四川省绵阳市三台县2018-2019年中考数学一模试卷(含答案)
- 格式:doc
- 大小:505.50 KB
- 文档页数:27
四川省绵阳市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·安顺模拟) 2018相反数的倒数是()A . 2018B . ﹣2018C . ︱-2018︱D . ﹣2. (2分) (2018九上·青浦期末) 计算的结果是()A . ﹣B .C . ﹣D .3. (2分) (2016七上·工业园期末) 苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站。
将42000用科学记数法表示应为()A . 0.42×105B . 4.2×104C . 44×103D . 440×1024. (2分)(2020·吉安模拟) 空心六棱柱螺母按如图所示位置摆放,则它的左视图正确的图形是()A .B .C .D .5. (2分) (2019七下·武昌期末) 不等式组解集为 -1 ≤x < 1 ,下列在数轴上表示正确的是()A .B .C .D .6. (2分)某班五位同学的身高分别是156,160,158,166,160(单位:厘米),这组数据中,下列说法错误的是()A . 平均数是160B . 众数是160C . 中位数是160D . 极差是1607. (2分) (2020九下·霍林郭勒月考) 中秋节是我国的传统节日,人们素有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风靡省城市场.省城某商场在中秋节来临之际购进、两种汾阳月饼共1500个,已知购进种月饼和种月饼的费用分别为3000元和2000元,且种月饼的单价比种月饼单价多1元.求、两种月饼的单价各是多少?设种月饼单价为元,根据题意,列方程正确的是()A .B .C .D .8. (2分)(2019·天水) 如图,正方形内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A .B .C .D .9. (2分)(2019·河池模拟) 如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为()A . 30°B . 40°C . 50°D . 80°10. (2分)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A . 只能是x=﹣1B . 可能是y轴C . 可能在y轴右侧且在直线x=2的左侧D . 可能在y轴左侧且在直线x=﹣2的右侧二、填空题 (共8题;共10分)11. (2分)(2013·海南) 因式分解:a2﹣b2=________12. (1分) (2018九上·晋江期中) 已知锐角满足,则锐角的度数是________度13. (1分) (2019八上·广丰月考) 若正多边形的一个外角等于36°,那么这个正多边形的边数是________.14. (1分)已知关于x的方程x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是________15. (1分)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于________.(结果保留π)16. (1分) (2016九上·蓬江期末) 如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC 于点D,则OD的长为________.17. (1分)如图,m=________,n=________.18. (2分) (2018七上·松滋期末) 如图所示,用圆圈拼成的图案,图1由一个圆圈组成,图2由5个圆圈组成,图3由13个圆圈组成,依此规律,第8个图案一共由________个圆圈组成,第n个由________个组成.三、解答题 (共10题;共52分)19. (5分) (2017七下·费县期中) 计算:(1)﹣|2﹣ |﹣;(2)解方程(2x﹣1)2=36.20. (5分)(2017·越秀模拟) 先化简、再求值:,其中.21. (5分) (2019七下·唐河期末)(1)如图是一个4×4的正方形网格,每个小正方形的边长均为1.请在网格中以左上角的三角形为基本图形,通过平移、对称或旋转,设计两个精美图案,使其满足:①既是轴对称图形,又能以点为旋转中心旋转而得到;②所作图案用阴影标识,且阴影部分面积为4.(2)如图,的三个顶点和点都在正方形网格的格点上,每个小正方形的边长都为1.①将先向右平移4个单位,再向上平移2个单位得到,请画出;②请画出,使和关于点成中心对称;22. (2分)(2017·赤峰) 王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,(提BC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)23. (2分)(2017·成华模拟) 在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是________,乙成绩的平均数是________;(2)经计算知S甲2=6,S乙2=42.你认为选拔谁参加比赛更合适,说明理由;(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.24. (12分) (2019九下·南关月考) 长春市对全市各类(A型、B型、C型.其它型)校车共848辆进行环保达标普查,普查结果绘制成如下条形统计图:(1)求全市各类环保不达标校车的总数;(2)求全市848辆校车中环保不达标校车的百分比;(3)规定环保不达标校车必须进行维修,费用为:A型500元/辆,B型1000元/辆,C型600元/辆,其它型300元/辆,求全市需要进行维修的环保不达标校车维修费的总和;(4)若每辆校车乘坐40名学生,那么一次性维修全部不达标校车将会影响全市80000名学生乘校车上学的百分比是________25. (15分) (2017八下·扬州期中) 如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C 分别在坐标轴上,点B的坐标为(4,2),直线y=﹣ x+3交AB,BC分别于点M,N,反比例函数y= 的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.26. (2分) (2020九下·萧山月考) 如图,矩形ABCD的对角线交于点O。
BACD 三台2018-2019学度初三上年中学情调研数学试卷及解析九年级数学试卷〔总分值100分,考试时刻90分钟〕【一】选择题〔每题只有一个正确【答案】,请将正确选项代号写在第3页相应位置,每题3分,共30分〕1、下面旳图形中,是轴对称图形但不是中心对称图形旳是2、以下说法正确旳选项是A 、一个点能够确定一条直线B 、平分弦旳直径垂于直弦C 、三个点能够确定一个圆D 、在图形旋转中图形上可能存在不动点3、关于x 旳一元二次方程 x 2─m = 2x 有两个不相等旳实数根,那么m 旳取值范围是 A 、m> -1 B 、m < -2 C 、m ≥0 D 、m <0 4、抛物线旳顶点坐标为P 〔1,3〕,且开口向下,那么函数y 随自变量x x 旳取值范围为A 、x>3B 、x<3C 、x>1D 、x<15、如图,图形旋转一定角度后能与自身重合,那么旋转旳最小角度是 A 、045 B 、090 C 、0180 D 、0360 6、右边有两个边长为4cm 旳正方形,其中一个正方形旳顶点在另一个正方形旳中心上,绕着中心旋转其中一个正方形,那么图中阴影部分旳面积是A 、无法确定B 、8cm 2C 、16cm 2D 、4cm 27、一元二次方程x 〔x-1〕=1-x 旳根是A 、-1B 、0C 、1D 、-1或1 8、假设方程x 2─3x ─ 1 = 0旳两根分别是12x x 、,那么x 12+x 22旳值为A 、3B 、-3C 、11D 、-119、通过两年旳连续治理,三台县都市旳大气环境有了明显改善,其每平方公里旳降尘量从50吨下降到40.5吨,那么平均每年下降旳百分率是A 、10%B 、15%C 、20%D 、25% 10、如图,在Rt ∆ABC 中,,4,3,900===∠BC AC ACB 以C 为圆心,CA 为半径旳圆与AB 交于D ,那么AD 旳长为 A 、59B 、524 C 、518 D 、25 【二】填空题〔请将正确【答案】写在第3页相应旳短横线上,每题2分,共16分〕 11、假设一元二次方程b ax =2〔ab >0〕旳两个根分别是m+1与2m-4,那么ab旳值是。
中考数学一模考试一试题温馨提示: 1.请考生将各题答案均涂或写在答题卡上,答在试卷上无效.2.数学试卷共三道大题,总分120 分,考试时间120 分钟.一、填空题(每题3分,满分 30分)1.十九大报告中指出,过去五年,我国国内生产总值从54 万亿元增加到80 万亿元,对世界经济增长贡献率超过 30%,此中“ 80 万亿元”用科学记数法表示为元.2.函数yx中,自变量 x 的取值范围是.x 1 第 3题图3.如图,已知 AC=BD,要使△ ABC≌△ DCB,则只要增添一个适合的条件是. (填一个即可)4.在一个口袋中有 4 个完好同样的小球,把它们分别标号为1, 2, 3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是. B>a D5.若不等式组x 的解集为x >1,则 a 的取值范围是. F x < 12 4xPA CE 6.商场一件商品按标价的九折销售仍赢利20%,已知商品的标价为 28 元,则商品第7题图的进价是元.7.如图:在△ ABC和△ DCE是全等的三角形,∠ ACB= 90°, AC= 6, BC= 8,点 F 是 ED的中点,点P 是线段 AB上动点,则线段PF 最小时的长度.8.圆锥的底面半径为 1,它的侧面睁开图的圆心角为180°,则这个圆锥的侧面积为.9.矩形纸片 ABCD, AB=9, BC=6,在矩形边上有一点P,且 DP=3.将矩形纸片折叠,使点B与点 P重合,折痕所在直线交矩形两边于点E, F,则 EF 长为.10.如图,在平面直角坐标系中,边长为 1 的正方形OA1B1C的对角线 A1C 和 OB1交于点 M1;以 M1A1为对角线作第二个正方形 A2A1B2 M1,对角线 A1 M1和 A2B2交于点 M2;以M2A1为对角线作第三个正方形 A3A1B3 M2,对角线 A1 M2和 A3B3交于点 M3;,挨次类推,这样作的第n 个正方形对角线交点的坐标为 M n _______________.y CB 1M 1M 2B 2M 3B 3 OA 2 A 3 A 1 x第 13 题图第10题图二、选择题(每题 3 分,满分 30 分,请将各题答案均涂或写在答题卡上.)11. 以下计算中 , 正确的选项是( )A . 2a 23b 36a 524a 2C . a5 2a 7D . x21B . 2ax 212. 以下图形中既是轴对称图形又是中心对称图形的是( )ABC D13. 由一些大小同样的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是( ) A . 3B. 4C .5D . 614.一组数据 1,2, a 的均匀数为 2,另一组数据 -l , a ,1,2, b 的独一众数为 -l ,则数据 -1 , a ,b , 1, 2的中位数为( )A . -1B. 1C .2D . 315. 一水池有甲、乙、丙三个水管,此中甲、丙两管为进水管,乙管为出水管.单位时间内,甲管 水流量最大,丙管水流量最小.先开甲、乙两管,一段时间后,封闭乙管开丙管,又经过一段时间,封闭甲管开乙管.则能正确反应水池蓄水量 y( 立方米 ) 随时间 t( 小时 ) 变化的图象是( )16.己知对于 x 的分式方程a 2=1 的解是非正数,则 a 的取值范围是()x 1A.a≤- l B .a≤- 2 C.a≤1且a≠-2 D .a≤- 1 且 a≠- 217.如图, AC是⊙ O的切线,切点为C, BC是⊙ O的直径, AB交⊙ O于点 D,连结 OD,若∠A=50°,则∠ COD的度数为()A. 40° B . 50° C .60° D . 80°1 8.如图,已知直线 AC 与反比率函数图象交于点A,与x轴、y轴分别交于点 C、E, E 恰为线段AC的中点,S△EOC=1,则反比率函数的关系式为()4B . y 4. y2D2A.y Cx . yx x x 19.在国家倡议的“阳光体育”活动中,老师给小明30 元钱,让他买三样体育用品;大绳,小绳,毽子.此中大绳至多买两条,大绳每条10 元,小绳每条 3 元,毽子每个 1 元.在把钱都用尽的条件下,买法共有()A.6 种 B .7 种 C . 8 种 D .9 种20.如图,在矩形ABCD中, AD= 2 AB,∠BAD的均分线交B C于点 E,DH⊥AE 于点 H,连结 BH并延长交 CD于点F,连结 DE交 BF于点 O,以下结论:①∠ AED=∠CED;② OE=OD;③ BH=HF;④ BC﹣CF=2HE;⑤A B=HF,此中正确的有()A.2个B.3个C.4个D.5个yAEB O Cx第 17题图第18题图第20题图三、解答题(满分60 分)21. (此题满分 5 分)先化简,再求代数式a 1 a 2的值,此中 a 6 tan 60 a 2 a 1 a2 2a 122.(此题满分 6 分)每个小方格都是边长为 1 个单位长度的小正方形,△OAB在平面直角坐标系中的地点以下图.( 1)将△ OAB先向右平移5 个单位,再向上平移 3 个单位,得到△ O1A1B1,请画出△ O1A1B1并直接写出点B1的坐标;(2)将△ OAB绕原点 O顺时针旋转 90o,获得△ OA2B2,请画出△OA2B2,并求出点 A 旋转到 A2时线段 OA扫过的面积.2yBAOx23.(此题满分 6 分)如图:抛物线与x 轴交于 A(- 1, 0)、 B( 3, 0)两点,与y 轴交于点C,y OB=OC,连结 BC,抛物线的极点为D.连结 B、 D 两点.(1)求抛物线的分析式.(2)求∠ CBD的正弦值.24.(此题满分 7 分)某校为了认识本校九年级学生的视力状况(视力状况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样检查,将检查结果进行整理后,绘制了以下不完好的统计图,此中不近视与重度近视人数的和是中度近视人数的 2 倍.请你依据以上信息解答以下问题:(1)求本次检查的学生人数;(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是度;(3)若该校九年级学生有 1050 人,请你预计该校九年级近视(包含轻度近视,中度近视,重度近视)的学生大概有多少人.A O B xCD25. (此题满分8 分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h ),两车之间的距离为 y ( km ),y ∕ km D(A)图中的折线表示 y 与 x 之间的函数关系,依据图像回答以下问题:( 1)请在图中的( )内填上正确的值,并写出两车的速度和.C( 2)求线段 BC 所表示的 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围.150B( 3)请直接写出两车之间的距离不超出15km 的时间范围.O10 412 x ∕ h326. (此题满分 8 分)已知四边形 ABCD 为正方形, E 是 BC 的中点,连结 AE ,过点 A 作∠ AFD ,使∠ AFD=2∠EAB , AF 交 CD于点 F ,如图①,易证:AF=CD+CF .( 1)如图②,当四边形 ABCD 为矩形时,其余条件不变,线段 AF ,CD ,CF 之间有如何的数目关系?请写出你的猜想,并赐予证明;( 2)如图③,当四边形 ABCD 为平行四边形时,其余条件不变,线段 AF ,CD ,CF 之间又有如何的数目关系?请直接写出你的猜想.CFDCFDECFDEEB A BABA图①图②图③27. (此题满分 10 分)某工厂计划生产 A 、 B 两种产品共 60 件,需购置甲、乙两种资料.生产一件A 产品需甲种资料 4 千克,乙种资料 1 千克;生产一件B 产品需甲、乙两各种资料各 3 千克.经测算,购置甲、乙两种材料各 1 千克共需资本60 元;购置甲种资料 2 千克和乙种资料 3 千克共需资本 155 元.( 1)甲、乙两种资料每千克分别是多少元?( 2)现工厂用于购置甲、乙两种资料的资本不超出9900 元,且生产 B 产品许多于 38 件,问符合生产条件的生产方案有哪几种?( 3)在( 2)的条件下,若生产一件 A 产品需加工费 40 元,若生产一件 B 产品需加工费50 元,应选择那种生产方案,使生产这60 件产品的成本最低?(成本=资料费 +加工费)28.(此题满分 10 分)如图,在平面直角坐标系中,已知矩形 AOBC的极点 C 的坐标是( 2, 4),动点 P 从点 A 出发,沿线段 AO 向终点 O运动,同时动点 Q从点 B 出发,沿线段 BC向终点 C运动.点 P、Q的运动速度均为 1 个单位,运动时间为 t 秒.过点 P 作 PE⊥AO交 AB于点 E.(1)求直线 AB 的分析式;(2)设△ PEQ的面积为 S,求 S 与 t 时间的函数关系,并指出自变量 t 的取值范围;(3)在动点 P、 Q运动的过程中,点 H 是矩形 AOBC内(包含边界)一点,且以B、 Q、E、 H 为极点的四边形是菱形,直接写出t 值和与其对应的点H的坐标.(答案写在此卷上无效!)数学参照答案一、填空题(每题 3 分,满分30 分)1、8× 1013; 2 、 x≥0 且 x≠ 1; 3 、AB=DC等(答案不独一); 4 、2;35、a≤ 1; 6 、21;7 、6.2 ;8 、 2π;9、6 2或2 10 ;(答对1个给2分,多答或含有错误答案不得分)10 、 2n n 1,1n2 2二、选择题(每题 3 分,满分30 分)11.D 12.B 13.B 14.B 15.D 16.D 17.D 18.B 19.D 20.B三、解答题(满分60 分)21.