乙炔C2H2气体浓度检测探测器
- 格式:pdf
- 大小:158.02 KB
- 文档页数:3
气体报警器气体报警器也称气体泄露检测报警仪器,主要包括可燃和有毒气体两类探测报警器。
当工业环境、日常生活环境(如使用天然气的厨房)中可燃性或有毒气体发生泄露,气体报警器检测到气体浓度达到报警器设置的报警值时,报警器就会发出声、光报警信号,以提醒采取人员疏散、强制排风、关停设备等安全措施。
且气体报警器可联动相关的联动设备如在工厂生产、储运中发生泄露,可以驱动排风、切断电源、喷淋等系统,防止发生爆炸、火灾、中毒事故,从而保障安全生产。
经常用在化工厂,石油,燃气站,钢铁厂等使用或者产生可燃性气体的场所。
1、用途气体报警器即气体泄露检测报警器,是区域安全监视器中的一种预防性报警器。
当工业环境中可燃或有毒气体报警器检测到气体浓度达到爆炸或毒害下限、上限的临界点时,气体报警器就会发出报警信号,以提醒工作人员采取安全措施,并驱动排风、切断、喷淋系统,防止发生爆炸、火灾、中毒事故,从而保障安全生产。
可燃气体报警器,主要用于检测空气中的可燃气体,常见的如氢气(H2)、甲烷(CH4)、乙烷(C2H6)、丙烷(C3H8)、丁烷(C4H10)、乙烯(C2H4)、丙烯(C3H6)、丁烯(C4H8)、乙炔(C2H2)、丙炔(C3H4)、丁炔(C4H6)、磷化氢(PH3)等.有毒气体报警器,用于检测空气中的有毒气体,如硫化氢(H2S)2、术语2.1可燃气体combustible gas指甲类可燃气体或液化烃、甲B、乙A类可燃液体气化后形成的可燃气体。
按《石油化工企业设计防火规范》规定:甲类气体是指可燃气体与空气混合物的爆炸下限小于10%(体积)的气体;液化烃(甲A)是指15℃时的蒸气压力大于0.1MPa的烃类液体及其它类似的液体,例如液化石油气、液化乙烯、液化甲烷、液化环氧乙烷等;甲B液体是指除甲A以外,闪点小于28℃的可燃液体,乙A类液体是指闪点等于或大于28℃至等于45℃的可燃液体。
甲B与乙A类液体也可称为易燃液体。
由于乙A类液体泄漏后挥发为蒸气或呈气态泄漏,该气体在空气中的爆炸下限小于10%(体积)属于甲类气体,可形成爆炸危险区。
变压器油中溶解气体检测一、油中溶解气体检测的意义及原理1.油中溶解气体检测的意义电力变压器是电网的核心设备,其运行可靠性影响着电网的安全稳定。
大多数变压器故障都是由内部局部微小缺陷逐步演变形成的。
变压器构造为结构复杂的全密封箱体,其内部缺陷难以通过外部测量手段监测,但其导致的放电或过热现象,不同程度上均会导致变压器绝缘油及绝缘纸等固体绝缘材料发生一系列化学反应,生成不同类型的故障特征气体,并溶解于变压器油中。
如同诊断人体疾病最常用的“验血”手段,通过对油中溶解特征气体浓度及比例的检测或监测,可及时发现变压器大部分内部隐患和缺陷。
常用的变压器油中溶解故障特征气体主要为氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)七种。
2.油中溶解气体检测方法常用的多组分气体检测方法主要包括气相色谱法、光声光谱法、电化学传感器法、半导体传感器法等。
气相色谱法通过气相色谱检测器测量油中溶解气体的浓度,其具有技术成熟度高、测量灵敏的优势,但存在需要更换载气、色谱柱的问题;光声光谱法属于一种光学气体检测方法,其具有测量周期短、无需载气、维护量少的优势,但存在国产化程度低的问题,且部分气体(如乙炔)检测灵敏度仍有待提升。
电化学传感器法与半导体传感器法检测原理类似,均是通过待测气体改变传感器/半导体本身的特性后产生的电流信号来测量气体浓度,均具有灵敏度高、成本低的优点,但都同样存在气体间交叉干扰的影响,且长期可靠性较差。
目前常用于在线监测的油中溶解气体检测装置主要采用了气相色谱与光声光谱技术。
