保留π)_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一 2 0.04二10 0.2三14b 四 a0.32 五80.16请根据表格提供的信息,解答以下问题: (1)本次决赛共有 名学生参加; (2)直接写出表中a= ,b= ; (3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .20.(6分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.21.(6分)如图,直线y =﹣x+2与反比例函数ky x= (k≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.22.(8分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a的值为%,该扇形圆心角的度数为;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?23.(8分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?24.(108(﹣13)﹣1+|12|﹣4sin45°.25.(10分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.26.(12分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.27.(12分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【解析】由①得,x <3,由②得,x ≥1,所以不等式组的解集为:1≤x <3,在数轴上表示为:,故选B .2、B 【解析】连接BD ,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可. 【详解】 连接BD ,∵AB 是直径,∠BAD=25°, ∴∠ABD=90°-25°=65°, ∴∠AGD=∠ABD=65°, 故选B . 【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°. 3、B 【解析】连接OB ,由切线的性质可得90∠=∠=︒PAO PBO ,由邻补角相等和四边形的内角和可得62∠=∠=︒BOC P ,再由圆周角定理求得D ∠,然后由平行线的性质即可求得C ∠. 【详解】 解,连结OB ,∵PA 、PB 是O 的切线,∴PA OA ⊥,PB OB ⊥,则90∠=∠=︒PAO PBO ,∵四边形APBO 的内角和为360°,即++360∠∠∠+∠=︒PAO PBO P AOB , ∴180∠+∠=︒P AOB ,又∵62P ∠=︒,180∠+∠=︒BOC AOB , ∴62∠=∠=︒BOC P , ∵BC BC =, ∴1312∠=∠=︒D BOC , ∵//BD AC , ∴31∠=∠=︒C D , 故选:B . 【点睛】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答. 4、B 【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC ∥AB ,则∠4=30°+50°=80°.故选B .点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键. 5、C把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2﹣时,(7+4)x2+(2+)x+=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7-4)+1+=49-48+1+=2+故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.6、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.7、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得.【详解】A.甲组同学身高的众数是160,此选项正确;B.乙组同学身高的中位数是161,此选项正确;C.甲组同学身高的平均数是15815916031611697++⨯++=161,此选项正确;D.甲组的方差为807,乙组的方差为347,甲组的方差大,此选项错误.【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键. 8、D 【解析】解:A 、如果a +b =0,那么a =b =0,或a =﹣b ,错误,为假命题;B 的平方根是±2,错误,为假命题;C 、有公共顶点且相等的两个角是对顶角,错误,为假命题;D 、等腰三角形两底角相等,正确,为真命题; 故选D . 9、B 【解析】试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x 元,则有:20+0.8x=x ﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元. 故选B .考点:一元一次方程的应用 10、B【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B . 11、D 【解析】A ,是有理数;B =2,是有理数;C .13,是有理数;D ,是无理数, 故选D. 12、C 【解析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案. 【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×11p ++1×11q +=11p ++11q +,水之和为:1p p ++1q q +, ∴混合液中的酒精与水的容积之比为:(11p ++11q +)÷(1p p ++1q q +)=2+2p q P q Pq +++,故选C . 【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、6 ,66- 6【解析】∵只有符号不同的两个数是互为相反数, ∴6-的相反数是6; ∵乘积为1的两个数互为倒数, ∴6-的倒数是66-; ∵负数得绝对值是它的相反数, ∴6-绝对值是 6.故答案为(1). 6 (2). 66-(3). 614、【解析】 由可知值,再将化为的形式进行求解即可.【详解】 解:∵,∴,∴原式=.【点睛】本题考查了分式的化简求值.15、3或1.【解析】解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①当整式方程无解时,m﹣3=0,m=3;②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=2,m=1.综上所述:∴m的值为3或1.故答案为3或1.16、2【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,17、27【解析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8226+8=10,∴内切圆的半径为:6+810=22-;若8228627=-∴内切圆的半径为:6+278=712--. 故答案为2或7-1. 【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键. 18、(4π﹣33)cm 1 【解析】连接OB 、OC ,作OH ⊥BC 于H ,根据圆周角定理可知∠BOC 的度数,根据等边三角形的性质可求出OB 、OH 的长度,利用阴影面积=S 扇形OBC -S △OBC 即可得答案 【详解】:连接OB 、OC ,作OH ⊥BC 于H , 则BH=HC= BC= 3, ∵△ABC 为等边三角形, ∴∠A=60°,由圆周角定理得,∠BOC=1∠A=110°, ∵OB=OC , ∴∠OBC=30°, ∴OB=cos OBCBH∠=13 ,OH=3,∴阴影部分的面积= 2120(23)360π⨯﹣12×6×3=4π﹣33 ,故答案为:(4π﹣3cm 1. 