(本小题满分5 分)解:原式 = 1 , ------------------------------------------------------- (3 分)a 2∵ a 6 tan 60 2 =6 3 - 2 ------------------------------------------ (1分)∴原式 = 3. ------------------------------------------------------ (1 分)1822.(本小题满分 6 分)y解:( 1)以下图(2 分) A B---------------------------------B 的坐标为:( 9, 7)---------------------- (1 分)1( 2)以下图(1 分)O---------------------------------∵ AO= 12 32 10 , ------------------- (1 分)O A2 x 2∴ S = 90 10 5(1分)B2 360. ----------------223.(本小题满分 6 分)解:( 1)设 y= a(x+1)(x-3) 把 C(0 ,-3 )代入得 a=1------- (1 分)因此抛物线的分析式为: y=x2-2x-3-------------- ( 1 分)( 2)因此抛物线极点坐标为D( 1,- 4)过点 D 分别作x轴、y轴的垂线,垂足分别为E、 F.B(3 , 0) 、 C(0 , -3) 在 Rt △ BOC中, OB=3, OC=3,∴ BC2 18 .C(0,-3)、D(1,-4)在Rt△ CDF中,DF=1,CF=OF-OC=4-3=1,∴ CD2 2 .D( 1,- 4)、 E(1 ,0) 、 B(3 , 0) 在 Rt△ BDE中, DE=4, BE=OB-OE=3-1=2,∴ BD2 20 .∴ BC2 CD 2 BD 2,故△BCD为直角三角形. ------------------------ (3 分)因此 sin ∠ CBD= 10-------------------------------------------------- (1 分)1024.(本小题满分 7 分)解:(1)本次检查的学生数是: 14÷ 28%=50(人);-------------------------------- (2 分)( 2)补全条形图:不近视的人数20;重度近视人数 1 2;圆心角度数 144°; ------ (3 分)( 3)1050×14124=630(人).----------------------------------------- (1 分)50答:该校九年级近视的学生大概630 人.--------------------------------- (1 分)25.(本小题满分 8 分)解:(1)( 900);两车的速度和为225km∕h. ------------------------------------- (2 分)(2)900÷ 12=75km∕ h;225-75=150km ∕ h;900 ÷ 150=6h;225×( 6-4 ) =450km;∴ C(6,450)--------------------------------------------------------(2分)设 y BC=kx+b,由 B( 4, 0); C( 6, 450)得:y =225x-900 ( 4≤ x≤6)----------------------------------------------- (2 分)BC(3)59x 61 . -------------------------------------------------------- (2 分)151526.(本小题满分8 分)解:( 1)图②结论: AF=CD+CF.-------------------------------------------------G C F D(2分)证明:作DC, AE 的延伸线交于点G.∵四边形 ABCD是矩形, E∴∠ G=∠ EAB.∵∠ AFD=2∠EAB=2∠G=∠ FAG+∠ G,∴∠ G=∠ FAG.∴A F=FG=CF+CG.由 E 是 BC中点,可证△ CGE≌△ BAE,∴C G=AB=CD.∴AF=CF+CD.--------------------------------------------------- (4 分)( 2)图③结论: AF=CD+CF.------------------------------------------------ (2 分)27.(本小题满分10 分)解:( 1)设甲种资料每千克x 元,乙种资料每千克y 元,x+y=60 x=252x+3y=155 解得 y=35 --------------------------------------- (2 分)答:甲种资料每千克25 元,乙种资料每千克 35 元 ------------------------ (1 分)( 2)设生产 B 产品 m件,则生产 A 产品( 60-m)件,(25× 4+35× 1)(60-m) +( 35× 3+25× 3) m≤ 9900m≥ 38 ------------------------------------------------------------ (2 分)解得 38≤ m≤ 40------------------------------------------------------ (1 分)∵ m为整数,∴ m的值为 38、 39、 40 共三种方案。
初中毕业考试暨高中阶段学校招生考试模拟试卷1(满分:140分考试时间:120分钟)第I卷选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.如图是正方体的平面展开图,每个面上标有一个汉字,与“我”字相对的面上的字是()第2题A.魅B.力C.绵D.阳3.下列运算正确的是()A.a2a3=a6B.(a2)3=a6C.a6÷a2=a3D.a6﹣a2=a44.2014年12月10日从省教厅获悉,今年起我省编制并实施全面改善贫困地区义务教育薄弱学校基本办学条件计划《实施方案》,目前,已安排下达2014年“全面改薄”中央专项资金19.4亿元.用科学记数法表示19.4亿为()A.19.4×108B.1.94×108C.1.94×109D.19.4×1095.如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD 的度数是()第5题A.80°B.90°C.100°D.110°6.如图,假设可以随意在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.第6题第7题7.如图,直线l1∥l2,∠1=∠2=35°,∠P=90°,则∠3等于()A.50°B.55°C.60°D.65°8.某种商品进价为每件a元,销售商先以高出进价50%定价,后又以7折的价格销售,这时一件该商品的在买卖过程中盈亏情况为()A.赢利0.05a元B.赢利0.5a元C.亏损0.05a元D.亏损0.3a元9.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF= ()A.B.C.D.第9题第10题10.如图,Rt△ABE中,∠B=90°,延长BE到C,使EC=AB,分别过点C,E作BC,AE 的垂线两线相交于点D,连接AD.若AB=3,DC=4,则AD的长是()A.5 B.7C.5D.无法确定11.如图所示的三角形数垒,a、b是某行的前两个数,当a=7时,b= ()A.20 B.21 C.22 D.23第11题第12题12.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.B.2C.D.1第II卷非选择题(共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.因式分解:4a2b﹣b3=.14.化简:÷(+)=.15.如图所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为米.(保留根号)第15题第16题16.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O 重合.若BC=3,则折痕CE的长为.17.如图,有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去边长为的正方形.第17题第18题18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是.三、解答题(本大题共7小题,共86分,解答应写出必要的文字说明,证明过程或演算步骤)19.(16分)(1)计算:﹣(﹣1)2015×()﹣2﹣|1﹣|;(2)解不等式组.20.(11分)我们知道,每年的4月23日是”世界读书日”,某校为了鼓励学生去发现读书的乐趣,享受阅读的过程,随机调查了部分学生,就”你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表.请根据统计表提供的信息解答下列问题:各类频数频率卡通画 a 0.56时文杂志32 b武侠小说30 0.15文学名著 c d(1)这次随机调查了名学生,统计表中d=.(2)假如以此统计表绘制出扇形统计图,则武侠小说对应的圆心角度数是多少?21.(11分)九年级(1)班团支书计划组织部分同学在元旦进行鲜花销售活动,在元旦当天,预计销售康乃馨和百合花,经过市场调研,他们知道康乃馨的批发价是每枝1.5元,百合花每枝4元,而市场销售价为康乃馨每枝2元,百合花每枝5元.(1)如果用300元钱进货,售出全部鲜花之后所得利润为80元,求两种鲜花各进多少枝?(2)团支部将这些鲜花平均分给甲乙两个小组去销售,由于甲组每小时售出的花是乙组的两倍,因此比乙组提前1小时售完,求甲组每小时售出多少枝花.22.(11分)已知一次函数y=2x﹣k与反比例函数y=的图象相交于A、B,其中A的横坐标为3.(1)求A、B两点的坐标;(2)若直线AB上有一点P,使得△APO∽△AOB,求P坐标.第22题23.(11分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径.第23题24.(12分)已知y=ax2+bx﹣3过(2,﹣3),与x轴交于A(﹣1,0),B(x2,0),交y 轴于C.(1)求抛物线的解析式;(2)过点C作CD∥x轴,交抛物线于D,是否存直线y=kx+1将四边形ACDB分成面积相等的两部分,若存在,请求k的值;若不存在,请说明理由;(3)若直线y=m(﹣3<m<0)与线段AC、BC分别交于D、E两点,则在x轴上是否存在点P,使得△DPE为等腰直角三角形,若存在,请求P点的坐标;若不存在,请说明理由.第24题25.(14分)如图1,在正方形ABCD中,E是BC的中点,点F在CD上,∠BAE=∠FAE.(1)指出线段AF、BC、FC之间有什么关系,证明你的结论.(2)设AB=12,求线段FC的长.(3)如图2,过AE中点G的直线分别交AB、CD于P、Q;求的值.第25题绵阳市2018年初中毕业考试暨高中阶段学校招生考试模拟试卷1(参考答案)一、1.B解析:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选B.2.D解析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以与“我”字相对的面上的字是阳.故选D.3.B解析:A、a2a3=a5,故本选项错误;B、(a2)3=a6,正确;C、a6÷a2=a4,故本选项错误;D、a6﹣a2不是同类项,不能合并,故本选项错误;故选B.4.C解析:19.4亿=19 4000 0000=1.94×109.故选C.5.C解析:∵∠A+∠B+∠ADC+∠DCB=360°,∠A+∠B=200°,∴∠ADC+∠DCB=160°.又∵∠ADC、∠DCB的平分线相交于点O,∴∠ODC=∠ADC,∠OCD=,∴∠ODC+∠OCD=80°,∴∠COD=180°﹣(∠ODC+∠OCD)=100°.故选C.6.C解析:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=.故选C.7.B解析:如图,∵l1∥l2,∴∠1+∠2+∠3+∠4=180°,∵∠1=∠2=35°,∴∠3+∠4=110°,∵∠P=90°,∠2=35°,∴∠4=90°﹣35°=55°,∴∠3=110°﹣55°=55°.故选B.8. A 解析:总售价=a(1+50%)×0.7=1.05a,∵1.05a﹣a=0.05a,∴赢利0.05a元,故选A.9.B解析:∵四边形ABCD是正方形,∴AB=AD=1,AC⊥BD,∠ABC=∠BCD=90°,∠CBO=∠BCO=45°,OB=BD,∴BD==,∠BOC=90°,∴OB=,∵PE⊥BD于点E,PF⊥AC于点F,∴∠OEP=∠OFP=90°=∠EOF,△BEP是等腰直角三角形,∴四边形OEPF是矩形,PE=BE,∴PF=OE,∴PE+PF=BE+OE=OB=.故选B.10.C解析:如图,∵∠C=∠B=90°,∠AED=90°,∴∠1=∠2.在△ABE与△ECD中,,∴△ABE≌△ECD(AAS),∴AE=ED,BE=CD=4,∴在直角△ABE中,由勾股定理,得AE2=AB2+BE2=32+42=52.则AE=5.在等腰直角△AED中,AD=AE=5.故选C.11.C解析:根据分析,可得第n行的第一个数是n,所以当a=7时,a、b是第7行的前两个数;因为4﹣2=2,7﹣4=3,11﹣7=4,所以第6行的第2个数是:11+5=16,所以第7行的第2个数是b=16+6=22.故选C.12.A解析:连结AE,OD、OE.∵AB是直径,∴∠AEB=90°,又∵∠BED=120°,∴∠AED=30°,∴∠AOD=2∠AED=60°.∵OA=OD∴△AOD是等边三角形,∴∠OAD=60°,∵点E为BC的中点,∠AEB=90°,∴AB=AC,∴△ABC是等边三角形,边长是4.△EDC 是等边三角形,边长是2.∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.∴阴影部分的面积=S△EDC=×22=.故选A.二.13.b(2a﹣b)(2a+b)解析:4a2b﹣b3=b(4a2﹣b2)=b(2a﹣b)(2a+b).14.x解析:原式=÷(+)=÷=•=x.15.10解析:如图,作AD⊥CD于D点.∵∠B=30°,∠ACD=60°,∠ACD=∠B+∠CAB,∴∠CAB=30°.∴BC=AC=10m,在Rt△ACD中,CD=AC•cos60°=10×0.5=5m,∴BD=15.∴在Rt△ABD中,AB=BD÷cos30°=15÷=10m.16.2解析:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在Rt△AOE中,设OE=x,则AE=3﹣x,AE2=AO2+OE2,即(3﹣x)2=32+x2,解得x=,∴AE=EC=3﹣=2.17.5cm 解析:设切去的正方形的边长为xcm,则盒底的长为(100﹣2x)cm,宽为(50﹣2x)cm,根据题意,得(100﹣2x)(50﹣2x)=3600,展开,得x2﹣75x+350=0,解得x1=5,x2=70(不合题意,舍去),则铁皮各角应切去边长为5cm的正方形.18.①④解析:①当x=1时图象在x轴下方时,y<0,即a+b+c<0,①正确;②当x=﹣1时图象在x轴上方,y>0,即a﹣b+c>0,②错误;③由抛物线的开口向上知a>0,∵﹣<1,∴2a+b>0,③错误;④∵图象开口向上,∴a>0,∵对称轴在y轴右侧∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,④正确.三.19.解:(1)原式=3﹣(﹣1)×4﹣(﹣1)=3+4﹣+1=8﹣;(2)∵解不等式①,得x<﹣3,解不等式②,得x≥﹣5,∴不等式组的解集为﹣5≤x<﹣3.20.解:(1)调查的总人数是:30÷0.15=200,则b=32÷200=0.16,d=1﹣0.56﹣0.16﹣0.15=0.13.故答案是200,0.13;(2)360°×0.15=54°.则武侠小说对应的圆心角度数是54°.21.解:(1)设康乃馨进货x枝,百合进货y枝,根据题意,得,解得.答:康乃馨进货40枝,百合进货60枝.(2)设乙组每小时售出a枝花,根据题意,得﹣=1解得a=25,经检验:a=25是分式方程的解,2×25=50.答:甲组每小时售出50枝花.22.解:(1)∵一次函数y=2x﹣k与反比例函数y=的图象相交于A和B两点,其中有一个交点A的横坐标为3,∴,解得k=4.∴一次函数的解析式为:y=2x﹣4;反比例函数的关系式为y=.(2)解,得,,∴A(3,2),B(﹣1,﹣6);∴OA2=32+22=13,AB==4,∵△APO∽△AOB,∴=,∴OA2=AP•AB,即13=AP•4,解得AP=,∵点P在直线y=2x﹣4上,∴设P(x,2x﹣4),∴AP=,解得x=3±,∴P点坐标为(3+,2+2)或(3﹣,6﹣2).23.(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM,∴∠BCD=∠BAM,∴∠BAM=BAD,在△ANE与△ADE中,∵,∴△ANE≌△ADE,∴AD=AN;(2)解:∵AB=4,AE⊥CD,∴AE=2,又∵ON=1,∴设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连结AO,则AO=OD=2x﹣1,∵△AOE是直角三角形,AE=2,OE=x﹣1,AO=2x﹣1,∴(2)2+(x﹣1)2=(2x﹣1)2,解得x=2,∴r=2x﹣1=3.24.解:(1)∵y=ax2+bx﹣3过(2,﹣3),A(﹣1,0),∴,解得a=1,b=﹣2,∴抛物线的解析式为:y=x2﹣2x﹣3.(2)如图1,设直线y=kx+1与x轴交于点E,于CD交于点F,A(﹣1,0),B(3,0),E(),F();S四边形ACFE=(CF+AE)•OC=(1);S四边形EFDB=(DF+BE)•OC=(5);即(1)=(5),k=.(3)存在点P.直线y=m与y轴交点为F(0,m),①当DE为腰时,分别过D、E作DP1⊥x 轴于P1,作EP2⊥x轴于P2;如图2,则△DP1E和△DEP2均为等腰直角三角形,又DP1=DE=EP2=OF=﹣m,又AB=x B﹣x A=3+1=4,又△ECD∽△BCA,即,即m=;P1(,0),P2(,0);②当DE为底时,过P3作GP3⊥DE于G,如图3,又DG=GE=GP3=OF=﹣m,由△ECD∽△BCA,,即m=;P3(,0)综上所述,P1(,0),P2(,0),P3(,0).2019年四川绵阳市中考数学模拟试题(一)含答案图1 图2 图325.解:(1)AF=BC+FC ,证明如下:如图1,过E 作EM ⊥AF 交AF 于点M ,∵∠BAE=∠FAE ,∴BE=ME ,在Rt △ABE 和Rt △AME 中,, ∴Rt △ABE ≌Rt △AME (HL ),∴AM=AB=BC ,ME=BE=EC ,在Rt △MFE 和Rt △CFE 中,,∴Rt △MFE ≌Rt △CFE (HL ),∴MF=FC ,∴AF=AM+MF=BC+FC ;(2)设FC=x ,由(1)可知MF=x ,AM=AD=AB=12,则DF=12﹣x ,AF=12+x ,在Rt △AFD 中,由勾股定理,得AD 2+DF 2=AF 2,即122+(12﹣x )2=(12+x )2,解得x=3, 即FC=3;(3)如图2,过G 作RS ∥BC ,交AB 于点R ,交CD 于点S ,∵G 为AE 中点,∴R 为AB 中点,∴RG=BE=BC ,GS=RS ﹣RG=BC ﹣RG=BC ﹣BC=BC ,∵AB ∥CD ,∴===.。