气相色谱技术成熟度高,主要零部件实现了全国产化,具有价格优势;光声光谱技术具有检测周期短、维护量少的优势,入网率逐年上升,但由于其主要核心部件(光源、麦克风)仍依赖进口,导致其成本较高,价格较贵。
二、油中溶解气体在线监测装置入网检测目前,油中溶解气体在线监测装置在变压器状态监测中具有广泛的应用,但变压器运行环境复杂,如何保持油中溶解气体在线监测装置在运行中的测量准确性(精度)是面临的一大难题。
Verification Regulation of AlarmerDetectors of Combustible Gas本规程经国家质量监督检验检疫总局于2011年6月14日批准,并自2011年12月14日起施行。
归口单位:全国环境化学计量技术委员会主要起草单位:中国计量科学研究院济南市计量检定所山东省计量科学研究院济南市长清计算机应用公司参加起草单位:西安计量技术研究院河南省计量科学研究院安阳市质量技术监督检验测试中心本规程委托全国环境化学计量技术委员会负责解释本规程主要起草入:谌永华(中国计量科学研究院)王利民(济南市计量检定所)郭波(山东省计量科学研究院)岳宗龙(济南市长清计算机应用公司) 参加起草入:刘卓(西安计量技术研究院)孔小平(河南省计量科学研究院)李拥军(安阳市质量技术监督检验测试中心)目录引言 (Ⅱ)1 范围 (1)2 概述 (1)3 计量性能要求 (1)4通用技术要求 (1)4.1 外观及结构 (1)4.2 标志和标识 (1)4.3 通电检查 (1)4.4 报警功能及报警动作值检查 (1)4.5 绝缘电阻 (2)5 计量器具控制 (2)5.1 检定条件 (2)5.2 检定项目 (3)5.3 检定方法 (3)5.4 检定结果的处理 (5)5.5 检定周期 (5)附录A 检定记录格式 (6)附录 B 检定证书/检定结果通知书内页格式 (7)附录 C 常见可燃性气体爆炸限 (10)引言JJG693-2011《可燃气体检测报警器》是依据JJF1002《国家计量检定规程编写规则》、JJFl001《通用计量术语及定义》、JJF1059《测量不确定度评定与表示》的规定,对JJG693-2004《可燃气体检测报警器》和JJG940-1998《催化燃烧氢气检测仪》两规程进行修订的。
修订后的规程代替JJG693-2004《可燃气体检测报警器》和JJG940-1998《催化燃烧氢气检测仪》两规程。
一、实验目的1. 了解乙炔的制备方法及原理。
2. 掌握电石与水反应制备乙炔的实验操作。
3. 熟悉实验过程中气体的收集、检验及纯度判断。
二、实验原理乙炔(C2H2)是一种无色、无臭、易燃的气体,是重要的有机合成原料。
实验室制备乙炔通常采用电石(CaC2)与水反应的方法。
反应方程式如下:CaC2 + 2H2O → Ca(OH)2 + C2H2↑三、实验仪器与试剂1. 仪器:电石瓶、烧杯、试管、铁夹、酒精灯、导管、集气瓶、橡皮塞、试管架、镊子、酒精灯、滴管、玻璃棒等。
2. 试剂:电石、水、硫酸铜溶液、1,1,2,2-四溴乙烷、AgNO3溶液、高锰酸钾溶液。
四、实验步骤1. 将电石放入烧杯中,加入适量的水,观察反应现象。
2. 反应过程中,将产生的乙炔气体通过导管导入集气瓶中。
3. 用镊子夹取少量电石,加入硫酸铜溶液中,观察现象。
4. 将1,1,2,2-四溴乙烷加入AgNO3溶液中,观察现象。
5. 将少量乙炔气体加入高锰酸钾溶液中,观察现象。
五、实验现象与结果1. 电石与水反应时,产生大量气泡,有明显的热量放出,溶液呈碱性。
2. 乙炔气体被收集在集气瓶中,无色、无味、易燃。
3. 电石与硫酸铜溶液反应,溶液颜色变深,有沉淀生成。
4. 1,1,2,2-四溴乙烷与AgNO3溶液不反应,溶液无明显变化。