【点睛】本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图∠=∠.20、AED ACB【解析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠1.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【点睛】本题重点考查平行线的性质和判定,难度适中.21、(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=12×3×|n+1|,S△BDP=12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y=-x+2与反比例函数y=kx(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=kx上,∴k=-1×3=-3,∴反比例函数解析式为y=3x -;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=12AC×|x P−x A|=12×3×|n+1|,S△BDP=12BD×|x B−x P|=12×1×|3−n|,∵S△ACP=S△BDP,∴12×3×|n+1|=12×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1+23或m=−1−23(舍),∴M(−1+23,0)③当MB=AB时,(m−3)2+1=32,∴m=3+31或m=3−31(舍),∴M(3+31,0)即:满足条件的M(−1+23,0)或(3+31,0).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.22、(1)25,90°;(2)见解析;(3)该市“活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得a的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天” 的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.23、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.244 -【解析】根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论.【详解】+(﹣13)﹣1+|1|﹣1sin15°﹣﹣1﹣﹣﹣1﹣﹣1.【点睛】此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键.25、证明见解析【解析】根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.【详解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB与Rt△ECB中{EA EC EB EB==,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD与△CBD中{AB CBABE CBE BD BD=∠=∠=,∴△ABD≌△CBD,∴AD=CD.【点睛】本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.26、(1)不可能;(2)1 6 .【解析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.27、48;105°;【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.试题解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:A1 A1 A2 A2 A1 √√A1 √√A2 √√A2 √√∴由上表可得:考点:统计图、概率的计算.。
2021年福建省龙岩市部分学校中考数学第一次适应性试卷(一)一.选择题(共10小题).1.3倒数等于()A.3B.C.﹣3D.﹣2.计算:a2•a的结果是()A.a B.a2C.a3D.2a23.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.4.实数a,b在数轴上的位置如图所示,则下列式子错误的是()A.ab<0B.a+b>0C.<﹣1D.|a|>b5.比值为的比例被公认为是最能引起美感的比例,因此被称为黄金分割.我们国家的国旗宽与长之比接近这个比例,估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.如图是超市的两个摇奖转盘,只有当两个转盘指针同时指在偶数上时才能获一等奖,则摇奖人中一等奖的概率是()A.B.C.D.7.如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2﹣∠3=90°B.∠1﹣∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3﹣∠1=180°8.中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是()A.10B.89C.165D.2949.如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A.12π+18B.12π+36C.6D.610.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣6二.填空题(满分24分,每小题4分)11.因式分解:x2﹣6xy+9y2=.12.截止香港时间2020年11月17日14时04分,全球新冠肺炎确诊病例超过55350000例,把55350000用科学记数法表示为.13.已知实数x,y满足下面关系式:y=﹣x+2,则x y的值.14.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cos C=.15.如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是.16.函数的最小值是.三.解答题17.计算:+|﹣2|﹣()﹣2.18.化简求值:(﹣x+1)÷,其中x从0、2、﹣1中任意取一个数求值.19.证明:对角线互相垂直的平行四边形是菱形.20.如图,证明:三角形一内角平分线分对边所得的两条线段和这个角的两边对应成比例.(要求:在给出的△ABC中用尺规作出∠A的角平分线AD交BC于D,保留作图痕迹,不要求写出作法,并根据图形写出已知、求证和证明.)21.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<15530.06155≤x<15870.14158≤x<161m0.28161≤x<16413n164≤x<16790.18167≤x<17030.06170≤x<17310.02根据以上统计图表完成下列问题:(1)统计表中m=,n=,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.22.如图,AB是⊙O的弦,点C为半径OA上的一点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.(1)判断BD与⊙O的位置关系,并说明理由.(2)若CD=15,BE=10,tan A=,求⊙O的直径.23.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?24.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD与四边形AEEG都是正方形,135°<∠AEB<180°,求证:四边形BEGD是“等垂四边形”;(2)如图②,四边形ABCD是“等垂四边形”,AD≠BC,连接BD,点E,F,G分别是AD,BC,BD的中点,连接EG,FG,EF.