cba1032142342019年春九年级第一次诊断检测数学试题第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分)1.﹣8的相反数是A.﹣8 B.18C.8 D.18-2.下列图形是中心对称图形但不是轴对称图形的是A.等边三角形B.正六边形 C. 正五边形 D. 平行四边形3.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜F AST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m,则F AST的反射面积总面积约为A.327.1410m⨯B.427.1410m⨯C.522.510m⨯D.622.510m⨯4.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是A.||4a>B.0c b->C.0ac>D.0a c+>5.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是A.40°B.50°C.70°D.80°6.如图所示的几何体的主视图是A.B. C. D.7.正方形ABCD中,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一个点,则点落在阴影部分的概率为A.22-πB.42-πC.82-πD.162-π8. 如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)9.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是A. (2014,0)B. (2015,-1)C. (2015,1)D. (2016,0)10.如图,AB 是一垂直于水平面的建筑物。
绵阳三台2018-2019学度初三高年级数学试卷解析分析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列方程为一元二次方程的是()A.x+=1 B.ax2+bx+c=0 C.x(x﹣1)=x D.x+2.一元二次方程x2=x的解为()A.x=1 B.x=0 C.x1=1,x2=2 D.x1=0,x2=13.抛物线y=ax2+4ax﹣5的对称轴为()A.x=﹣2a B.x=4 C.x=2a D.x=﹣24.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.线段 B.等边三角形C.平行四边形D.正五边形5.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°6.如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°7.设同一个圆的内接正六边形、正八边形、正十二边形的边心距分别为r6,r8,r12,则r6,r8,r12的大小关系为()A.r6>r8>r12B.r6<r8<r12C.r8>r6>r12D.不能确定8.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定2点A(x1,y1)、B(x2,y2)在函数的图象上,则当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是()A.y1≥y2B.y1>y2C.y1<y2D.y1≤y210.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A. B.4.75 C.5 D.4.811.如图,点A、B的坐标分别为(1,2),(3,),现将线段AB绕点B顺时针旋转180°得线段A1B,则A1的坐标为()A.(1,﹣5)B.(5,﹣2)C.(5,﹣1)D.(﹣1,5)12.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2二、填空题:本大题共6个小题,每小题3分,共18分.13.已知x=﹣1是方程x2+mx﹣5=0的一个根,则m=,方程的另一根为.14.如图,在扇形AOB中,∠AOB=90°,弧AB的长为2π,则扇形AOB的面积为.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.16.已知某产品的成本两年降低了75%,则平均每年降低.17.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.18.对于抛物线y=ax2+bx+c(a≠0),有下列说法:①当b=a+c时,则抛物线y=ax2+bx+c一定经过一个定点(﹣1,0);②若△=b2﹣4ac>0,则抛物线y=cx2+bx+a与x轴必有两个不同的交点;③若b=2a+3c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;④若a>0,b>a+c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;其中正确的有.三、解答题(本大题共7小题,共86分,解答时应写出文字说明,证明过程或演算步骤)19.计算:(1)用公式法解方程:x2+3x﹣2=0(2)已知a2+a=0,请求出代数式()的值.20.如图,已知抛物线y=﹣ax2+2ax+3a(a≠0)与x轴交于A、B两点,与y轴交于点C.(1)请直接写出A、B两点的坐标.(2)当a=,设直线AC与抛物线的对称轴交于点P,请求出△ABP的面积.21.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程总有两个不相等的实数根.(2)设方程的两根为x1,x2(x1<x2),则当0≤p时,请直接写出x1和x2的取值范围.22.在Rt△ABC中,∠ACB=90°,现将Rt△ABC绕点C逆时针旋转90°,得到Rt△DEC(如图①)(1)请判断ED与AB的位置关系,并说明理由.(2)如图②,将Rt△DEC沿CB方向向右平移,且使点D恰好落在AB边上,记平移后的三角形为Rt△DEF,连接AE、DC,求证:∠ACD=∠AED.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?24.如图,已知☉O的直径AB=8,过A、B两点作☉O的切线AD、BC.(1)当AD=2,BC=8时,连接OC、OD、CD.①求△COD的面积.②试判断直线CD与☉O的位置关系,并说明理由.(2)若直线CD与☉O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.25.如图,抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,且交y轴于点C,对称轴与抛物线相交于点P、与直线BC相交于点M.(1)求该抛物线的解析式.(2)在抛物线上是否存在一点N,使得|MN﹣ON|的值最大?若存在,请求出点N的坐标;若不存在,请说明理由.(3)连接PB,请探究:在抛物线上是否存在一点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.2015-2016学年四川省绵阳市三台县九年级(上)调研数学试卷(12月份)参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列方程为一元二次方程的是()A.x+=1 B.ax2+bx+c=0 C.x(x﹣1)=x D.x+【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是分式方程的解,故A错误;B、a=0时,是一元一次方程,故B错误;C、是一元二次方程,故C正确;D、是无理方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.一元二次方程x2=x的解为()A.x=1 B.x=0 C.x1=1,x2=2 D.x1=0,x2=1【考点】解一元二次方程-因式分解法.【分析】首先把x移项,再把方程的左面分解因式,即可得到答案.【解答】解:x2=x,移项得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故选D.【点评】此题主要考查了因式分解法解一元二次方程,关键是把方程的右面变为0.3.抛物线y=ax2+4ax﹣5的对称轴为()A.x=﹣2a B.x=4 C.x=2a D.x=﹣2【考点】二次函数的性质.【专题】探究型.【分析】根据抛物线的解析式可以求得对称轴的值,从而可以解答本题.【解答】解:∵抛物线y=ax2+4ax﹣5,∴对称轴为:x=.故选D.【点评】本题考查二次函数的性质,解题的关键是知道求对称轴的公式.4.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.线段 B.等边三角形C.平行四边形D.正五边形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形及中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°【考点】圆周角定理.【分析】连接OC,然后根据等边对等角可得:∠OCB=∠OBC=40°,然后根据三角形内角和定理可得∠BOC=100°,然后根据周角的定义可求:∠1=260°,然后根据圆周角定理即可求出∠A的度数.【解答】解:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选:D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用,解题的关键是:熟记在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°【考点】旋转的性质.【专题】几何图形问题.【分析】因为四边形ABCD为正方形,所以∠COD=∠DOA=90°,OC=OD=OA,则△COD绕点O 逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,据此可得答案.【解答】解:∵四边形ABCD为正方形,∴∠COD=∠DOA=90°,OC=OD=OA,∴△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,故选:C.【点评】本题考查了旋转的性质,旋转要找出旋转中心、旋转方向、旋转角.7.设同一个圆的内接正六边形、正八边形、正十二边形的边心距分别为r6,r8,r12,则r6,r8,r12的大小关系为()A.r6>r8>r12B.r6<r8<r12C.r8>r6>r12D.不能确定【考点】正多边形和圆.【分析】圆的内接正多边形,边数越多,多边形就和圆越接近,则边心距就越接近圆的半径.【解答】解:根据同一个圆的内接正多边形的特点得:r6<r8<r12;故选:B.【点评】本题考查了正多边形和圆;熟记正多边形的边数越多,就越接近外接圆,边心距越大是解决问题的关键.8.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定【考点】根的判别式;一次函数图象与系数的关系.【分析】先根据函数y=kx+b的图象可得;k<0,再根据一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,即可得出答案.【解答】解:根据函数y=kx+b的图象可得;k<0,b<0,则一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,则一元二次方程x2+x+k﹣1=0根的存在情况是有两个不相等的实数根,故选:C.【点评】此题考查了一元二次方程根的判别式,用到的知识点是一次函数图象的性质,关键是根据函数图象判断出△的符号.2点A(x1,y1)、B(x2,y2)在函数的图象上,则当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是()A.y1≥y2B.y1>y2C.y1<y2D.y1≤y2【考点】二次函数图象上点的坐标特征;解二元一次方程组;待定系数法求二次函数解析式.【专题】计算题;压轴题.【分析】根据题意知图象过(0,5)(1,2)(2,1),代入得到方程组,求出方程组的解即可得到抛物线的解析式,化成顶点式得到抛物线的对称轴,根据对称性得到A的对称点,利用增减性即可得出答案.【解答】解:根据题意知图象过(0,5)(1,2)(2,1),代入得:且,解得:a=1,b=﹣4,c=5,∴抛物线的解析式是y=x2﹣4x+5=(x﹣2)2+1,∴抛物线的对称轴是直线x=2,∵0<x1<1,2<x2<3,0<x1<1关于对称轴的对称点在3和4之间,当x>2时,y随x的增大而增大,∴y1>y2,故选B.【点评】本题主要考查对二次函数图象上点的坐标特征,解二元一次方程组,用待定系数法求二次函数的解析式等知识点的理解和掌握,能根据二次函数的对称性判断两点的纵坐标的大小是解此题的关键.10.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A. B.4.75 C.5 D.4.8【考点】切线的性质;勾股定理的逆定理;圆周角定理.【专题】压轴题.【分析】设EF的中点为O,圆O与AB的切点为D,连接OD,连接CO,CD,则有OD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形OC+OD=EF,由三角形的三边关系知,CO+OD>CD;只有当点O在CD上时,OC+OD=EF有最小值为CD的长,即当点O在直角三角形ABC的斜边AB 的高上CD时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,∵∠ACB=90°,∴EF是直径,设EF的中点为O,圆O与AB的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF为直径,OC+OD=EF,∴CO+OD>CD,∵当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值∴由三角形面积公式得:CD=BC•AC÷AB=4.8.故选D.【点评】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.11.如图,点A、B的坐标分别为(1,2),(3,),现将线段AB绕点B顺时针旋转180°得线段A1B,则A1的坐标为()A.(1,﹣5)B.(5,﹣2)C.(5,﹣1)D.(﹣1,5)【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】设A1的坐标为(m,n),根据旋转的性质得BA=BA1,∠ABA1=180°,则可判断点B为AA1的中点,根据线段中点坐标公式得到3=,=,解得a=5,b=﹣1,然后解方程求出a、b即可得到A1的坐标.【解答】解:设A1的坐标为(m,n),∵线段AB绕点B顺时针旋转180°得线段A1B,∴BA=BA1,∠ABA1=180°,∴点B为AA1的中点,∴3=,=,解得a=5,b=﹣1,∴A1的坐标为(5,﹣1).故选C.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.利用线段中点坐标公式是解决本题的关键.12.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2【考点】正多边形和圆.【专题】压轴题.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF 中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.【点评】此题主要考查了正多边形与圆的关系,要熟练掌握,解答此题的关键是要明确正多边形的有关概念:①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.二、填空题:本大题共6个小题,每小题3分,共18分.13.已知x=﹣1是方程x2+mx﹣5=0的一个根,则m=﹣4,方程的另一根为x=5.【考点】一元二次方程的解.【专题】计算题;压轴题.【分析】把x=﹣1代入原方程,即可求m,再把m的值代入,可得关于x的一元二次方程,利用因式分解法求解方程,可得x1=5,x2=﹣1,从而可求答案.