5. 乙炔气体使高锰酸钾溶液褪色。
六、实验分析1. 电石与水反应生成乙炔气体,反应过程中产生大量热量,溶液呈碱性。
这是因为电石与水反应放出大量热量,使水分子分解,生成氢气和氢氧根离子,溶液呈碱性。
2. 乙炔气体无色、无味、易燃,可被收集在集气瓶中。
3. 电石与硫酸铜溶液反应,生成CuS沉淀,溶液颜色变深。
这是因为硫酸铜溶液中的Cu2+与电石反应生成的S2-结合,生成CuS沉淀。
4. 1,1,2,2-四溴乙烷为非电解质,不能电离出溴离子,与AgNO3溶液不反应。
5. 乙炔气体容易被高锰酸钾氧化,使高锰酸钾溶液褪色。
这是因为乙炔气体中的碳碳三键具有较高的还原性,能够还原高锰酸钾,使其褪色。
一、实验目的1. 熟悉乙炔的制备方法及原理;2. 掌握乙炔的物理性质和化学性质;3. 了解乙炔的氧化、加成、加聚等反应。
二、实验原理乙炔(C2H2)是一种无色、无味的易燃气体,分子中含有碳碳三键,具有较高的化学活性。
本实验采用电石与水反应制备乙炔,通过观察乙炔的物理性质、化学性质和反应现象,分析乙炔的性质。
三、实验仪器与试剂1. 实验仪器:电石、水、硫酸铜溶液、硝酸银溶液、高锰酸钾溶液、试管、酒精灯、火柴、试管夹、镊子、滴管、烧杯、锥形瓶等。
2. 实验试剂:电石、水、硫酸铜溶液、硝酸银溶液、高锰酸钾溶液、盐酸、溴水等。
四、实验步骤1. 乙炔的制备:将电石放入试管中,加入适量的水,观察反应现象。
2. 乙炔的物理性质:观察乙炔气体的颜色、气味等。
3. 乙炔的化学性质:(1)除杂:将乙炔气体通过盛有硫酸铜溶液的试管,观察乙炔气体中杂质的变化。
(2)氧化反应:将乙炔气体通入盛有高锰酸钾溶液的试管中,观察溶液颜色的变化。
(3)加成反应:①与水反应:将乙炔气体通入盛有溴水的试管中,观察溴水颜色的变化。
②与H2反应:将乙炔气体通入盛有盐酸的试管中,观察溶液颜色的变化。
③与HCl反应:将乙炔气体通入盛有硝酸银溶液的试管中,观察溶液颜色的变化。
4. 乙炔的加聚反应:将乙炔气体通入盛有催化剂的试管中,观察溶液颜色的变化。
五、实验结果与分析1. 乙炔的制备:电石与水反应,生成乙炔气体,反应方程式为:CaC2 + 2H2O → C2H2↑ + Ca(OH)2。
2. 乙炔的物理性质:乙炔气体为无色、无味的易燃气体。
3. 乙炔的化学性质:(1)除杂:乙炔气体通过硫酸铜溶液,杂质被去除,溶液颜色由蓝色变为无色。
(2)氧化反应:乙炔气体通入高锰酸钾溶液,溶液颜色由紫色变为无色,说明乙炔具有还原性。
(3)加成反应:①与水反应:乙炔气体通入溴水,溴水颜色由棕色变为无色,说明乙炔与溴水发生加成反应。
②与H2反应:乙炔气体通入盐酸,溶液颜色由无色变为浅绿色,说明乙炔与H2发生加成反应。
乙炔和乙烯气相色谱-回复乙炔和乙烯气相色谱(GC)是一种在化学研究和分析中广泛应用的技术。
本文将逐步介绍乙炔和乙烯气相色谱的原理、仪器设备、操作步骤和应用领域。
一、乙炔和乙烯气相色谱的原理气相色谱是一种基于物质在气相状态下在固定相或液体移动相中的分配行为而进行分离和分析的方法。
乙炔和乙烯在气相色谱中可以通过其分配系数和挥发性来完成分离和定量分析。
乙炔(C2H2)和乙烯(C2H4)分子结构的不同导致它们在气相色谱中具有不同的物理化学性质。
乙炔分子具有较小的分子量和较高的相对挥发度,使其在气相色谱中具有较高的移动速率和较短的保留时间。
而乙烯分子较大,分子量较大且相对挥发度较低,因此在气相色谱中的移动速率较慢,保留时间较长。
二、乙炔和乙烯气相色谱的仪器设备乙炔和乙烯气相色谱通常使用具有以下主要部件的仪器设备:1. 气体供应系统:用于提供高纯度的惰性载气,如氦气或氮气。
该惰性气体不仅将样品蒸发到气相中,还有助于维持色谱柱内部的稳定气氛。