试判定△EFG的形状,并证明;(3)如图③,四边形ABCD是“等垂四边形”,AD=4,BC=6,试求边AB长的最小值.25.定义:若一个三角形存在两个内角之差是第三个内角的两倍,则称这个三角形为关于第三个内角的“差倍角三角形”,例如,在△ABC中,∠A=100°,∠B=60°,∠C=20°,满足∠A﹣∠B=2∠C,所以△ABC是关于∠C的“差倍角三角形”;(1)若等腰△ABC是“差倍角三角形”,求等腰三角形的顶角∠A的度数;(2)如图1,△ABC中,AB=3,AC=8,BC=9.小明发现这个△ABC是关于∠C的“差倍角三角形”.他的证明方法如下:证明:在BC上取点D,使得BD=1,连接AD.(请你完成接下去的证明)(3)如图2,五边形ABCDE内接于圆,连接AC,AD与BE相交于点F,G,==,△ABE是关于∠AEB的“差倍角三角形”.①求证:四边形CDEF是平行四边形;②若BF=1,设AB=x,y=,求y关于x的函数关系式.参考答案一.选择题(每小题4分,满分40分)1.3倒数等于()A.3B.C.﹣3D.﹣【分析】根据乘积是1的两数互为倒数可得答案.解:3倒数等于,故选:B.2.计算:a2•a的结果是()A.a B.a2C.a3D.2a2【分析】直接利用同底数幂的乘法运算法则计算得出答案.解:a2•a=a3.故选:C.3.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:该立体图形主视图的第1列有1个正方形、第2列有1个正方形、第3列有2个正方形,故选:C.4.实数a,b在数轴上的位置如图所示,则下列式子错误的是()A.ab<0B.a+b>0C.<﹣1D.|a|>b【分析】先由数轴可得:a<0<b,|a|<|b|,则分别根据异号两数相乘得负、两数相加,取绝对值较大的加数的符号、异号两数相除得负,且商的大小与a,b两数的绝对值大小的关系作出判断.解:由数轴可得:a<0<b,|a|<|b|∴A:ab<0,正确;B:a+b>0,正确;C:<﹣1,正确;D:|a|>b,错误.故只有D错误.故选:D.5.比值为的比例被公认为是最能引起美感的比例,因此被称为黄金分割.我们国家的国旗宽与长之比接近这个比例,估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间【分析】把的近似值代入黄金分割的比值进行计算即可.解:≈=0.618,故选:C.6.如图是超市的两个摇奖转盘,只有当两个转盘指针同时指在偶数上时才能获一等奖,则摇奖人中一等奖的概率是()A.B.C.D.【分析】根据题意和图形,可以求得摇奖人中一等奖的概率,本题得以解决.解:由图可得,摇奖人中一等奖的概率是:===,故选:B.7.如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2﹣∠3=90°B.∠1﹣∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3﹣∠1=180°【分析】由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可找到关系式.解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,即∠2+∠3﹣∠1=180°,故选:D.8.中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是()A.10B.89C.165D.294【分析】根据计数规则可知,从右边第1位的计数单位为50,右边第2位的计数单位为51,右边第3位的计数单位为52,右边第4位的计数单位为53……依此类推,可求出结果.解:2×53+1×52+3×51+4×50=294,故选:D.9.如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A.12π+18B.12π+36C.6D.6【分析】连接OD、BD,根据点C为OB的中点可得∠CDO=30°,继而可得△BDO为等边三角形,求出扇形BOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白BDC即可求出阴影部分的面积.解:如图,连接OD,BD,∵点C为OB的中点,∴OC=OB=OD,∵CD⊥OB,∴∠CDO=30°,∠DOC=60°,∴△BDO为等边三角形,OD=OB=12,OC=CB=6,∴CD=,6,∴S扇形BOD==24π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形BOD﹣S△COD)=﹣﹣(24π﹣×6×6)=18+6π.或S阴=S扇形OAD+S△ODC﹣S扇形OEC=18+6π.故选:C.10.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣6【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y=上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.解法二:过点B作BM⊥DE于M,设A(a,),则B(,).由题意,OE=﹣a,DE=﹣a,ME=﹣a,BM=,DM=﹣a,∵S△ABE=S梯形ADMB+S△BEM﹣S△ADE=7,∴(+)×(﹣a)+×(﹣a)×()﹣××(﹣a)=7,解得k=﹣12.故选:A.二.填空题(满分24分,每小题4分)11.因式分解:x2﹣6xy+9y2=(x﹣3y)2.【分析】原式利用完全平方公式分解即可.解:原式=x2﹣2•x•3y+(3y)2=(x﹣3y)2,故答案为:(x﹣3y)212.截止香港时间2020年11月17日14时04分,全球新冠肺炎确诊病例超过55350000例,把55350000用科学记数法表示为 5.535×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:55 350 000用科学记数法表示5.535×107,故答案是:5.535×107.13.已知实数x,y满足下面关系式:y=﹣x+2,则x y的值﹣1.【分析】依据二次根式及分式有意义的条件,即可得到x的值,进而得到y的值,最后代入计算即可.解:由题可得,,解得x2=1,即x=±1,又∵x﹣1≠0,∴x≠1,∴x=﹣1,当x=﹣1时,y=0﹣(﹣1)+2=3,∴x y的值﹣1,故答案为:﹣1.14.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cos C=.【分析】根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cos C.解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cos C===,故答案为.15.如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是x1=﹣3,x2=1.【分析】设抛物线与x轴的另一交点为(x,0),根据中点坐标公式即可得出x的值,进而得出结论.解:∵由图可知,抛物线与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴设抛物线与x轴的另一交点为(x,0),则=﹣1,解得x=1,∴方程ax2+bx+c=0的两根是x1=﹣3,x2=1.故答案为:x1=﹣3,x2=1.16.函数的最小值是.【分析】先将两个根式调整成两点间的距离公式形式,然后就可以看出y表示的就是两条线段之和,根据两点之间最短原理即可求解.解:∵y=+,∴y表示的几何含义为抛物线y=x2上的一点P(x,x2)到点A(2,1)和点B(0,2)的距离之和,即y=AP+PB≥AB,如图,当且仅当A、P、B三点共线时,y取得最小值AB==.故答案为:.三.解答题17.计算:+|﹣2|﹣()﹣2.【分析】直接利用二次根式的性质结合负整数指数幂的性质、绝对值的性质分别化简得出答案.