【解答】解:把x=﹣1代入方程,得(﹣1)2﹣m﹣5=0,∴m=1﹣5=﹣4,∴原方程为x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,解得x1=5,x2=﹣1,即另一根为x=5.故答案是﹣4;x=5.【点评】本题考查了一元二次方程的解,解题的关键是理解方程的根的概念以及使用因式分解法解方程.14.如图,在扇形AOB中,∠AOB=90°,弧AB的长为2π,则扇形AOB的面积为4π.【考点】扇形面积的计算;弧长的计算.【分析】首先运用弧长公式求出扇形的半径,运用扇形的面积公式直接计算,即可解决问题.【解答】解:∵∠AOB=90°,弧AB的长为2π,∴=2π,解得:r=4,∴扇形的面积为=4π.故答案为:4π.【点评】此题主要考查了扇形的面积公式、弧长公式等知识点及其应用问题;应牢固掌握扇形的面积公式、弧长公式,这是灵活运用、解题的基础和关键.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1.【考点】二次函数的图象.【专题】压轴题.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【点评】此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象.16.已知某产品的成本两年降低了75%,则平均每年降低50%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每年降低x,根据经过两年使成本降低75%,可列方程求解.【解答】解:设平均每年降低x,(1﹣x)2=1﹣75%解得x=0.5=50%或x=1.5(舍去).故平均每年降低50%.故答案是:50%.【点评】本题考查一元二次方程的一共有.需要学生具备理解题意的能力,关键设出降低的百分率,然后根据现在的成本,可列方程求解.17.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是+1.【考点】旋转的性质;全等三角形的判定与性质;角平分线的性质;等边三角形的判定与性质;等腰直角三角形.【专题】压轴题.【分析】如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM•sin60°=,最终得到答案BM=BO+OM=1+.【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+,故答案为:1+.【点评】本题考查了图形的变换﹣旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.18.对于抛物线y=ax2+bx+c(a≠0),有下列说法:①当b=a+c时,则抛物线y=ax2+bx+c一定经过一个定点(﹣1,0);②若△=b2﹣4ac>0,则抛物线y=cx2+bx+a与x轴必有两个不同的交点;③若b=2a+3c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;④若a>0,b>a+c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;其中正确的有①③④.【考点】抛物线与x轴的交点;二次函数的性质.【分析】利用二次函数的性质以及抛物线与x轴的交点坐标逐一分析得出答案即可.【解答】解:①抛物线y=ax2+bx+c一定经过一个定点(﹣1,0),则0=a﹣b+c,即b=a+c,此选项成立成立;②方程ax2+bx+c=0有两个不等的实数根,则△=b2﹣4ac>0,当c=0时,cx2+bx+a=0不成立,即抛物线y=cx2+bx+a与x轴必有两个不同的交点不成立;③当b=2a+3c,则b2﹣4ac=(2a+3b)2﹣4ac=4a2+8ac+9b2=4(a+c)2+5c2,而a≠0,于是b2﹣4ac>0,则方程必有两个不相等的实数根;④当a>0,b>a+c,则b2﹣4ac<(a+c)2﹣4ac=(a﹣c)2>0,则抛物线y=ax2+bx+c与x轴必有两个不同的交点,结论成立.正确的结论是①③④.故答案为:①③④.【点评】此题考查抛物线与x轴的交点坐标,二次函数的性质,掌握二次函数与一元二次方程的关系,一元二次方程根与系数的关系及二次函数的性质是解决问题的关键.三、解答题(本大题共7小题,共86分,解答时应写出文字说明,证明过程或演算步骤)19.计算:(1)用公式法解方程:x2+3x﹣2=0(2)已知a2+a=0,请求出代数式()的值.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】(1)首先找出公式中的a,b,c的值,再代入求根公式求解即可.(2)首先把括号内的分式进行通分,进行加法运算,然后把除法转化成乘法,进行乘法运算,然后把已知的式子求出a的值,代入化简以后的式子即可求解.【解答】解:(1)a=1,b=3,c=﹣2,△=b2﹣4ac=9+8=17,∴x===,则:x1=,x2=(2).解:原式=[+]÷=•=;由a2+a=0,解得:a=0或﹣1,当a=0时,原分式无意义,当a=﹣1时,原式==﹣.【点评】本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.由考查了公式法解一元二次方程.20.如图,已知抛物线y=﹣ax2+2ax+3a(a≠0)与x轴交于A、B两点,与y轴交于点C.(1)请直接写出A、B两点的坐标.(2)当a=,设直线AC与抛物线的对称轴交于点P,请求出△ABP的面积.【考点】抛物线与x轴的交点.【专题】计算题.【分析】(1)利用抛物线与x轴的交点问题,通过解方程﹣ax2+2ax+3a=0即可得到A(3,0),B(﹣1,0);(2)当a=时,y=﹣x2+2x+3,先确定C点坐标,再利用待定系数法求出直线AC的解析式为y=﹣x+3,接着确定P点坐标,然后根据三角形面积公式求解.【解答】解:(1)令y=0,﹣ax2+2ax+3a=0,整理得x2﹣2x﹣3=0,解得x1=3,x2=﹣1,所以A(3,0),B(﹣1,0);(2)当a=时,y=﹣x2+2x+3,当x=0时,y=3,则C(0,3),设直线AC的解析式为y=kx+b,把A(3,0),C(0,3)代入得,解得,所以直线AC的解析式为y=﹣x+3,而抛物线的对称轴为直线x=1,当x=1时,y=﹣x+3=2,则P(1,2),所以△APB的面积=×(3+1)×2=4.【点评】本题考查了抛物线与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.21.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程总有两个不相等的实数根.(2)设方程的两根为x1,x2(x1<x2),则当0≤p时,请直接写出x1和x2的取值范围.【考点】根的判别式;根与系数的关系.【专题】计算题;一次方程(组)及应用.【分析】(1)方程整理为一般形式,表示出根的判别式,根据根的判别式的值为正数,即可得证;(2)根据p的范围,表示出两根的取值范围即可.【解答】(1)证明:方程可变形为x2﹣5x+6﹣p2=0,∵△=25﹣4(6﹣p2)=4p2+1>0,∴方程总有两个不相等的实数根;(2)解:设方程的两根为x1,x2(x1<x2),则当0≤p时,x1和x2的取值范围分别为0<x1≤2,3≤x2<5.【点评】此题考查了根的判别式,以及根与系数的关系,熟练掌握运算法则是解本题的关键.22.在Rt△ABC中,∠ACB=90°,现将Rt△ABC绕点C逆时针旋转90°,得到Rt△DEC(如图①)(1)请判断ED与AB的位置关系,并说明理由.(2)如图②,将Rt△DEC沿CB方向向右平移,且使点D恰好落在AB边上,记平移后的三角形为Rt△DEF,连接AE、DC,求证:∠ACD=∠AED.【考点】旋转的性质;平移的性质.【专题】证明题.【分析】(1)延长ED交AB于F,如图①,根据旋转的性质得∠A=∠E,再利用∠A+∠B=90°得到∠E+∠B=90°,则根据三角形内角和定理易得∠EFB=90°,于是利用垂直的定义可判断ED⊥AB;(2)如图②,先利用平移的性质和(1)中的结论得到DE⊥AB,即∠ADE=90°,则利用圆周角定理的推论得到点C和点D在以AE为直径的圆上,然后根据圆周角定理即可得到结论.【解答】(1)解:ED⊥AB.理由如下:延长ED交AB于F,如图①,∵Rt△ABC绕点C逆时针旋转90°,得到Rt△DEC,∴∠A=∠E,∵∠A+∠B=90°∴∠E+∠B=90°∴∠EFB=90°∴ED⊥AB;(2)证明:如图②,∵将Rt△DEC沿CB方向向右平移,且使点D恰好落在AB边上,∴DE⊥AB,∴∠ADE=90°,∵∠ACE=90°,∴点C和点D在以AE为直径的圆上,∴∠ACD=∠AED.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决(2)的关键是确定点C和点D在以AE为直径的圆上,从而利用圆周角定理求解.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【考点】二次函数的应用.【专题】应用题.【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,∴8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则y=﹣x2+30x(0<x<40);(2)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.【点评】此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.24.如图,已知☉O的直径AB=8,过A、B两点作☉O的切线AD、BC.(1)当AD=2,BC=8时,连接OC、OD、CD.①求△COD的面积.②试判断直线CD与☉O的位置关系,并说明理由.(2)若直线CD与☉O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.【考点】圆的综合题.【分析】(1)①利用已知结合梯形面积以及三角形面积求法得出答案;②过点O作OF⊥CD于F,得出OF的长,再利用切线的判定方法得出答案;(2)利用勾股定理得出y与x之间的关系,再利用一元二次方程根的判别式得出S的最值.【解答】解:(1)①由题意可得:∵S梯形ABCD=(AD+BC)•AB=40,S△AOD=AD•AO=4,S△BOC=BC•BO=16,∴S△COD=40﹣4﹣16=20;②直线CD与☉O相切,理由如下:过点D作DE⊥BC于E,则四边形ABED是矩形∴DE=AB=8,BE=AD=2∴CE=6在Rt△CDE中,CD==10,过点O作OF⊥CD于F,则S△COD=CD•OF=20,解得:OF=4,即OF=AB,故直线CD与☉O相切;(2)设BC=y,则CD=x+y,CE=|y﹣x|,在Rt△DCE中,DC2﹣CE2=DE2,即(x+y)2﹣(y﹣x)2=64,则y=(x>0),∴S=(AD+BC)•AB=(x+)×8=4x+(x>0),故4x2﹣Sx+64=0(x>0),∵该方程是关于x的一元二次方程,且此方程一定有解,∴△=S2﹣1024≥0,根据二次函数解得:S≥32或S≤﹣32(负值舍去),∴S≥32,∴S有最小值,最小值为32.【点评】此题主要考查了圆的综合以及一元二次方程根的判别式和切线的判定、勾股定理等知识,正确掌握切线的判定方法作出辅助线是解题关键.25.如图,抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,且交y轴于点C,对称轴与抛物线相交于点P、与直线BC相交于点M.(1)求该抛物线的解析式.(2)在抛物线上是否存在一点N,使得|MN﹣ON|的值最大?若存在,请求出点N的坐标;若不存在,请说明理由.(3)连接PB,请探究:在抛物线上是否存在一点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据三角形两边之和大于第三边,可得N在直线OM上,根据解方程组,可得答案;(3)根据平行线间的距离相等,可得过P点平行BC的直线,根据解方程组,可得Q点坐标,再根据BC向下平移BC与l1相距的单位,可得l2,根据解方程组,可得答案.【解答】解:(1)将A、B两点代入解析式,得,解得.故抛物线的解析式为y=﹣x2+2x+3(2)存在点N使得|MN﹣ON|的值最大.过程如下:如图1:作直线OM交抛物线于两点,则两交点即为N点,y=﹣x2+2x+3的对称轴为x=1.设BC的解析式为y=kx+b,将B(3,0),C(0,3)代入函数解析式,得,解得,BC的解析式为y=﹣x+3,当x=1时,y=2,即M(1,2).设直线OM的解析式为y=kx,将M(1,2)代入函数解析式,得k=2.直线OM的解析式为y=2x.联立抛物线与直线OM的解析式,可得解得:,∴存在点N,其坐标为N1(,2),N2(﹣,﹣2)(3)如图2:,由题意可得:P(1,4),直线BC的解析式为y=﹣x+3∵S△QMB=S△PMB,∴点Q在过点P且平行于BC的直线l1上,设其交点为Q1;或在BC的下方且平行于BC的直线l2上,设其交点为Q2,Q3,∴设l1的解析式为y=﹣x+b把点P的坐标代入可得:b=5∴设l1的解析式为y=﹣x+5联立得解得:(不符合题意,舍),,∴Q1(2,3).根据对称性可求得直线l2的解析式为y=﹣x+1联立得解得,∴Q2(,),Q3(,),综上所述,满足条件的点Q共有3个,其坐标分别为Q1(2,3),Q2(,),Q3(,).【点评】本题考查了二次函数综合题,利用待定系数求函数解析式;利用同一条直线上两线段的差最大得出N在直线OM上是解题关键;利用平行线间的距离相等得出Q在过P点平行于BC的直线上是解题关键,注意BC下方距的距离是BC与l1相距的单位l2上存在符合条件的点,以防遗漏.。
2019年四川省绵阳市三台县中考数学一诊试卷12个小题,每小题 3分,共36分•在每小题给出的四个选项中,只有一项是符合题目要求的•) 1•-8的相反数是( A.- 82.下列图形中,是中心对称图形但不是轴对称的图形是4.实数a , b , c 在数轴上的对应点的位置如图所示,则正确的结论是-4 3 -2 -1 012 36.如图所示的几何体的主视图是(、选择题(本大题共C.等边三角形 B . 正方形平行四边形3.被誉为“中国天眼” 的世界上最大的单口径球面射电望远镜 FAST 勺反射面总面积相当于 35个标准足球场的总面积. 已知每个标准足球场的面积为 7140m 2,则 FAST 勺反射面总面积约为(A. 7.14 x 103m iB. 7.14 x 104m iC. 2.5 x 105m iD. 2.5 x 106m fA. | a | >4B. c - b > 0C. ac > 0D. a +c > 05.如图,AB 是O O 的弦,OCL AB 交O O 于点 C,连接OA OB BC 若/ABC= 20°,则/ AOB 的度B. 50 °C. 70°D. 80°A.C. 数是(7•正方形 ABCD 勺边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向 正方形ABC □内投一粒米,则米粒落在阴影部分的概率为(曲线,点P 从原点Q 出发,沿这条曲线向右运动,速度为每秒-个单位长度,则第 2015秒时,9.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆 0、Q 、O ,…组成一条平滑的C.D.H-2 16&如图,将线段 AB 绕点P 按顺时针方向旋转 90 °,得到线段 A B ,其中点A 、B 的对应点分别是D.( 5, - 1)(3,— 3)点P的坐标是()A.( 2014, 0)B.( 2015,- 1)C.( 2015, 1)D.( 2016, 0)10•如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C再经过一段坡度(或坡比)为i= 1 : 0.75、坡长为10米的斜坡CD到达点D然后再沿水平方向向右行走40米到达点E( A, B, C, D, E均在同一平面内)•在E处测得建筑物顶端A的仰角为24° ,则建筑物AB的高度约为(参考数据:sin24 °~ 0.41 , cos24 °~ 0.91 , tan24 °A. 2B. 3C. 二D. - +112.已知抛物线y= ax2+bx+c (b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2= 0无实数根;③a- b+c>0;④»■二的最小值为3.A. 21.7 米B. 22.4 米C. 27.4 米D. 28.8 米11.如图,△ ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且EX EC若厶ABC的边长为4, AE= 2,则BD的长为( )=0.45 )( )b-a其中,正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个二•填空题(本大题共 6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上) 13 .因式分解:2x 3 - 8x =.15•从绵阳园艺山到涪城区有三条不同的线路(三条线路分别用间这三条线路上的公交车从园艺山到涪城区的用时情况,在每条线路上随机选取了 100个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时20W t w 3030V t w 4040 V t w 5050V t w 60合计公交车用时的频数线路A 25 15 30 30 100B 18 32 10 40 100 C3193723100“用时不超过50分钟”的可能性最大.2 216 .若x o 是方程ax +2x +c = 0 (a z 0)的一个根,设 M= 1 - ac , N=( ax o +1),贝V M 与N 的大小关 系为M _________ N (填“〉”或“V”或“=”).17.