2. 注射口:用于将待分析样品准备好的样品溶液加载到气相色谱中。
注射口可以手动操作或自动控制。
3. 色谱柱:选择适当的色谱柱非常重要,以实现对乙炔和乙烯的分离。
常用的色谱柱包括非极性柱、极性柱和选择性柱。
例如,具有较高相对极性的毛细管柱,如聚醋酸乙烯酯柱,可以实现乙烯和乙炔的分离。
4. 检测器:用于监测通过色谱柱的化合物。
常见的检测器包括火焰离子化检测器(FID)、热导检测器(TCD)和电化学检测器等。
在乙炔和乙烯气相色谱中,常用FID作为主要检测器,因为它能够提供高灵敏度和选择性。
5. 数据处理系统:用于记录和分析检测到的信号,以得到乙炔和乙烯的定量和定性结果。
三、乙炔和乙烯气相色谱的操作步骤1. 样品制备:将待分析的乙炔和乙烯样品溶解在适当的溶剂中,以获得均匀的样品溶液。
样品溶液的浓度应根据分析需要进行合理调整。
2. 仪器准备:检查和确保气体供应系统和仪器设备的正常运行。
变压器油中溶解气体的在线监测系统研究随着电网建设投资逐年递增,输变电设备规模不断扩大,变压器建设和使用愈来愈频繁,变压器油中溶解气体在线监测装置作为较为成熟可靠的变电设备在线监测装置,可对变压器运行状态进行在线实时监控,能够及时发现和诊断其内部故障,随时掌握设备的运行情况。
但是随着运行时间加长,受器件故障、油路老化等因素影响,装置的运行可靠性难以保证,将安装后的装置拆卸下来检测并不现实,也会造成人力物力的浪费。
因此,需要用科学的手段对变压器油中溶解气体在线监测装置进行现场检验。
标签:变压器油;溶解气体;在线监测系统研究引言为了提高变压器油中溶解气体分析技术进行故障诊断的快捷性,文章开发了一套主要监测氢气H2和乙炔C2H2的在线监测系统。
用Φ6管道通过变压器预留口采集绝缘油,再通过油气分离膜分离出气体。
采用电化学传感器SGA-400进行气体数据采集,在现场检测装置上进行阈值判断,同时,通过RS485总线传至上位机,进一步诊断故障类型。
系统装置结构简单,故障诊断及时,分辨率高。
1装置特点变压器油中溶解气体分析技术(DissolvedGasesAnalysis,简称DGA),包括从变压器中取出油样,再从油中取出溶解气体,用气相色谱仪分析该气体的成分和体积分数,判定设备有无内部故障,诊断其故障类型,并判断故障点温度、故障能量等。
该方法能够在无须停电的情况下进行,不受外界电场和磁场因素的影响,已被世界各国公认为监测和诊断充油电力变压器早期故障、预防灾难性事故最合适的方法。
我国实验室DGA技术已经普及,而变压器油中溶解气体在线监测装置作为变电设备在线监测装置中较成熟可靠的设备,弥补了离线色谱法无法随时监控的不足。
采用故障特征气体在线监测手段,可连续监测、分时周期短、能够及时发现潜在故障、确定设备维护周期,对实现状态检修具有决定性作用。
油中溶解气体在线监测装置安装在电气设备本体或附件上,可对变压器油中溶解气体组分进行连续或周期性自动监测的装置,一般由油样采集与油气分离、气体检测、数据采集与控制、通信与辅助等部分组成。
目录目录 (1)引言 (2)社会背景: (2)可燃性气体报警器的国内外现状 (3)1总体设计 (4)1.1 课题及目标 (4)1.2框架设定 (5)1.3可燃气体报警器简介: (5)1.4报警器用途 (5)1.5基本分类 (5)1.6工作原理 (6)2主要元件选择及介绍 (6)2.1 MQ-5传感器设计 (6)2.2比较器A1的设计 (9)LM324芯片简介: (10)2.3延时电路A2的设计 (14)LM358芯片: (14)2.4绿色LED驱动电路的设计 (17)2.5电源电路的设计 (18)2.6二极管IN4148 (18)2.7蜂鸣器介绍 (19)3项目工作原理分析及调试 (20)3.1可燃气体报警器原理图: (20)3.2可燃气体装置的主要工作分析 (20)3.3电路调试 (21)4实训总结 (22)引言社会背景:南京市一可燃气体泄露爆炸事故已造成5人死亡新华网南京7月28日电(记者孔祥鑫、朱旭东、蔡玉高)28日上午10时15分,在南京市栖霞区已停产的原南京第四塑料厂厂区,发生可燃气体管道泄漏爆炸,并引发大火。