解:原式=2+2﹣﹣4=﹣2.18.化简求值:(﹣x+1)÷,其中x从0、2、﹣1中任意取一个数求值.【分析】先算括号内的加减,把除法变成乘法,算乘法,最后代入求出答案即可.解:(﹣x+1)÷=•=•=﹣,∵从分式知:x+1≠0,x﹣2≠0,∴x≠﹣1且x≠2,取x=0,当x=0时,原式=﹣=1.19.证明:对角线互相垂直的平行四边形是菱形.【分析】根据命题画出图形,写出已知,求证,证明过程,用邻边相等的平行四边形是菱形这个判定定理即可.【解答】已知:如图,在⊂ABCD中,AC,BD为对角线,且AC⊥BD,求证:⊂ABCD是菱形,证明:∵四边形ABCD为平行四边形,∴OA=OC,∵AC⊥BD,∴AB=CB,∴⊂ABCD是菱形.(邻边相等的平行四边形是菱形)20.如图,证明:三角形一内角平分线分对边所得的两条线段和这个角的两边对应成比例.(要求:在给出的△ABC中用尺规作出∠A的角平分线AD交BC于D,保留作图痕迹,不要求写出作法,并根据图形写出已知、求证和证明.)【分析】过C作CE∥DA,交BA的延长线于E,根据平行线的性质和等腰三角形的性质即可得到结论.解:如图所示,AD即为所求,已知:△ABC中,∠BAC的平分线AD交BC于点D,求证:=.证明:过C作CE∥DA,交BA的延长线于E.∴∠1=∠E,∠2=∠3.∵AD是角平分线,∴∠1=∠2.∴∠3=∠E,∴AC=AE,又∵AD∥CE,.∴=.21.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<15530.06155≤x<15870.14158≤x<161m0.28161≤x<16413n164≤x<16790.18167≤x<17030.06170≤x<17310.02根据以上统计图表完成下列问题:(1)统计表中m=14,n=0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,故答案为161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:所以P(两学生来自同一所班级)==.22.如图,AB是⊙O的弦,点C为半径OA上的一点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.(1)判断BD与⊙O的位置关系,并说明理由.(2)若CD=15,BE=10,tan A=,求⊙O的直径.【分析】(1)连接OB,由圆的半径相等和已知条件证明∠OBD=90°,即可证明BD 是⊙O的切线;(2)过点D作DG⊥BE于点G,先判断出△ACE∽△DGE得出比例式,从而得到AC=•DG=,求出AF,利用相似三角形的性质求解即可.解:(1)BD是⊙O的切线.理由如下:连接OB,∵OB=OA,DE=DB,∴∠A=∠OBA,∠DEB=∠ABD,又∵CD⊥OA,∴∠A+∠AEC=∠A+∠DEB=90°,∴∠OBA+∠ABD=90°,∴OB⊥BD,∴BD是⊙O的切线.(2)如图,过点D作DG⊥BE于点G,∵DE=DB,∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED,∴∠GDE=∠A,∴△ACE∽△DGE,∴tan∠EDG=tan A=,即DG=12,在Rt△EDG中,∵DG==12,∴DE=13,∵CD=15,∴CE=2,∵=,∴AC=,AE==,∴AB=BE+AE=,∵OF⊥AB,∴AF=FB=,∵△ACE∽△AOF∴=,∴=,∴AO=∴⊙O的直径为2OA=.23.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?【分析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:,解得:,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×=3辆、至少享有B型车2000×=2辆.24.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD与四边形AEEG都是正方形,135°<∠AEB<180°,求证:四边形BEGD是“等垂四边形”;(2)如图②,四边形ABCD是“等垂四边形”,AD≠BC,连接BD,点E,F,G分别是AD,BC,BD的中点,连接EG,FG,EF.试判定△EFG的形状,并证明;(3)如图③,四边形ABCD是“等垂四边形”,AD=4,BC=6,试求边AB长的最小值.【分析】(1)延长BE,DG交于点H,先证△ABE≌△ADG,得BE=DG,∠ABE=∠ADG.结合∠ABD+∠ADB=90°,知∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即可得∠BHD=90°.从而得证;(2)延长BA,CD交于点H,由四边形ABCD是“等垂四边形”,AD≠BC知AB⊥CD,AB=CD,从而得∠HBC+∠HCB=90°,根据三个中点知,,EG∥AB,GF∥DC,据此得∠BFG=∠C,∠EGD=∠HBD,EG=GF.由∠EGF=∠EGD+∠FGD=∠ABD+∠DBC+∠GFB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°可得答案;(3)延长BA,CD交于点H,分别取AD,BC的中点E,F.连接HE,EF,HF,由及可得答案.解:(1)如图①,延长BE,DG交于点H,∵四边形ABCD与四边形AEFG都为正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°.∴∠BAE=∠DAG.∴△ABE≌△ADG(SAS).∴BE=DG,∠ABE=∠ADG.∵∠ABD+∠ADB=90°,∴∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即∠EBD+∠BDG=90°,∴∠BHD=90°.∴BE⊥DG.又∵BE=DG,∴四边形BEGD是“等垂四边形”.(2)△EFG是等腰直角三角形.理由如下:如图②,延长BA,CD交于点H,∵四边形ABCD是“等垂四边形”,AD≠BC,∴AB⊥CD,AB=CD,∴∠HBC+∠HCB=90°∵点E,F,G分别是AD,BC,BD的中点,∴,,EG∥AB,GF∥DC,∴∠BFG=∠C,∠EGD=∠HBD,EG=GF.∴∠EGF=∠EGD+∠FGD=∠ABD+∠DBC+∠GFB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°.∴△EFG是等腰直角三角形.(3)延长BA,CD交于点H,分别取AD,BC的中点E,F.连接HE,EF,HF,则,由(2)可知.∴AB最小值为.25.定义:若一个三角形存在两个内角之差是第三个内角的两倍,则称这个三角形为关于第三个内角的“差倍角三角形”,例如,在△ABC中,∠A=100°,∠B=60°,∠C=20°,满足∠A﹣∠B=2∠C,所以△ABC是关于∠C的“差倍角三角形”;(1)若等腰△ABC是“差倍角三角形”,求等腰三角形的顶角∠A的度数;(2)如图1,△ABC中,AB=3,AC=8,BC=9.小明发现这个△ABC是关于∠C的“差倍角三角形”.他的证明方法如下:证明:在BC上取点D,使得BD=1,连接AD.(请你完成接下去的证明)(3)如图2,五边形ABCDE内接于圆,连接AC,AD与BE相交于点F,G,==,△ABE是关于∠AEB的“差倍角三角形”.①求证:四边形CDEF是平行四边形;②若BF=1,设AB=x,y=,求y关于x的函数关系式.【分析】(1)分两种情况,利用“差倍角三角形”的意义,建立方程求解,即可得出结论;(2)先判断出∠C=∠BAD,进而判断出∠CAD=∠ADC,即可得出结论;(3)①先判断出∠CAD=∠ABE,进而得出AC∥DE,即可得出结论;②先判断出△ABF∽△EBA,得出BE=x2进而得出CD=x2﹣1,AE=x2﹣1,AF=,再判断出=,即可得出结论.