如图,Rt △ ABC / B = 90°,/ C = 30°, O 为 AC 上一点,OA= 2,以 O 为圆心,以OA 为半径的圆与 CB 相切于点E,与AB 相交于点F ,连接OEOF 则图中阴影部分的面积是 ___________18.如图,点 E , F , G 分别在菱形 ABC [的边 AB BC, AD 上,2AE= BE, 2CF = BF, AG =£AD 已知△ EFG 的面积等于1,则菱形ABCD 勺面积等于 _______ .A B, C 表示).为了解早高峰期,则/ 2的度数为三•解答题(本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤)何(16分)(门计算: / ;」:+ T H ,』匸「(2)先化简,再求值:亠一二,其中.:-■-j_x x+y x20.(11分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有 ____ 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.21.(11分)已知反比例函数的图象经过三个点A (- 4,- 3), B (2m y1), c( 6m y2),其中m> 0.(1)当y1 - y2= 4时,求m的值;(2)如图,过点B C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD勺面积是8,请写出点P坐标(不需要写解答过程).y A8V学生阅读酷厲情况扇形统计图D□男生学生阅读课外书人数情况奚形统计图22. (11分)如图,AB是O O的直径,过O O外一点P作O O的两条切线PC, PD切点分别为C, D,连接OP CD(1)求证:OPL CD(2)连接AD BC 若/ DAB= 50°,/ CBA= 70°, OA 2,求OP的长.23.( 11分)某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.24.(12 分)在Rt△ ABC中,/ ACB= 90°, BC= 30, AB= 50.点P是AB边上任意一点,直线PE丄AB与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM= EN(1)如图1,当点E与点C重合时,求CM勺长;(2)如图2,当点E在边AC上时,点E不与点A C重合,设AP= x, BNh y,求y关于x的函数关系式,并写出函数的定义域;(3)若厶AM0A ENB(A AME的顶点A M E分别与△ ENB勺顶点E、N B对应),求AP的长.-二!x+ 7与x轴交于点A, B (点A在点B的左边),与y轴交3于点C,点D是该抛物线的顶点.(1)如图1,连接CD求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF丄x轴于点F, PF与线段AC交于点E;将线段QB沿x轴左右平移,线段QB的对应线段是Q B,当H.EC的值最大时,求四边形POBC周长的最小值,并求出对应的点Q的坐标;(3)如图3,点H是线段AB的中点,连接CH将厶OBC沿直线CH翻折至△ QRC的位置,再将△ QBC绕点B2旋转一周,在旋转过程中,点Q2, C的对应点分别是点Q, C ,直线Q3C分别与直线AC x轴交于点M N.那么,在△ QBC的整个旋转过程中,是否存在恰当的位置,使△ AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段QM的长;若不存在,请说明理由.2019 年四川省绵阳市三台县中考数学一诊试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:-8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,是轴对称的图形,故本选项错误;B是中心对称图形,也是轴对称的图形,故本选项错误;C是中心对称图形,也是轴对称的图形,故本选项错误;D是中心对称图形但不是轴对称的图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.3.【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a x I0n,其中i w|a| v 10, n为整数.确定n的值是易错点,由于249900~250000有6位,所以可以确定n= 6 - 1 = 5.【解答】解:根据题意得:7140 X 35= 249900〜2.5 x 105( m i)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.【分析】本题由图可知, a、b、c 绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:4v a v- 3 /• | a| v 4/. A不正确;又■/ a v 0 c>0「. ac v 0A C不正确;又■/ a v - 3 c v 3 A a+c v 0A D不正确;又T c>0 b v 0 A c - b>0A B正确;故选:B.点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.5.【分析】根据圆周角定理得出/ A0&40°,进而利用垂径定理得出/AOB= 80°即可.【解答】解:•••/ ABC= 20°,•••/ A0&40°,•/ AB 是OO 的弦,OCL AB•••/ AOC=Z BOC= 40°, •••/ AOB= 80°,故选:D.【点评】此题考查圆周角定理,关键是根据圆周角定理得出/ AOG 40°.6. 【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正 方形, 故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图. 【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.【解答】解:如图,连接 PA PB OP,IF • 1TT 1 贝V S 半圆 O = ----- = —— , Sx ABP = — X 2 X 1 = 1 ,2 * w由题意得:图中阴影部分的面积= 4 ( S 半圆O- S ^ABP )=4 (〒-1 )= 2n - 4, •米粒落在阴影部分的概率为【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.7. 8. 【分析】画图可得结论.故选:A.【解答】解:画图如下:【点评】本题考查了旋转的性质,熟练掌握顺时针或逆时针旋转是解决问题的关键. 9.【分析】根据图象可得移动 4次图象完成一个循环,从而可得出点A 2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:—…[ •••点P 从原点0出发,沿这条曲线向右运动,速度为每秒 •••点P 1秒走二个半圆,当点P 从原点0出发,沿这条曲线向右运动,运动时间为 当点P 从原点0出发,沿这条曲线向右运动,运动时间为 当点P 从原点0出发,沿这条曲线向右运动,运动时间为 当点P 从原点0出发,沿这条曲线向右运动,运动时间为 当点P 从原点0出发,沿这条曲线向右运动,运动时间为 当点P 从原点0出发,沿这条曲线向右运动,运动时间为•/ 2015 - 4 = 503 (3)• F 2015 的坐标是(2015 , - 1), 故选:B.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决 问题.10.【分析】 作BMLED 交ED 的延长线于 M CNLDMI 于 N.首先解直角三角形 Rt △ CDN 求出CN7T——个单位长度,21秒时,点P 的坐标为(1, 1),2秒时,点P 的坐标为(2, 0),3秒时,点P 的坐标为(3, - 1),4秒时,点P 的坐标为(4, 0), 5秒时,点P 的坐标为(5, 1), 6秒时,点P 的坐标为(6, 0),故选:D.DN再根据tan24'霁构建方程即可解决问题;【解答】解:作BM L ED交ED的延长线于M CN L DM于N.二CD= 10,2 2•••( 3k) + (4k) = 100,k= 2,• CN= 8, DN= 6,•••四边形BMN是矩形,• BM= CN= 8, BC= MN= 20, EM= MNDt+DE= 66,• 0.45• AB= 21.7 (米),故选:A.【点评】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.【分析】延长BC至F点,使得CF= BD证得△ EBD^A EFC后即可证得/ B=Z F,然后证得AC //EF,利用平行线分线段成比例定理证得CF= EA后即可求得BD的长.【解答】解:延长BC至F点,使得CF= BD在Rt △ CDN中,CN10. 75设CN= 4k,DN= 3k,在Rt △ AEM中, tan24AnE•/ ED= EC•/ EDC=Z ECD•/ EDB=Z ECF 在厶EBD^D^ EFC中f DB=CF•ZBDE=ZFCEDE=CE•••△ EBD^ EFC( SAS ,•••△ ABC是等边三角形,•••/ B=Z ACB•••/ ACB=Z F,•AC// EF,•翌=些•/ BA= BC•AE= CF= 2 ,•BD= AE= CF= 2故选:A.【点评】本题考查了等腰三角形及等边三角形的性质,解题的关键是正确的作出辅助线.12.【分析】从抛物线与x轴最多一个交点及b>a>0,可以推断抛物线最小值最小为0 ,对称轴在2y轴左侧,并得到b - 4ac w 0,从而得到①②为正确;由x =- 1及x=- 2时y都大于或等于零可以得到③④正确.【解答】解:••• b>a>0b2a所以①正确;•••抛物线与x轴最多有一个交点,• b2- 4ac< 0 ,•关于x 的方程ax2+bx+c+2= 0 中,△= b2- 4a (c+2)= b2- 4ac- 8a v 0 ,所以②正确;•/ a> 0及抛物线与x轴最多有一个交点,• x取任何值时,泸0•••当x =- 1 时,a—b+c>0;所以③正确;当x = —2 时,4a —2b+c > 0a+b+c>3b - 3aa+b+c>3 (b —a)b-a所以④正确.故选:D.【点评】本题考查了二次函数的解析式与图象的关系,解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了b2—4ac的二.填空题(本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上)13.【分析】先提公因式2x,分解成2x (x2—4),而x2—4可利用平方差公式分解.【解答】解:2x3—8x= 2x (x2—4)= 2x (x+2)( x —2).故答案为:2x (x+2)( x—2).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.14.【分析】根据平行线性质求出/ 3=7 1 = 50°,代入/ 2+Z 3 = 180°即可求出/ 2.【解答】解:••T1 //丨2,•-Z 1 = 7 3,•••/ 1 = 56°,•7 3 = 56°,•••7 2+7 3 = 180 ° ,【点评】本题考查了平行线的性质和邻补角的定义,注意:两直线平行,同位角相等.15.【分析】根据给出的数据先分别计算出用时不超过50分钟的可能性,再进行比较即可得出答案.【解答】解:T A线路公交车用时不超过50分钟的可能性为" =0.7 ,100B线路公交车用时不超过50分钟的可能性为= 0.6 ,100C线路公交车用时不超过50分钟的可能性为• T = 0.77 ,100••• C线路上公交车用时不超过50分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.16.【分析】把x o代入方程ax2+2x+c= 0得ax°2+2x o=- c,作差法比较可得.【解答】解:T X。
2019年四川省绵阳市三台县中考数学一模试卷一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算中,正确的是()A.B.(a2)3=a6C.3a•2a=6a D.3﹣2=﹣62.H7N9时一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣7米B.1.2×10﹣8米C.12×10﹣8米D.12×10﹣9米3.如图,几何体的三视图对应的正三棱柱是()A.B.C.D.4.关于x的不等式组的解集为x>1,则a的取值范围是()A.a>1 B.a<1 C.a≥1 D.a≤15.下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线相等且互相平分D.矩形的对角线互相垂直且平分6.已知A(x1,y1),B(x2,y2)是反比例函数y=﹣图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1<y2B.y1=y2 C.y1>y2D.大小不确定7.“关于x的函数y=(1﹣m)x2+2x+1的图象与x轴至少有一个交点”是真命题,则m的值不可以是()A.m=1 B.m=0 C.m=﹣1 D.m=28.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)9.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数 C.方差 D.中位数10.如图,已知AD是等腰△ABC底边BC上的高,sinB=,点E在AC上,且AE:EC=2:3,则tan∠ADE=()A.B.C.D.11.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.12.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF 沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.1二、填空题:请将每小题的正确答案填写在答卷相应的题号内(每小题3分,共18分)13.若等式x2+px+q=(x+1)(x﹣3)成立,则p+q= .14.如图,四边形ABCD中,AB∥CD,AD=CD,E、F分别是AB、BC的中点,若∠1=30°,则∠DAC= .15.已知x=,y=,则x2+y2﹣xy的值是.16.平面直角坐标系xOy中有四点A(﹣2,0),B(﹣1,0),C(0,1),D(0,2)在A、B、C、D中取两点与点O为顶点作三角形,所作三角形是等腰直角三角形的概率是.17.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于.18.等腰△ABC中,当顶角A的大小确定时,它的对边BC与邻边(腰AB或AC)的比值确定,记为f(A),易得f(60°)=1.若α是等腰三角形的顶角,则f(α)的取值范围是.三、解答题(本题共8小题,每小题8分,共16分)19.计算:(﹣1)2019+3(tan60°)﹣1﹣|1﹣|+(3.14﹣π)0.20.解方程:﹣x=.21.“校园安全”受到全社会的广泛关注,绵阳市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生3000人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.22.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的函数表达式;(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面积.23.如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠EC B=60°,AB=6,求图中阴影部分的面积.24.某家电销售商场电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13200元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.25.如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF 中点M,EF的中点N,连接MD、MN.(1)尝试探究:结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;(2)猜想论证:证明你的结论.(3)拓展:如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,(1)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.26.如图,抛物线y=﹣x2+bx+c(a≠0)与x轴、y轴分别交于点A(3,0)、B(0,3)两点.(1)试求抛物线的解析式和直线AB的解析式;(2)动点E从O点沿OA方向以1个单位/秒的速度向终点A匀速运动,同时动点F沿AB 方向以个单位/秒的速度向终点B匀速运动,E、F任意一点到达终点时另一个点停止运动,连接EF,设运动时间为t,当t为何值时△AEF为直角三角形?(3)抛物线位于第一象限的图象上是否存在一点P,使△PAB面积最大?如果存在,请求出点P的坐标;如果不存在,请说明理由.2019年四川省绵阳市三台县中考数学一模试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算中,正确的是()A.B.(a2)3=a6C.3a•2a=6a D.3﹣2=﹣6【考点】47:幂的乘方与积的乘方;22:算术平方根;49:单项式乘单项式;6F:负整数指数幂.【分析】由算术平方根的意义得出A不正确;由幂的乘方法则得出B正确;由单项式的乘法法则得出C不正确;由负整数指数幂的意义得出D不正确;即可得出结论.