据南京市政府14时50分召开的新闻发布会透露,事故已造成5人死亡、28人重伤,另有100多人需要住院治疗。
发布会上还透露,此次爆炸事故造成周边居民住房及商店的部分玻璃破碎,建筑外立面局部受损。
据环保监测部门报告,燃烧物为易燃可爆气体,现场和周边空气符合环境质量要求。
事故发生地位于南京城北幕府路高丽家具港旁。
据现场目击者丁先生说,他家离事故发生地300多米,事故发生时,他感到房屋出现了2-3秒的晃动。
一股强大的冲击波迎面袭来。
起初以为是地震,后来才知是由爆炸引起的。
记者在现场看到,离爆炸地点100米范围内的建筑物毁坏严重:屋顶坍塌、玻璃破碎,有的钢筋水泥都被炸开。
距离爆炸点50米处的公路上,一辆公交车的玻璃也被震碎,多名乘客受伤;1辆集装箱卡车上面的集装箱板也都震凹进去。
事故发生后,江苏省、南京市各相关部门迅速行动,省委书记梁保华、省长罗志军,市委书记朱善璐、市长季建业赶往现场指挥救援。
H 2S 及CO 的近红外波段光声光谱检测技术张晓星1,2,陈振伟1,程宏图1,张引2,唐炬1,肖淞1(1.武汉大学电气与自动化学院,湖北武汉430072;2.湖北工业大学电气与电子工程学院,湖北武汉430068)摘要:SF 6常用于电力设备内部充当绝缘介质,在SF 6绝缘设备内部出现过热或局部放电时,进一步反应后还会出现SO 2、SOF 2、SO 2F 2、H 2S 、CO 等分解产物。
本研究基于光声光谱检测技术对H 2S 、CO 进行定量测量,从理论出发对影响光声信号的因素进行探讨,搭建光声光谱试验平台,根据气体的光声效应对气体进行光声光谱检测。
通过选择合适的气体吸收谱线作为特征谱线进行检测,避免其他组分气体存在潜在的交叉干扰。
根据HITRAN 仿真结果,选定的H 2S 气体特征谱线为6336.6cm -1,CO 气体特征谱线为6380.3cm -1。
结果表明:所测气体CO 、H 2S 的气体浓度与净光声信号幅值之间的线性度非常高,即通过测量气体光声信号值可精确反演计算出气体浓度。
在SF 6作为背景气体情况下,CO 检测下限为9.88×10-6,H 2S 检测下限为1.75×10-6。
关键词:气体近红外吸收;光声光谱;痕量气体检测;SF 6分解组分中图分类号:TM213文献标志码:A文章编号:1009-9239(2021)04-0095-07DOI :10.16790/ki.1009-9239.im.2021.04.016Near Infrared Photoacoustic Spectrum Detection Technology ofH 2S and COZHANG Xiaoxing 1,2,CHEN Zhenwei 1,CHENG Hongtu 1,ZHANG Yin 2,TANG Ju 1,XIAO Song 1(1.School of Electrical Engineering and Automation,Wuhan University,Wuhan 430072,China;2.Schoolof Electrical and Electronic Engineering,Hubei University of Technology,Wuhan 430068,China )Abstract :SF 6is often used in GIE as an insulating medium,it will