解:(1)设等腰三角形的顶角∠A为2x,则等腰三角形的底角为90°﹣x,∵等腰△ABC是“差倍角三角形”,∴90°﹣x﹣2x=2•(90°﹣x)或2x﹣(90°﹣x)=2(90°﹣x),∴x=﹣90°(舍)或x=54°,∴∠A=2x=108°,∴顶角∠A的度数为108°;(2)如图1,在BC上取点D,使得BD=1,连接AD,∴CD=BC﹣BD=8,∵AC=8,∴CD=AC,∴∠CAD=∠ADC,∵AB=3,AC=8,BC=9,∴==,=,∴,∵∠ABD∽△CBA,∴∠ADC=∠CAD,∴∠BAC﹣∠BAD=∠CAD=∠ADC,∴∠BAC﹣∠C=∠ADC,∵∠ADC=∠B+∠BAD=∠B+∠C,∴∠BAC﹣∠C=B+∠C,∴∠BAC﹣∠B=2∠C,∴△ABC是关于∠C的“差倍角三角形”;(3)①∵==,∴∠BAC=∠AEB=∠ACB=∠DAE,设∠BAC=∠AEB=∠ACB=∠DAE=α,∵△ABE是关于∠AEB的“差倍角三角形”,∴∠BAE﹣∠ABE=2∠AEB,∴α+∠CAD+α﹣∠ABE=2α,∴∠CAD=∠ABE,∴,∴DE∥AC,∵,∴CD∥BE,∴四边形CDEF是平行四边形;②∵∠BAF=∠AEB,∠ABF=∠EBA,∴△ABF∽△EBA,∴==,∴BE===x2,∴EF=BE﹣BF=x2﹣1,∵四边形CDEF是平行四边形,∵,∴AE=CD=x2﹣1,∴AF===,过点B作BM⊥AC于M,EN⊥AC于N,∴BM∥EN,∴△BFM∽△EFN,∴=,∴BM=EN,过点G作GH⊥AE于H,∵∠BAC=ACB=∠AEG=∠EAG,∴△ABC∽△AGE,∴,∴==,∴=,∴y===•=•=.。
2021年中考数学模拟试卷一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.32.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤53.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×305.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.48.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是.10.(5分)已知+=3,求=.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b=﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.3.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故A 错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:B.5.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【分析】由点A(﹣1,m),B(1,m),C(2,m﹣1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而减小,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,D错误;∵B(1,m),C(2,m﹣1),∴当x>0时,y随x的增大而减小,故B正确,C错误.故选:B.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.4【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.8.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)【分析】分析点P的运动规律找到循环规律即可.【解答】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是y(x﹣3)2.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(x2﹣6x+9)=y(x﹣3)2,故答案为:y(x﹣3)210.(5分)已知+=3,求=﹣.【分析】由+=3知=3,即a+b=3ab,整体代入到原式,计算可得.【解答】解:∵+=3,∴=3,则a+b=3ab,所以原式====﹣,故答案为:﹣.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠BAO=60°,得到OD∥AB,求得S△BDO=S△AOD,推出S△AOB=S△ABD=,过B作BH⊥OA于H,由等边三角形的性质得到OH=AH,求得S△OBH=,于是得到结论.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加(4﹣4)m.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA=OB=AB=2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过将A点坐标(﹣2,0)代入抛物线解析式可得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.【分析】原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+5﹣2﹣2=3.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.【分析】(1)连接OD,设OC交BD于K.想办法证明△ODC≌△OBC(SSS)即可解决问题.(2)由CD=AD,可以假设AD=a,CD=a,设KC=b.由△CDK∽△COD,推出=,推出=整理得:2()2+()﹣4=0,解得=或(舍弃),由此即可解决问题.【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.【分析】(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意列出方程解答即可.(2)根据租用的8辆客车所载的总人数应大于等于师生的总人数和所需的费用应比单独租用车辆的费用少,列出不等式组进行求解,然后分类讨论.【解答】解:(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意,得:3x+2(x+140)=1880,解得:x=320答:42座客车租金320元/辆,60座客车租金460元/辆;(2)设租42座客车m辆,则60座客车(8﹣m)辆,根据题意得:42m+60(8﹣m)≥385•,320m+460 (8﹣m)≤3200,解得:3≤m≤5∵m为整数,∴m的值可以是4、5,即有2种方案;设总费用为W,则W=320m+460 (8﹣m)=﹣140m+3680,∵W随m的增大而减小大,∴当m=5时,W取得最小值,最小值为2980,17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.【分析】(1)把点A的坐标代入函数解析式,利用对称轴方程,联立方程组,解方程组求得a、b的值;(2)设点C的坐标是(0,m).由于没有指明直角△BCD中的直角,所以需要分类讨论:当∠CBD=90°、∠CDB=90°、∠BCD=90°时,利用勾股定理列出关于m的方程,通过解方程求得m的值;然后利用三角形的面积公式解答;(3)利用待定系数法确定直线OA解析式为.由抛物线上点的坐标特征和两点间的距离公式求得:,所以利用二次函数最值的求得推知:当PQ最大时,线段BQ为定长.又因为MN=2,所以要使四边形BQMN的周长最小,只需QM+BN最小.利用轴对称﹣最短路径问题得到点Q.最后利用方程思想解答.【解答】解:(1)∵过点的抛物线y=ax2+bx的对称轴是x=2,∴解之,得;(2)设点C的坐标是(0,m).由(1)可得抛物线,∴抛物线的顶点D的坐标是(2,﹣3),点B的坐标是(4,0).当∠CBD=90°时,有BC2+BD2=CD2.∴,解之,得,∴;当∠CDB=90°时,有CD2+BD2=BC2.∴,解之,得,∴;当∠BCD=90°时,有CD2+BC2=BD2.∴,此方程无解.综上所述,当△BDC为直角三角形时,△OBC的面积是或;(3)设直线y=kx过点,可得直线.由(1)可得抛物线,∴,∴当时,PQ最大,此时Q点坐标是.∴PQ最大时,线段BQ为定长.∵MN=2,∴要使四边形BQMN的周长最小,只需QM+BN最小.将点Q向下平移2个单位长度,得点,作点关于抛物线的对称轴的对称点,直线BQ2与对称轴的交点就是符合条件的点N,此时四边形BQMN的周长最小.设直线y=cx+d过点和点B(4,0),则解之,得∴直线过点Q2和点B.解方程组得∴点N的坐标为,∴点M的坐标为,所以点Q、M、N的坐标分别为,,.。