【解答】解:∵=3≠±3,∴A不正确;∵(a2)3=a6,∴B正确;∵3a•2a=6a2≠6a,∴C不正确;∵3﹣2=≠﹣6,∴D不正确.故选:B.2.H7N9时一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A.1.2×10﹣7米B.1.2×10﹣8米C.12×10﹣8米D.12×10﹣9米【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 012=1.2×10﹣7,故选:A.3.如图,几何体的三视图对应的正三棱柱是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】根据其三个视图确定正三棱柱的位置即可.【解答】解:观察主视图得:正对着三棱柱有一个面,根据俯视图发现其背面有一条棱,故选A.4.关于x的不等式组的解集为x>1,则a的取值范围是()A.a>1 B.a<1 C.a≥1 D.a≤1【考点】C3:不等式的解集.【分析】解两个不等式后,根据其解集得出关于a的不等式,解答即可.【解答】解:因为不等式组的解集为x>1,所以可得a≤1,故选D5.下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线相等且互相平分D.矩形的对角线互相垂直且平分【考点】LD:矩形的判定与性质.【分析】由矩形的判定与性质分别作出判断,即可得出结论.【解答】解:A、对角线相等的四边形是矩形,不正确;B、对角线互相平分的四边形是矩形,不正确;C、矩形的对角线相等且互相平分,正确;D、矩形的对角线互相垂直且平分,不正确;故选:C.6.已知A(x1,y1),B(x2,y2)是反比例函数y=﹣图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1<y2B.y1=y2 C.y1>y2D.大小不确定【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据题意判断出函数的图象所在象限,再由函数的增减性即可得出结论.【解答】解:∵反比例函数y=﹣中,﹣k2<0,∴此函数图象的两个分支分别位于第二四象限.∵A(x1,y1),B(x2,y2)所在象限不明确,∴y1与y2的大小不确定.故选D.7.“关于x的函数y=(1﹣m)x2+2x+1的图象与x轴至少有一个交点”是真命题,则m的值不可以是()A.m=1 B.m=0 C.m=﹣1 D.m=2【考点】O1:命题与定理.【分析】根据关于x的函数y=(1﹣m)x2+2x+1的图象与x轴至少有一个交点可分两种情况进行讨论,一种是此函数为一次函数,一种是此函数为二次函数,从而可以解答本题.【解答】解:∵关于x的函数y=(1﹣m)x2+2x+1的图象与x轴至少有一个交点,∴当1﹣m=0,即m=1时,函数y=2x+1为一次函数,其解析式为y=2x+1,过一、二、三象限,与x轴只有一个交点;当1﹣m≠0,即m≠1时,函数y=(1﹣m)x2+2x+1为二次函数,△=22﹣4(1﹣m)≥0,解得,m≥0.由上可得,m的值为不小于零的数,∴m的值不可能是﹣1,故选C.8.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【考点】SC:位似变换;D5:坐标与图形性质;LE:正方形的性质.【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.9.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数 C.方差 D.中位数【考点】WA:统计量的选择.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选D.10.如图,已知AD是等腰△ABC底边BC上的高,sinB=,点E在AC上,且AE:EC=2:3,则tan∠ADE=()A.B.C.D.【考点】T7:解直角三角形;KH:等腰三角形的性质.【分析】作EF∥CD,根据sinB=sinC=设AD=4x、AC=5x,知CD=3x,再由AE:EC=2:3分别表示出DF、AF、EF的长,继而可得∠ADE的正切值.【解答】解:如图.作EF∥CD交AD于F点.∵sinB=sinC==,∴设AD=4x,则AC=5x,CD=3x,∵==,∴FD=x,AF=x.∵==,∴EF=x.∴tan∠ADE==,故选:B.11.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.【考点】M8:点与圆的位置关系;M5:圆周角定理.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜边中线等于斜边一半),∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故选B.12.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF 沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.1【考点】LO:四边形综合题.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选:B.二、填空题:请将每小题的正确答案填写在答卷相应的题号内(每小题3分,共18分)13.若等式x2+px+q=(x+1)(x﹣3)成立,则p+q= ﹣5 .【考点】57:因式分解﹣十字相乘法等.【分析】已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出p 与q的值,即可求出原式的值.【解答】解:已知等式整理得:x2+px+q=(x+1)(x﹣3)=x2﹣2x﹣3,可得p=﹣2,q=﹣3,则p+q=﹣5,故答案为:﹣514.如图,四边形ABCD中,AB∥CD,AD=CD,E、F分别是AB、BC的中点,若∠1=30°,则∠DAC= 30°.【考点】KX:三角形中位线定理.【分析】根据三角形中位线定理得到EF∥AC,根据平行线的性质求出∠DCA=∠CAB=30°,根据等腰三角形的性质得到答案.【解答】解:∵E、F分别是AB、BC的中点,∴EF∥AC,∴∠CAB=∠1=30°,∵AB∥CD,∴∠DCA=∠CAB=30°,∵AD=CD,∴∠DAC=∠DCA=30°,故答案为:30°.15.已知x=,y=,则x2+y2﹣xy的值是 2 .【考点】7A:二次根式的化简求值;4C:完全平方公式.【分析】先求出x+y和xy的值,再根据完全平方公式进行变形,最后代入求出即可.【解答】解:∵x=,y=,∴x+y=+=,xy=×=1,∴x2+y2﹣xy=(x+y)2﹣3xy=()2﹣3×1=2,故答案为:2.16.平面直角坐标系xOy中有四点A(﹣2,0),B(﹣1,0),C(0,1),D(0,2)在A、B、C、D中取两点与点O为顶点作三角形,所作三角形是等腰直角三角形的概率是.【考点】X4:概率公式;KW:等腰直角三角形.【分析】根据题意得到在A、B、C、D中取两点与点O为顶点作三角形一共可作4个三角形,其中所作三角形是等腰直角三角形的有2个,如何根据概率公式即可得到结论.【解答】解:如图,在A、B、C、D中取两点与点O为顶点作三角形一共可作4个三角形,其中所作三角形是等腰直角三角形的有2个,∴P(所作三角形是等腰直角三角形)==,故答案为:.17.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于5π.【考点】MN:弧长的计算;R2:旋转的性质.【分析】根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可.【解答】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×5+×2π×5=5π,故答案为:5π.18.等腰△ABC中,当顶角A的大小确定时,它的对边BC与邻边(腰AB或AC)的比值确定,记为f(A),易得f(60°)=1.若α是等腰三角形的顶角,则f(α)的取值范围是0<f(α)<2 .【考点】T7:解直角三角形;KH:等腰三角形的性质.【分析】根据三角形三边关系得到BC>0,BC<2AB,根据题意计算即可.【解答】解:∵BC>AB﹣AC,BC<AC+AB,∴BC>0,BC<2AB,∴0<<2,∴0<f(α)<2,故答案为:0<f(α)<2.三、解答题(本题共8小题,每小题8分,共16分)19.计算:(﹣1)2019+3(tan60°)﹣1﹣|1﹣|+(3.14﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用乘方的意义,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可得到结果.【解答】解:原式=﹣1+﹣+1+1=1.20.解方程:﹣x=.【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x﹣x2+4x=﹣1,整理得:x2﹣3x﹣4=0,即(x﹣4)(x+1)=0,解得:x=4或x=﹣1,经检验x=4是增根,分式方程的解为x=﹣1.21.“校园安全”受到全社会的广泛关注,绵阳市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;(2)请补全条形统计图;(3)若该中学共有学生3000人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到1个男生和1个女生的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90°;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:3000×=1000(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为1000人;(4)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为: =.22.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的函数表达式;(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;(2)根据点C到x轴的距离判断出点C的纵坐标,代入反比例函数解析式求出横坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.【解答】解:(1)∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式, =y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5;(2)∵第一象限内点C到x轴的距离为2,∴点C的纵坐标为2,∴2=,解得x=3,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD=×6×4+×6×3=12+9=21.23.如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.【考点】ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)欲证明CB是⊙O的切线,只要证明BC⊥OB,可以证明△CDO≌△CBO解决问题.(2)首先证明S阴=S扇形ODF,然后利用扇形面积公式计算即可.【解答】(1)证明:连接OD,与AF相交于点G,∵CE与⊙O相切于点D,∴OD⊥CE,∴∠CDO=90°,∵AD∥OC,∴∠ADO=∠DOC,∠DAO=∠BOC,∵OA=OD,∴∠ADO=∠DAO,∴∠DOC=∠BOC,在△CDO和△CBO中,\,∴△CDO≌△CBO,∴∠CBO=∠CDO=90°,∴CB是⊙O的切线.(2)由(1)可知∠DOA=∠BCO,∠DOC=∠BOC,∵∠ECB=60°,∴∠DCO=∠BCO=∠ECB=30°,∴∠DOC=∠BOC=60°,∴∠DOA=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OD=OF,∵∠GOF=∠ADO,在△ADG和△FOG中,,∴△ADG≌△FOG,∴S△ADG=S△FOG,∵AB=6,∴⊙O的半径r=3,∴S阴=S扇形ODF==π.24.某家电销售商场电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13200元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.【考点】B7:分式方程的应用;CE:一元一次不等式组的应用.【分析】(1)设每台空调的进价为m元,则每台电冰箱的进价为(m+400)元,根据数量=总价÷单价结合80000元购进电冰箱的数量与用64000元购进空调的数量相等即可得出关于m的分式方程,解之即可得出结论;(2)设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,根据总利润=电冰箱的总利润+空调总利润即可得出y关于x的函数关系式,结合“购进空调数量不超过电冰箱数量的2倍,总利润不低于13200元”即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,取其内的正整数即可得出所有购买方案,再根据一次函数的性质即可解决最值问题.【解答】解:(1)设每台空调的进价为m元,则每台电冰箱的进价为(m+400)元,根据题意得: =,解得:m=1600,经检验,m=1600是原方程的解,∴m+400=1600+400=2000.答:每台空调的进价为1600元,每台电冰箱的进价为2000元.(2)设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,则y=x+=﹣50x+15000,根据题意得:,解得:33≤x≤36,∵x为正整数,∴x=34,35,36,∴合理的方案共有3种,即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台;∵y=﹣50x+15000,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元.25.如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF 中点M,EF的中点N,连接MD、MN.(1)尝试探究:结论1:DM、MN的数量关系是DM=MN ;结论2:DM、MN的位置关系是DM⊥MN ;(2)猜想论证:证明你的结论.(3)拓展:如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,(1)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【考点】LO:四边形综合题.【分析】(1)写出结论1和2;(2)结论1,根据三角形中位线得:MN=,根据直角三角形斜边中线得:DM=AF,证明△ABE≌△ADF可以得出结论;结论2:主要证明∠NMD=∠BAD=90°即可;(3)连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,再有(1)的结论以及角角之间的数量关系得到∠DMN=∠DGE=90°.【解答】解:(1)结论1:DM、MN的数量关系是:DM=MN,结论2:DM、MN的位置关系是:DM⊥MN,故答案为:DM=MN,DM⊥MN;(2)结论1:DM=MN,理由是:如图1,∵M是AF的中点,N是EF的中点,∴MN=AE,∵四边形ABCD是正方形,∴∠ADF=∠B=90°,AB=AD=BC=CD,∴DM=AF,∵△ECF是等腰直角三角形,∴EC=FC,∴BE=DF,在△ABE和△ADF中,∵,∴△ABE≌△ADF(SAS),∴AE=AF,∴DM=MN;结论2,DM、MN的位置关系是:DM⊥MN,理由是:如图1,∵M是AF的中点,N是EF的中点,∴MN∥AE,∴∠NMF=∠EAF,∵△ABE≌△ADF,∴∠BAE=∠FAD,Rt△ADF中,∵M是AF的中点,∴AM=DM,∴∠FAD=∠MDA,∵∠FMD=∠FAD+∠MDA=∠FAD+∠BAE,∴∠DMN=∠NMF+∠FMD=∠EAF+∠BAE+∠FAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,证明:连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由(1)同理可证,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.26.如图,抛物线y=﹣x2+bx+c(a≠0)与x轴、y轴分别交于点A(3,0)、B(0,3)两点.(1)试求抛物线的解析式和直线AB的解析式;(2)动点E从O点沿OA方向以1个单位/秒的速度向终点A匀速运动,同时动点F沿AB 方向以个单位/秒的速度向终点B匀速运动,E、F任意一点到达终点时另一个点停止运动,连接EF,设运动时间为t,当t为何值时△AEF为直角三角形?(3)抛物线位于第一象限的图象上是否存在一点P,使△PAB面积最大?如果存在,请求出点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据A、B两点的坐标,利用待定系数法可求得抛物线和直线AB的解析式;(2)骼t可表示出OE、AF、AE的长,分∠AEF=90°和∠AFE=90°两种情况,可分别证明△AOB∽△AEF和△AOB∽△AFE,利用相似三角形的性质可得到关于t的方程,可求得t的值;(3)过P作PC∥y,AB于点C,交x轴于点D,可设出P点坐标,用P点坐标可表示也PC 的长,从而可表示出△PAB的面积,根据二次函数的性质可求得其取得最大值时P点的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c(a≠0)经过A(3,0),B(0,3),∴,解得,∴抛物线解析式为y=﹣x2+2x+3,设直线y=kx+n,∴,解得,∴直线AB的解析式为y=x+3;(2)由题意可知OE=t,则AF=t,AE=3﹣t,∵△AEF为直角三角形,∴有∠AEF=90°和∠AFE=90°两种情况,①当∠AEF=90°时,则有△AOB∽△AEF,∴=,即=,解得t=;②当∠AFE=90°时,则有△AOB∽△AFE,∴=,即=,解得t=1;综上可知当t为或1时△AEF为直角三角形;(3)如图,过P作PC∥y,AB于点C,交x轴于点D,设P(x,﹣x2+2x+3)(0<x<3),则C(x,﹣x+3),∵P为抛物线在第一象限内的点,∴PC=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,∴S△PAB=S△PBC+S△PAC=PC•OD+PC•AD=PC•OA=PC=(﹣x2+3x)=﹣(x﹣)2+,∵﹣<0,∴当x=时,S△PAB有最大值,此时P点坐标为(,),综上可知存在满足条件的点P,其坐标为(,).。