decompose when overheating or appearing partial discharge inside GIE,the decomposition products,such as SO 2,SOF 2,SO 2F 2,H 2S,and CO will produce after further reaction.In this paper,the components H 2S and CO were quantitatively measured by photoacoustic spectroscopy detection technology,and the factors affecting photoacoustic signal were discussed theoretically.A photoacoustic spectrum experiment platform was built,and the gas was measured quantitatively based on the photoacoustic effect.Appropriate gas absorption lines were chosen as characteristic spectrum line to avoid the potential cross-interference of other gas components.According to the results of HITRAN simulation,the characteristic spectrum line of H 2S was chosen as 6336.6cm -1,and the characteristic spectrum line of CO was chosen as 6380.3cm -1.The results show that the linearity between the gas concentration of CO and H 2S and the amplitude of pure photoacoustic signal is extremely high,which suggests that the gas concentration can be accurately calculated through the measurement of photoacoustic signal value of gas.With the background gas of SF 6,the lower limit of detection for CO is 9.88×10-6,and the lower limit of detection for H 2S is 1.75×10-6.Key words:near infrared absorption of gas;photoacoustic spectrum;trace gas detection;SF 6decomposition com ‐ponents引言六氟化硫(SF 6)由于其优良的电气绝缘强度和良好的灭弧性能而常被用作高压电气设备的绝缘介质。
气体检测报告
气体检测报告
编号:2021001
检测日期:2021年1月1日
检测地点:某工厂
检测仪器:可燃气体检测仪、有毒气体检测仪
检测人员:XX
检测目的:
本次检测旨在了解某工厂厂区内可燃气体和有毒气体的浓度,以便评估厂区内的安全状况,并采取相应的安全措施保障工人的生命财产安全。
检测结果:
1. 可燃气体检测:
- 甲烷(CH4):检测结果为0.5%,未超过安全标准值。