福建省中考数学模拟试卷一.选择题:1.下列表示某地区早晨、中午和午夜的温差(单位:℃),则下列说法正确的是()A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃2.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于()A.40°B.50°C.60°D.70°3.下列计算正确的是()A.a+a2=a3B.a6b÷a2=a3b C.(a﹣b)2=a2﹣b2D.(﹣ab3)2=a2b64.下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查5.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.6.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.817.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球8.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED 的周长为()A.4 B.8 C.10 D.129.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.810.岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.=B.=C.=D.=二、填空题:11.如图所示的运算程序中,若开始输入的x值为10,我们发现第1次输出的结果为5,第2次输出的结果为8,…,第2016次输出的结果为.12.把x3﹣9x分解因式,结果为.13.据教育部统计,参加2016年全国统一高考的考生有940万人,940万人用科学记数法表示为人.14.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为.15.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为.16.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.三、计算题:17.计算:﹣14+(2016﹣π)0﹣(﹣)﹣1+|1﹣|﹣2sin60°.18.解不等式组,并把解集在数轴上表示出来.19.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.20.一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m,再从剩下的两张中任取一张,将其编号记为n.(1)请用树状图或者列表法,表示事件发生的所有可能情况;(2)求关于x的方程x2+mx+n=0有两个不相等实数根的概率.21.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.22.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.23.如图,正方形ABCD的边长为2cm,以边BC为直径作半圆O,点E在AB上,且AE=1.5cm,连接DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明情况;(2)求阴影部分的面积.24.以点P(n,n2+2n+1)(n≥1)为顶点的抛物线y=﹣x2+bx+c与x轴交于点A、B(点A在点B的左边).(1)当n=1时,试求b和c的值;当n>1时,求b与n,c与n之间的关系式.(2)若点P到AB的距离等于线段AB长的10倍,求此抛物线y=﹣x2+bx+c的解析式.(3)设抛物线y=﹣x2+bx+c与y轴交于点D,O为原点,矩形OEFD的顶点E、F分别在x轴和该抛物线上,当矩形OEFD的面积为42时,求点P的坐标.25.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是,∠AFB=∠(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.参考答案与试题解析一.选择题:1.下列表示某地区早晨、中午和午夜的温差(单位:℃),则下列说法正确的是()A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃【考点】1A:有理数的减法;13:数轴.【专题】31 :数形结合.【分析】温差就是最高气温与最低气温的差,分别计算每一天的温差,比较即可得出结论.【解答】解:A、午夜与早晨的温差是﹣4﹣(﹣7)=3℃,故本选项错误;B、中午与午夜的温差是4﹣(﹣4)=8℃,故本选项错误;C、中午与早晨的温差是4﹣(﹣7)=11℃,故本选项正确;D、中午与早晨的温差是4﹣(﹣7)=11℃,故本选项错误.故选C.【点评】本题是考查了温差的概念,以及有理数的减法,是一个基础的题目.有理数减法法则:减去一个数等于加上这个数的相反数.2.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于()A.40°B.50°C.60°D.70°【考点】JA:平行线的性质.【分析】先根据平行线的性质求出∠1+∠2的度数,再由∠1=∠2得出∠2的度数,进而可得出结论.【解答】解:∵a∥b,∠3=40°,∴∠1+∠2=180°﹣40°=140°,∠2=∠4.∵∠1=∠2,∴∠2=×140°=70°,∴∠4=∠2=70°.故选D.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.3.下列计算正确的是()A.a+a2=a3B.a6b÷a2=a3b C.(a﹣b)2=a2﹣b2D.(﹣ab3)2=a2b6【考点】4H:整式的除法;35:合并同类项;47:幂的乘方与积的乘方;4C:完全平方公式.【分析】根据同类项合并、整式的除法、完全平方公式和积的乘方判断即可.【解答】解:A、a与a2不能合并,错误;B、a6b÷a2=a4b,错误;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(﹣ab3)2=a2b6,正确;故选D.【点评】此题考查合并同类项、整式的除法、完全平方公式和积的乘方问题,关键是根据法则计算.4.下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查【考点】V2:全面调查与抽样调查.【专题】11 :计算题;541:数据的收集与整理.【分析】利用普查与抽样调查的定义判断即可.【解答】解:A、对重庆市居民日平均用水量的调查,抽样调查;B、对一批LED节能灯使用寿命的调查,抽样调查;C、对重庆新闻频道“天天630”栏目收视率的调查,抽样调查;D、对某校九年级(1)班同学的身高情况的调查,全面调查(普查),则最适合采用全面调查(普查)的是对某校九年级(1)班同学的身高情况的调查.故选D【点评】此题考查了全面调查与抽样调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示,故选:C.【点评】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.6.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.81【考点】6C:分式的混合运算.【专题】11 :计算题.【分析】由于()2÷()2=3,首先利用积的乘方运算法则化简,然后结合所求代数式即可求解.