数学试卷 第1页(共36页)数学试卷 第2页(共36页)绝密★启用前四川省绵阳市2018年高中阶段学校招生暨初中学业水平考试数 学(本试卷满分140分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.0(2018)-的值是( ) A .2018-B .2018C .0D .12.四川省公布了2017年经济数据GDP 排行榜,绵阳市排名全省第二,GDP 总量为2 075亿元.将2 075亿元用科学计数法表示为 ( ) A .120.207510⨯ B .112.07510⨯ C .1020.7510⨯ D .122.07510⨯3.如图,有一块含有30角的直角三角板的两个顶点放在直尺的对边上.如果244∠=,那么1∠的度数是 ( )A .14B .15C .16D .17 4.下列运算正确的是( )A .236a a a =B .325a a a +=C .248()a a =D .32a a a -= 5.下列图形是中心对称图形的是( )ABCD 6.等式3311x x x x --=++成立的x 的取值范围在数轴上可表示为( )AB C D 7.在平面直角坐标系中,以原点为对称中心,把点(3,4)A 逆时针旋转90,得到点B ,则点B 的坐标为 ( ) A .(4,3)- B .(4,3)- C .(3,4)- D .(3,4)-- 8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人9.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25π m 2,圆柱高为3 m ,圆锥高为2 m 的蒙古包,则需要毛毡的面积是( )A .2(30529)πm +B .240πmC .2(30521)πm +D .255πm10.一艘在南北航线上的测量船,于A 点处测得海岛B 在点A 的南偏东30方向,继续向南航行30海里到达C 点时,测得海岛B 在C 点的北偏东15方向,那么海岛B 离此航线的最近距离是(结果保留小数点后两位)(参考数据:3 1.732≈,2 1.414≈) ( ) A .4.64海里 B .5.49海里 C .6.12海里 D .6.21海里11.如图,ACB △和ECD △都是等腰直角三角形,CA CB =,CE CD =,ACB △的顶点A 在ECD △的斜边DE 上,若2AE =,6AD =,则两个三角形重叠部分的面积为( )A .2B .32-C .31-D .33-12.将全体正奇数排成一个三角形数阵: 1 3 57 9 11 13 15 17 19 21 23 25 27 29 ……按照以上排列规律,第25行第20个数是( )A .639B .637C .635D .633毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共36页) 数学试卷 第4页(共36页)第Ⅱ卷(非选择题 共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.因式分解:234x y y -= .14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,)1-和(3,1)-,那么“卒”的坐标为 .15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角形的概率是 .16.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m ,水面下降2 m ,水面宽度增加 m .17.已知0a b >>,且2130a b b a ++=-,则b a= . 18.如图,在ABC △中,3AC =,4BC =,若AC ,BC 边上的中线BE ,AD 垂直相交于O 点,则AB = .三、解答题(本大题共7小题,共86分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分16分,每题8分) (1)4sin60|23+(2)解分式方程:13222x x x-+=--.20.(本小题满分11分)绵阳某公司销售部统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元).销售部规定:当16x <时为“不称职”,当1620x ≤<时为“基本称职”,当2025x ≤<时为“称职”,当25x ≥时为“优秀”.根据以上信息,解答下列问题: (1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员月销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果取整数)?并简述其理由.21.(本小题满分11分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?数学试卷 第5页(共36页) 数学试卷 第6页(共36页)22.(本小题满分11分)如图,一次函数1522y x =-+的图象与反比例函数()k y k x =>0的图象交于A ,B 两点,过A 点做x 轴的垂线,垂足为M ,AOM △面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA PB +的值最小,并求出其最小值和P 点坐标.23.(本小题满分11分)如图,AB 是O 的直径,点D 在O 上(点D 不与A ,B 重合),直线AD 交过点B 的切线于点C ,过点D 作O 的切线DE 交BC 于点E . (1)求证:BE CE =;(2)若DE AB ∥,求sin ACO ∠的值.24.(本小题满分12分)如图,已知ABC △的顶点坐标分别为(3,0)A ,(0,4)B ,(3,0)C -.动点M ,N 同时从A 点出发,M 沿A C →,N 沿折线A B C →→,均以每秒1个单位长度的速度移动,当一个动点到达终点C 时,另一个动点也随之停止移动,移动时间记为t 秒.连接MN . (1)求直线BC 的解析式;(2)移动过程中,将AMN △沿直线MN 翻折,点A 恰好落在BC 边上点D 处,求此时t 值及点D 的坐标;(3)当点M ,N 移动时,记ABC △在直线MN 右侧部分的面积为S ,求S 关于时间t 的函数关系式.备用图25.(本小题满分14分)如图,已知抛物线2(0)y ax bx a =+≠过点3)A -和B .过点A 作直线AC x ∥轴,交y 轴与点C .(1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D .连接OA ,使得以A ,D ,P 为顶点的三角形与AOC △相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得13AOC AOQ S S =△△?若存在,求出点Q 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第7页(共36页)数学试卷第8页(共36页)数学试卷 第9页(共36页) 数学试卷 第10页(共36页)四川省绵阳市2018年高中阶段学校招生暨初中学业水平考试数学答案解析一、选择题 1.【答案】D【解析】解:∵020181=,故答案为:D . 【考点】零次幂的运算 2.【答案】B【解析】解:∵112075 2.07510=⨯亿,故答案为:B . 【考点】科学记数法 3.【答案】C 【解析】解:如图:依题可得:244∠=,60ABC ∠=,BE CD ∥,∴1CBE ∠=∠,又∵60ABC ∠=,∴2CBE ABC ∠=∠-∠604416=-=,即116∠=.故答案为:C .【考点】平行线的性质 4.【答案】C【解析】解:A .∵235a a a =,故错误,A 不符合题意;B .a 3与a 2不是同类项,故不能合并,B 不符合题意;C .∵248()a a =,故正确,C 符合题意;D .a 3与a 2不是同类项,故不能合并,D 不符合题意;故答案为:C . 【考点】整式的运算 5.【答案】D【解析】解:A .不是中心对称图形,A 不符合题意;B .是轴对称图形,B 不符合题意;C .不是中心对称图形,C 不符合题意;D .是中心对称图形,D 符合题意;故答案为:D .【考点】中心对称图形的概念 6.【答案】B【解析】解:依题可得:30x -≥且10x +>,∴3x ≥,故答案为:B . 【考点】分式和根式有意义的条件,不等式在数轴上的表示 7.【答案】B 【解析】解:如图:由旋转的性质可得:AOC BOD △≌△, ∴OD OC =,BD AC =, 又∵(3,4)A ,∴3OD OC ==,4BD AC ==,∵B 点在第二象限, ∴B (4,3)-. 故答案为:B . 【考点】旋转的性质 8.【答案】C【解析】解:设参加酒会的人数为x 人,依题可得:1(1)552x x -=, 化简得:21100x x --=, 解得:111x =,210x =-(舍去), 故答案为:C . 【考点】一元二次方程数学试卷 第11页(共36页) 数学试卷 第12页(共36页)9.【答案】A【解析】解:设底面圆的半径为r ,圆锥母线长为l ,依题可得: 2π25πr =,∴5r =,∴圆锥的母线l ==∴圆锥侧面积2112ππ(m )2S r l rl ===,圆柱的侧面积222π2π5330π(m )S r h ==⨯⨯⨯=,∴需要毛毡的面积230π(m )=+,故答案为:A .【考点】圆柱和圆锥的侧面积 10.【答案】B【解析】解:根据题意画出图如图所示:作BD AC ⊥,取BE CE =,∵30AC =,30CAB ︒∠=,15ACB ︒∠=,∴135ABC ∠=, 又∵BE CE =, ∴15ACB EBC ∠=∠=, ∴120ABE ∠=, 又∵30CAB ∠=, ∴BA BE =,AD DE =, 设BD x =,在Rt ABD △中,∴AD DE ==,2AB BE CE x ===,∴230AC AD DE EC x =++=+=,∴1)5.492x =≈,故答案为:B .【考点】解直角三角形的应用 11.【答案】D【解析】解:连接BD ,作CH DE ⊥,∵ACB △和ECD △都是等腰直角三角形, ∴90ACB ECD ∠=∠=,45ADC CAB ∠=∠=, 即90ACD DCB ACD ACE ∠+∠=∠+∠=, ∴DCB ACE ∠=∠, 在DCB △和ECA △中,DC EC DCB ACE AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴DCB ECA △≌△,∴DB EA =45CDB E ∠=∠=, ∴90CDB ADC ADB ∠+∠=∠=, 在Rt ABD △中,∴AB ==,在Rt ABC △中, ∴2228AC AB ==, ∴2AC BC ==, 在Rt ECD △中,数学试卷 第13页(共36页) 数学试卷 第14页(共36页)∴2222CDDE ==,∴1CD CE =,∵ACO DCA ∠=∠,CAO CDA ∠=∠, ∴CAO CDA △∽△,∴221)4CAO ACD S S ===-=-△△ 又∵11222ECD S CE DE CH ==△,∴22CH ==∴1122ACD A C S DH =⨯==△, ∴(43CAOACD S S =-⨯=-△△即两个三角形重叠部分的面积为3 故答案为:D .【考点】等腰直角三角形的性质,勾股定理,相似三角形的判定和性质 12.【答案】A【解析】解:依题可得:第25行的第一个数为:(124)24124682*********+⨯+++++⋯⋯+⨯=+⨯=,∴第25行的第第20个数为:601219639+⨯=. 故答案为:A . 【考点】规律的探究13.【答案】(2)(2)y x y x y +-【解析】解:原式(2)(2)y x y x y =++-, 故答案为:(2)(2)y x y x y +-. 【考点】因式分解 14.【答案】(2,2)--【解析】解:建立平面直角坐标系(如图),∵相(3,1)-,兵(3,1)-, ∴卒(2,2)--, 故答案为:(2,2)--. 【考点】平面直角坐标系15.【答案】310【解析】解:从5根木条中任取3根的所有情况为:1、2、3;1、2、4;1、2、5;1、3、4;1、3、5;1、4、5;2、3、4;2、3、5;2、4、5;3、4、5;共10种情况; ∵能够构成三角形的情况有:2、3、4;2、4、5;3、4、5;共3种情况;∴能够构成三角形的概率为:310.故答案为:310.【考点】概率的计算 16.【答案】4【解析】解:根据题意以AB 为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系(如图),依题可得:(2,0)A -,(2,0)B ,(0,2)C ,设经过A、B 、C 三点的抛物线解析式为:(2)(2)y a x x =-+, ∵(0,2)C 在此抛物线上,数学试卷 第15页(共36页) 数学试卷 第16页(共36页)∴12a =-, ∴此抛物线解析式为:1(2)(2)2y x x =--+,∵水面下降2 m ,∴1(2)(2)22x x --+=-,∴1x =2x =-,∴下降之后的水面宽为:∴水面宽度增加了:4.故答案为:4.【考点】二次函数的图象与性质17.【解析】解:∵2130a b b a ++=-,两边同时乘以()ab b a -得: 22220a ab b --=,两边同时除以a 2得:22()210b ba a +-=, 令(0)bt t a =>,∴22210t t +-=,∴t =,∴b t a ==.【考点】解分式方程,换元法 18.【解析】解:连接DE ,∵AD 、BE 为三角形中线,∴DE AB ∥,12DE AB =,∴DOE AOB △∽△, ∴12DO OE DE OA OB AB ===, 设OD x =,OE y =, ∴2OA x =,2OB y =, 在Rt BOD △中,2244x y += ①,在Rt AOE △中,22944x y += ②,∴+①②得:2225554x y +=, ∴2254x y +=,在Rt AOB △中,∴222225444()44AB xy x y =+=+=⨯,即AB =.【考点】勾股定理,三角形中位线的性质,三角形相似的判定与性质 三、解答题19.【答案】(1)1423=⨯原式,2=+,数学试卷 第17页(共36页) 数学试卷 第18页(共36页)2=.(2)方程两边同时乘以2x -得:12(2)3x x -+-=-, 去括号得:1243x x -+-=-, 移项得:2314x x +=-++,合并同类项得:32x =,系数化为1得:23x =.检验:将23x =代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:23x =.【解析】(1)1423=⨯原式, 2=+, 2=.(2)方程两边同时乘以2x -得:12(2)3x x -+-=-, 去括号得:1243x x -+-=-, 移项得:2314x x +=-++,合并同类项得:32x =, 系数化为1得:23x =.检验:将23x =代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:23x =.【考点】实数的运算,解分式方程 20.【答案】(1)解:依题可得: “不称职”人数为:224()+=人,“基本称职”人数为:233210()+++=人, “称职”人数为:4543420()++++=人, ∴总人数为:2050%40()÷=人, ∴不称职”百分比:44010%a =÷=,“基本称职”百分比:104025%b =÷=,“优秀”百分比:110%25%50%15%d =---=, ∴“优秀”人数为:4015%6()⨯=人, ∴得26分的人数为:62112()---=人, 补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人, “优秀”25万2人,26万2人,27万1人,28万1人; “称职”的销售员月销售额的中位数为:22万,众数:21万; “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万; (3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【解析】(1)解:依题可得: “不称职”人数为:224()+=人,“基本称职”人数为:233210()+++=人, “称职”人数为:4543420()++++=人, ∴总人数为:2050%40()÷=人, ∴不称职”百分比:44010%a =÷=, “基本称职”百分比:104025%b =÷=,“优秀”百分比:110%25%50%15%d =---=, ∴“优秀”人数为:4015%6()⨯=人,数学试卷 第19页(共36页) 数学试卷 第20页(共36页)∴得26分的人数为:62112()---=人, 补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人, “优秀”25万2人,26万2人,27万1人,28万1人; “称职”的销售员月销售额的中位数为:22万,众数:21万; “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万; (3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【考点】扇形统计图,折线统计图,中位数,众数,数据分析21.