- 乙烷(C2H6):检测结果为0.2%,未超过安全标准值。
- 乙炔(C2H2):检测结果为0.1%,未超过安全标准值。
- 氢气(H2):检测结果为0.3%,未超过安全标准值。
2. 有毒气体检测:
- 一氧化碳(CO):检测结果为10ppm,未超过安全标准值。
- 二氧化碳(CO2):检测结果为800ppm,未超过安全标准值。
- 硫化氢(H2S):检测结果为1ppm,未超过安全标准值。
- 氨气(NH3):检测结果为5ppm,未超过安全标准值。
结论:
根据本次检测结果,某工厂厂区内的可燃气体和有毒气体浓度未超过安全标准值,符合相关的安全要求。
建议工厂继续进行定期的气体检测,以确保工人的安全。
同时,工厂应加强对气体泄漏的监控和管理,以防止潜在的安全风险。
备注:
本次检测数据仅为抽样检测结果,不代表厂区内气体浓度的全面情况。
建议工厂在日常运营中加强对厂区内气体浓度的监测和管理,确保工人的安全。
乙炔C2H2气体浓度检测探测器
乙炔C2H2气体浓度检测探测器适用于各种环境和特殊环境中的乙炔C2H2气体浓度和泄露,在线检测及现场声光报警,对危险现场的作业安全起到了预警作用,此仪器采用进口的电化学传感器和微控制器技术,具有信号稳定,精度高,重复性好等优点,防爆接线方式适用于各种危险场所,并兼容各种控制器,PLC,DCS 等控制系统,可以同时实现现场报警和远程监控,报警功能,4-20mA标准信号输出,继电器开关量输出。
乙炔C2H2气体浓度检测探测器产品特性:
①进口电化学传感器具有良好的抗干扰性能,适用寿命8年。
②采用先进微处理技术,响应速度快,测量精度高,稳定性和重复性好。
③检测现场具有具有现场声光报警功能,气体浓度超标即时报警,是危险场所作业的安全保障。
4现场带背光大屏幕LCD显示,直观显示气体浓度,类型,单位,工作状态等。
5独立气室,更换传感器无须现场标定,传感器关键参数自动识别。
6全量程范围温度数字自动跟踪补偿,保证测量准确性。
乙炔C2H2气体浓度检测探测器技术参数:
检测气体:空气中的乙炔C2H2
检测范围:0~100ppm,0~200ppm,0~1000ppm,0~1000ppm,0~5000ppm,100%LEL可选。
分别率:0.01ppm(0~100ppm);0.1ppm(0~1000ppm);1ppm(0~10000ppm以上);0.1LEL.
工作方式:固定式连续工作,扩散式,管道式,流通时,泵吸式可选。
检测误差:≦1%(F.S)
响应时间:≦10S
输出信号:电流信号输出4-20MA
报警方式:2路无源节点信号输出,报警点可设置。
工作环境:-20℃~50℃(特殊要求:(-40℃~+70℃)
相对湿度:≦90%RH
工作电压:DC12~30V
传感器寿命:3年
防爆形式:探头变送器及传感器均为隔爆型。
防爆等级:Exd II CT6
连接电缆:三芯电缆(单根线径≧1.5mm);建议选用屏蔽电缆。
连接距离:≦1000m.
防护等级:IP65.
外形尺寸:183X143X107mm.
重量:1.5Kg.
乙炔C2H2气体浓度检测探测器的简单介绍:
乙炔C2H2报警器●自动温度补偿,零点,满量程漂移补偿●防高浓度气体冲击的自动保护功能●全软件校准功能,用户也可自行校准,用3个按键实现,操作简单●二线制4-20mA输出
乙炔C2H2气体浓度检测探测器的应用场所
医药科研、制药生产车间、烟草公司、环境监测、学校科研、楼宇建设、消防报警、污水处理、工业气体过程控制石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、、锅炉房、垃圾处理厂、隧道施工、输油管道、加气站、地下燃气管道检修、室内空气质量检测、危险场所安全防护、航空航天、军用设备监测等。