【解答】解:∵()2÷()2=3,∴×=3,∴a4b2=3,∴a8b4=(a4b2)2=9.故选B.【点评】此题主要考查了分式的混合运算,解题时首先把等式利用积的乘方法则化简,然后结合所求代数式的形式即可求解.7.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球【考点】X1:随机事件.【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【解答】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选:B.【点评】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED 的周长为()A.4 B.8 C.10 D.12【考点】LB:矩形的性质;LA:菱形的判定与性质.【专题】11 :计算题;556:矩形菱形正方形.【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.9.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.8【考点】P3:轴对称图形.【分析】根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.【解答】解:第一个图形是轴对称图形,有1条对称轴;第二个图形是轴对称图形,有2条对称轴;第三个图形是轴对称图形,有2条对称轴;第四个图形是轴对称图形,有6条对称轴;则所有轴对称图形的对称轴条数之和为11.故选:B.【点评】本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.10.岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.【解答】解:设每个笔记本的价格为x元,则每个笔袋的价格为(x+3)元,根据题意得:=,故选B.【点评】本题考查了由实际问题抽象出分式方程的知识,解题的关键是能够找到概括题目全部含义的等量关系,难度不大.二、填空题:11.如图所示的运算程序中,若开始输入的x值为10,我们发现第1次输出的结果为5,第2次输出的结果为8,…,第2016次输出的结果为 4 .【考点】33:代数式求值.【专题】27 :图表型.【分析】把x=10代入运算程序中计算,找出一般性规律,即可得到结果.【解答】解:把x=10代入得:×10=5,把x=5代入得:5+3=8,把x=8代入得:×8=4,把x=4代入得:×4=2,把x=2代入得:×2=1,把x=1代入得:1+1=2,依此类推,∵(2016﹣4)÷2=1006,∴第2016次输出的结果为4.故答案为:4.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.把x3﹣9x分解因式,结果为x(x+3)(x﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.【解答】解:x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3).故答案为:x(x+3)(x﹣3).【点评】此题主要考查了提取公因式法与公式法分解因式,熟练利用公式法分解因式是解题关键.13.据教育部统计,参加2016年全国统一高考的考生有940万人,940万人用科学记数法表示为9.4×106人.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:940万人用科学记数法表示为9.4×106人,故答案为:9.4×106.【点评】本题考查了科学记数法表示大数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=,故答案为:.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为π.【考点】MO:扇形面积的计算.【分析】通过解直角三角形可求出∠AOB=30°,∠COD=60°,从而可求出∠AOC=150°,再通过证三角形全等找出S阴影=S扇形OAC,套入扇形的面积公式即可得出结论.【解答】解:在Rt△ABO中,∠ABO=90°,OA=2,AB=1,∴OB==,sin∠AOB==,∠AOB=30°.同理,可得出:OD=1,∠COD=60°.∴∠AOC=∠AOB+(180°﹣∠COD)=30°+180°﹣60°=150°.在△AOB和△OCD中,有,∴△AOB≌△OCD(SSS).∴S阴影=S扇形OAC.∴S扇形OAC=πR2=π×22=π.故答案为:π.【点评】本题考查了全等三角形的判定、解直角三角以及扇形的面积公式,解题的关键是找出S 阴影=S扇形OAC.本题属于基础题,难度不大,解决该题型题目时,根据拆补法将不规则的图形变成规则的图形,再套用规则图形的面积公式进行计算即可.16.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【考点】LE:正方形的性质.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.【点评】本题考查了正方形的性质,等腰直角三角形的性质,正方形的面积的计算,熟练掌握等腰直角三角形的性质是解题的关键.三、计算题:17.(2017•霍邱县校级模拟)计算:﹣14+(2016﹣π)0﹣(﹣)﹣1+|1﹣|﹣2sin60°.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】11 :计算题;511:实数.【分析】原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,第四项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1+1﹣(﹣2)+﹣1﹣2×=﹣1+1+2+﹣1﹣=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【专题】11 :计算题;16 :压轴题.【分析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.【解答】解:,解不等式①得,x≤2,解不等式②得,x>﹣1,∴不等式组的解集是﹣1<x≤2.用数轴表示如下:【点评】本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.19.(2016•东城区一模)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC 于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;N2:作图—基本作图.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF 可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.【点评】此题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.20.(2016•本溪一模)一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m,再从剩下的两张中任取一张,将其编号记为n.(1)请用树状图或者列表法,表示事件发生的所有可能情况;(2)求关于x的方程x2+mx+n=0有两个不相等实数根的概率.【考点】X6:列表法与树状图法;AA:根的判别式.【专题】13 :作图题;31 :数形结合.【分析】(1)2步实验,第一步是3种情况,第2步是2种情况,据此列举出所有情况即可;(2)找到使△>0的m,n的组数占总情况数的多少即可.【解答】解:(1)依题意画出树状图(或列表)如下(2)当m2﹣4n>0时,关于x的方程x2+mx+n=0有两个不相等实数根,而使得m2﹣4n>0的m,n有2组,即(3,1)和(3,2).则关于x的方程x2+mx+n=0有两个不相等实数根的概率是.∴P(有两个不等实根)=.【点评】考查概率问题;找到关于x的方程x2+mx+n=0有两个不相等实数根的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.21.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.【考点】KF:角平分线的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质;KN:直角三角形的性质.【专题】14 :证明题.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【解答】证明:∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.【点评】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.22.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.【考点】PB:翻折变换(折叠问题).【专题】11 :计算题.【分析】根据矩形性质得AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,然后在Rt△ABE中利用勾股定理可计算出BE.【解答】解:∵四边形ABCD为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,∴∠DAC=∠D′AC,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,在Rt△ABE中,∵AB2+BE2=AE2,∴32+x2=(4﹣x)2,解得x=,即BE的长为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.23.如图,正方形ABCD的边长为2cm,以边BC为直径作半圆O,点E在AB上,且AE=1.5cm,连接DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明情况;(2)求阴影部分的面积.【考点】MD:切线的判定;LE:正方形的性质;MO:扇形面积的计算.【专题】11 :计算题.【分析】(1)过点O作OF⊥DE,垂足为点F,在Rt△ADE中利用勾股定理计算出DE=2.5,再利用面积法求出OF=1,然后根据切线的判定方法可判断DE与半圆O相切;(2)利用阴影部分的面积=梯形BECD的面积﹣半圆的面积求解.【解答】解:(1)DE与半圆O相切.理由如下:过点O作OF⊥DE,垂足为点F,在Rt△ADE中,∵AD=2,AE=1.5,∴DE==2.5,∵S四边形BCDE=S△DOE+S△BOE+S△CDO,∴(0.5+2)×2=×2.5•OF+×1×0.5+×1×2,∴OF=1,∵OF的长等于圆O的半径,OF⊥DE,∴DE与半圆O相切;(2)阴影部分的面积=梯形BECD的面积﹣半圆的面积=×(0.5+2)×2﹣•π•12=(cm2).【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.注意把不规律图形的面积的计算问题化为规则图形面积的和差的计算问题.24.以点P(n,n2+2n+1)(n≥1)为顶点的抛物线y=﹣x2+bx+c与x轴交于点A、B(点A在点B的左边).(1)当n=1时,试求b和c的值;当n>1时,求b与n,c与n之间的关系式.(2)若点P到AB的距离等于线段AB长的10倍,求此抛物线y=﹣x2+bx+c的解析式.(3)设抛物线y=﹣x2+bx+c与y轴交于点D,O为原点,矩形OEFD的顶点E、F分别在x轴和该抛物线上,当矩形OEFD的面积为42时,求点P的坐标.【考点】HF:二次函数综合题.【分析】(1)当n=1时,可求出P的坐标,由此可设抛物线的解析式为y=﹣(x﹣1)2+4,化为一般式左右对照即可求出b和c的值;当n>1时思路雷同;(2)根据抛物线的解析式可求出A和B的坐标,又点P到x轴的距离为n2+2n+1,所以有n2+2n+1=10(2n+2),解方程求出n的值,进而可求出抛物线解析式;(3)根据已知条件可求出OD,DF的长,再根据矩形的面积公式可得:OD•DF=2n(2n+1)=42,求出n的值,即可求出P的坐标.【解答】解:(1)当n=1时,点P坐标为(1,4),则y=﹣(x﹣1)2+4=﹣x2+2x+3=﹣x2+bx+c,解得:b=2,c=3.当n>1时,则y=﹣(x﹣n)2+n2+2n+1=﹣x2+2nx+2n+1=﹣x2+bx+c,所以b=2n,c=2n+1.(2)∵y=﹣(x﹣n)2+n2+2n+1=﹣x2+2nx+2n+1,∴当y=0时,即﹣x2+2nx+2n+1=0.解得x1=﹣1,x2=2n+1.由于点A在点B的左边,∴A(﹣1,0)、B(2n+1,0),即AB=2n+1﹣(﹣1)=2n+2.又∵点P到x轴的距离为n2+2n+1,∴有n2+2n+1=10(2n+2).解得n=19或n=﹣1(不合,舍去),即n=19.故,此时抛物线的解析式为y=﹣x2+38x+39.(3)如图所示,∵c=2n+1,∴D(0,2n+1),即OD=2n+1.又DF∥x轴,且D、F关于直线x=n对称,∴F(2n,2n+1).有DF=2n.从而OD•DF=2n(2n+1)=42,解得n=3或(不合,舍去),即n=3.故点P的坐标为(3,16).【点评】本题着重考查了待定系数法求二次函数解析式、矩形的性质等知识点,综合性强,用到了数形结合的数学思想方法,其中第(3)中求出OD,OF的长解题是解题关键.25.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是BF ,∠AFB=∠AED(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KQ:勾股定理;LE:正方形的性质.【分析】(1)直接根据旋转的性质得到DE=BF,∠AFB=∠AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,根据旋转的性质得∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,而∠PAQ=45°,则∠PAE=45°,再根据全等三角形的判定方法得到△APE≌△APQ,则PE=PQ,于是PE=PB+BE=PB+DQ,即可得到DQ+BP=PQ;(3)根据正方形的性质有∠ABD=∠ADB=45°,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,根据旋转的性质得∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,由于∠MBA+∠KBA=45°+45°=90°,得到△BMK为直角三角形,根据勾股定理得BK2+BM2=MK2,然后利用等相等代换即可得到BM2+DN2=MN2.【解答】解:(1)∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,∵DE=BF,∠AFB=∠AED.故答案为:BF,AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,则∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,∵∠PAQ=45°,∴∠PAE=45°,∴∠PAQ=∠PAE,在△APE和△APQ中∵,∴△APE≌△APQ(SAS),∴PE=PQ,而PE=PB+BE=PB+DQ,∴DQ+BP=PQ;(3)∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,则∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK,得到MN=MK,∵∠MBA+∠KBA=45°+45°=90°,∴△BMK为直角三角形,∴BK2+BM2=MK2,∴BM2+DN2=MN2.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了三角形全等的判定与性质、正方形的性质以及勾股定理.。