【答案】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:3418217x y x y +=⎧⎨+=⎩,, 解得:43.2x y =⎧⎪⎨=⎪⎩,答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10m -辆,依题可得: 34(10)332m m +-≥,0m ≥,10m -≥0,解得:36105m ≤≤,∴8,9,10m =;∴当大货车8辆时,则小货车2辆; 当大货车9辆时,则小货车1辆; 当大货车10辆时,则小货车0辆;设运费为13010010)30100(0W m m m =+-=+,∵300k =>,∴W 随x 的增大而增大, ∴当8m =时,运费最少, ∴30810001240()W =⨯+=元,答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:3418217x y x y +=⎧⎨+=⎩,, 解得:43.2x y =⎧⎪⎨=⎪⎩,答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10m -辆,依题可得: 34(10)332m m +-≥,0m ≥,10m -≥0,解得:36105m ≤≤,∴8,9,10m =;∴当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为13010010)30100(0W m m m=+-=+,∵300k=>,∴W随x的增大而增大,∴当8m=时,运费最少,∴30810001240()W=⨯+=元,答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【考点】二元一次方程组解决实际问题,一次函数的应用22.【答案】(1)解:设(,)A x y,∵A点在反比例函数上,∴k xy=,又∵1111 222AOMS OM AM x y k====,∴2k=.∴反比例函数解析式为:2 yx =.(2)解:作A关于y轴的对称点A',连接A B'交y轴于点P,PA PB+的最小值即为A B'.∴21522yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,,∴12xy=⎧⎨=⎩,或41.2xy=⎧⎪⎨=⎪⎩,∴(1,2)A,1 (4,)2 B,∴(1,2) A'-,∴PA PB A B'+==.设A B'直线解析式为:y ax b=+,∴2142a ba b-+=⎧⎪⎨+=⎪⎩,∴3101710ab⎧=-⎪⎪⎨⎪=⎪⎩,∴A B'直线解析式为:3171010y x=-+,∴17(0,)10P.【解析】(1)解:设(,)A x y,∵A点在反比例函数上,∴k xy=,又∵1111222AOMS OM AM x y k====,∴2k=.∴反比例函数解析式为:2yx=.(2)解:作A关于y轴的对称点A',连接A B'交y轴于点P,PA PB+的最小值即为A B'.∴21522yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,,∴12xy=⎧⎨=⎩,或41.2xy=⎧⎪⎨=⎪⎩,∴(1,2)A,1 (4,)2 B,∴(1,2)A '-,∴PA PB A B '+==.设A B '直线解析式为:y ax b =+,∴2142a b a b -+=⎧⎪⎨+=⎪⎩,∴3101710a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴A B '直线解析式为:3171010y x =-+, ∴17(0,)10P .【考点】一次函数和反比例函数的图象与性质,待勾股定理 23.【答案】(1)证明:连接OD 、BD , ∵EB 、ED 分别为圆O 的切线, ∴ED EB =, ∴EDB EBD ∠=∠, 又∵AB 为圆O 的直径, ∴BD AC ⊥,∴BDE CDE EBD DCE ∠+∠=∠+∠, ∴CDE DCE ∠=∠, ∴ED EC =, ∴EB EC =.(2)解:过O 作OH AC ⊥,设圆O 半径为r ,∵DE AB ∥,DE 、EB 分别为圆O 的切线, ∴四边形ODEB 为正方形,∵O 为AB 中点,∴D 、E 分别为AC 、BC 的中点, ∴2BC r =,AC =, 在Rt COB △中,∴OC =,又∵1122ACO S AO BC ACOH ==,∴2r r OH⨯=⨯, ∴OH =,在Rt COH△中,∴sin OH ACO OC ∠===. 【解析】(1)证明:连接OD 、BD , ∵EB 、ED 分别为圆O 的切线, ∴ED EB =, ∴EDB EBD ∠=∠, 又∵AB 为圆O 的直径, ∴BD AC ⊥,∴BDE CDE EBD DCE ∠+∠=∠+∠, ∴CDE DCE ∠=∠,∴ED EC =, ∴EB EC =.(2)解:过O 作OH AC ⊥,设圆O 半径为r ,∵DE AB ∥,DE 、EB 分别为圆O 的切线, ∴四边形ODEB 为正方形, ∵O 为AB 中点,∴D 、E 分别为AC 、BC 的中点, ∴2BC r =,AC =, 在Rt COB △中,∴OC =,又∵1122ACO S AO BC ACOH ==,∴2r rOH ⨯=⨯, ∴OH =,在RtCOH △中,∴sin OH ACO OC ∠=. 【考点】圆的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理 24.【答案】(1)解:设直线BC 解析式为:y kx b =+, ∵(0,4)B ,(3,0)C -,∴430b k b =⎧⎨-+=⎩,解得:434k b ⎧=⎪⎨⎪=⎩, ∴直线BC 解析式为:443y x =+. (2)解:依题可得:AM AN t ==,∵AMN △沿直线MN 翻折,点A 与点点D 重合, ∴四边形AMDN 为菱形,作NF x ⊥轴,连接AD 交MN 于O ′,∵(3,0)A ,(0,4)B , ∴3OA =,4OB =, ∴5AB =, ∴(3,0)M t -, 又∵ANF ABO △∽△,∴AN AF NF AB AO OB ==, ∴534t AF NF ==, ∴35AF t =,45NF t =,∴34(3,)55N t t -,∴32(3,)55O t t '-,设(,)D x y ,∴34325x t +=-,0225y t +=, ∴835x t =-,45y t =,∴4(3)8,55t D t -,又∵D 在直线BC 上, ∴484(3)4355t t ⨯-+=, ∴3011t =,∴1524(,)1111D -.(3)①当05t <≤时(如图),ABC △在直线MN 右侧部分为AMN △,∴211422255AMN S S AM DF t t t ===⨯⨯=△,②当56t <≤时,ABC △在直线MN 右侧部分为四边形ABNM ,如图∵AM AN t ==,5AB BC ==,∴5BN t =-,5(5)10CN t t =---=-, 又∵CNF CBO △∽△,∴CN NF CB OB =, ∴1054t NF -=, ∴4(10)5NF t =-,∴1122ABC CNM S S S AC OB CM NF =-=-△,11464(6)(10)225t t =⨯⨯-⨯-⨯⨯-, 22321255t t =-+-.【解析】(1)解:设直线BC 解析式为:y kx b =+,∵(0,4)B ,(3,0)C -, ∴430b k b =⎧⎨-+=⎩,解得:434k b ⎧=⎪⎨⎪=⎩, ∴直线BC 解析式为:443y x =+. (2)解:依题可得:AM AN t ==,∵AMN △沿直线MN 翻折,点A 与点点D 重合,∴四边形AMDN 为菱形,作NF x ⊥轴,连接AD 交MN 于O ',∵(3,0)A ,(0,4)B ,∴3OA =,4OB =, ∴5AB =, ∴(3,0)M t -, 又∵ANF ABO △∽△,∴AN AF NF AB AO OB ==, ∴534t AF NF ==, ∴35AF t =,45NF t =,∴34(3,)55N t t -,∴32(3,)55O t t '-,设(,)D x y , ∴34325x t +=-,0225y t +=,∴835x t =-,45y t =,∴4(3)8,55t D t -,又∵D 在直线BC 上, ∴484(3)4355t t ⨯-+=, ∴3011t =,∴1524(,)1111D -.(3)①当05t <≤时(如图),ABC △在直线MN 右侧部分为AMN △,∴211422255AMN S S AM DF t t t ===⨯⨯=△,②当56t <≤时,ABC △在直线MN 右侧部分为四边形ABNM ,如图∵AM AN t ==,5AB BC ==,∴5BN t =-,5(5)10CN t t =---=-, 又∵CNF CBO △∽△, ∴CN NF CB OB =, ∴1054t NF -=, ∴4(10)5NF t =-,∴1122ABC CNM S S S AC OB CM NF =-=-△,11464(6)(10)225t t =⨯⨯-⨯-⨯⨯-, 22321255t t =-+-.【考点】直线的解析式,全等三角形的判定和性质,相似三角形的判定和性质,三角形和四边形的面积,动点问题25.【答案】(1)解:∵点A 、B 在抛物线上, ∴33270aa ⎧+=-⎪⎨+=⎪⎩, 解得:12a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为:212y x=. (2)解:设(,)P x y , ∵3)A -,(0,3)C -,∴(,3)D x -,∴3PD y=+,3CO =,AD x =AC =, ①当ADP ACO Rt △∽△时,∴AD DP =,33y +=,∴6y=-,又∵P 在抛物线上, ∴2126yx y ⎧=-⎪⎨⎪=-⎩,,∴2120x -+=, ∴((0xx --=,∴1x =,2x =,∴6x y ⎧=⎪⎨=⎪⎩3x y ⎧=⎪⎨=-⎪⎩,,∵3)A -,∴P .②当PDA ACO △∽△时, ∴PD DA AC=,=∴4y=-, 又∵P 在抛物线上, ∴2124y x y ⎧=⎪⎪⎨⎪=-⎪⎩,,, 2110x -+=, ∴8)(0x -=,∴1x =2x =解得:43x y⎧=⎪⎪⎨⎪=-⎪⎩或3xy ⎧=⎪⎨=-⎪⎩,∵3)A -,∴4)3P -.综上,P 点坐标为或4)3-. (3)解:∵3)A -,∴AC =,3OC =,∴OA =,∴1133222AOC S OC AC OA h ===△, ∴32h =, 又∵13AOC AOQ S S =△△,∴AOQ △边OA 上的高932h ==, 过O 作OM OA ⊥,截取92OM =,过点M 作MN OA ∥交y 轴于点N ,过M 作HM x⊥轴,(如图),∵3AC =,23OA =, ∴30AOC ∠=, 又∵MN OA ∥,∴30MNO AOC ∠=∠=,OM MN ⊥, ∴29ON OM ==,60NOM ∠=, 即(0,9)N ,∴30MOB ∠=,∴1924MH OM ==,∴OH ==, ∴9)4M , 设直线MN 解析式为:y kx b =+,∴949b b ⎪=⎩+=,,∴9k b ==⎪⎩⎧⎪⎨,, ∴直线MN解析式为:9y =+,∴2912y x y ⎧=⎪⎨⎪=⎩+,,∴2180x --=,()()0x x -+=,∴1x =2x =-∴0x y ⎧=⎪⎨=⎪⎩或15x y ⎧=-⎪⎨=⎪⎩,∴Q点坐标)或()-,∴抛物线上是否存在点Q ,使得13AOCAOQ S S =△△. 【解析】(1)解:∵点A 、B 在抛物线上,∴33270a a ⎧+=-⎪⎨+=⎪⎩,解得:12a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线解析式为:212y x =. (2)解:设(,)P x y ,∵3)A -,(0,3)C -,∴(,3)D x -,∴3PD y =+,3CO =,AD x =AC = ①当ADP ACO Rt △∽△时, ∴AD DP AC CO =,33y +=,∴6y =-,又∵P 在抛物线上,∴2126y x y ⎧=-⎪⎨⎪=-⎩,,∴2120x -+=, ∴((0x x --=,∴1x =,2x =,∴6x y ⎧=⎪⎨=⎪⎩3x y ⎧=⎪⎨=-⎪⎩,,∵3)A -,∴P .②当PDA ACO △∽△时, ∴PD DA AC CO =,3x -=∴4y =-, 又∵P 在抛物线上,∴2124y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,,,2110x -+=,∴8)(0x -=,∴1x =2x =,解得:433x y ⎧=⎪⎪⎨⎪=-⎪⎩或3x y ⎧=⎪⎨=-⎪⎩,∵3)A -,∴4)3P -.综上,P点坐标为或4)3-. (3)解:∵3)A -,∴AC =,3OC =,∴OA =,∴1133222AOC S OC AC OA h ===△, ∴32h =,又∵13AOC AOQ S S =△△,∴AOQ △边OA 上的高932h ==,过O 作OM OA ⊥,截取92OM =,过点M 作MN OA ∥交y 轴于点N ,过M 作HM x⊥轴,(如图),∵3AC =,23OA =, ∴30AOC ∠=, 又∵MN OA ∥,∴30MNO AOC ∠=∠=,OM MN ⊥, ∴29ON OM ==,60NOM ∠=, 即(0,9)N ,∴30MOB ∠=,∴1924MH OM ==,∴OH ==, ∴9)4M , 设直线MN 解析式为:y kx b =+,∴949b b ⎪=⎩+=,, ∴9k b ==⎪⎩⎧⎪⎨,, ∴直线MN 解析式为:9y =+,∴2912y x y ⎧=-⎪⎨⎪=⎩+,, ∴2180x --=,()()0x x -+=,∴1x =2x =-∴0x y ⎧=⎪⎨=⎪⎩或15x y ⎧=-⎪⎨=⎪⎩,∴Q 点坐标)或()-,∴抛物线上是否存在点Q ,使得13AOC AOQ S S =△△.【考点】二次函数的图象与性质,三角形相似的判定与性质。
四川省三台县2018届九年级数学上学期第一次学情调研测试试题本试卷分试题卷和答题卷两部分。
试题卷共6页,答题卡共4页。
满分140分。
考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、考号用0.5毫米的黑色墨水签字笔填写在答题卷上密封线内规定的地方。
2.答案书写在答题卡的框内。
超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
3.考试结束后,交卷时只交答题卷。
第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中是关于x 的一元二次方程的是 A .x 2+x1=0 B .a x 2+b x +c=0 C .(x -1)(x +2)=1D .3x -2x y-5y 2=02.若关于x 的一元二次方程()03212=+--x x a 有实数根,则整数a 的最大值是A .2B .1C .0D .-13.已知三角形的每条边都是方程x 2﹣6x +8=0的根,则该三角形的周长不可能是为 A .6B .10C .8D .124.有一个人患了流感,经过两轮传染后新增120个人患了流感,则每轮传染中平均一个流 感患者传染人的个数为 A .10B .11C .60D .125.用配方法解方程0142=++x x 配方后的方程是A .()322=+xB .()322=-xC .()522=-xD .()522=+x6.抛物线12222+-=x x y 图象与坐标轴的交点个数为 ( ) A .0B .1C .2D .37.已知点A (-3,y 1),B (2,y 2),C (3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 18.如图,抛物线221+-=x y 向右平移1个单位长度得抛物线2y ,则图中阴影部分面积是 A .1 B .2 C .1.5D .2.59、若()()061=+--+y x y x ,则x +y 的值是 A .2B .3C .-2或3D .2或-310.二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表,则下列判断中正确的是A .抛物线开口向上B .y 最大值为4C .当x>1时,y 随著x 的增大而减小D .当0<x<2时,y>211.关于x 的方程()02=++k h x a 的解是1,221=-=x x (a,h,k 均为常数,a 0≠)则方程0)2(2=+++k h x a 的解是A .1,221=-=x xB .1,421-=-=x xC .2,021==x xD .1,221-==x x12.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x =1.下列结论:①abc >0;②4a +2b +c >0;③4ac -b 2<8a ;④13<a <23;⑤b >c .其中正确的是A .①③B .①③④C.②④⑤D .①③④⑤第Ⅱ卷(非选择题,共104分)二、填空题(每小题3分,共18分)13.已知一元二次方程有一个根是2,那么这个方程可以是________________。
2019届四川省绵阳市三台县中考数学一模试卷
一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列运算中,正确的是()
A.B.(a2)3=a6C.3a•2a=6a D.3﹣2=﹣6
2.H7N9时一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()
A.1.2×10﹣7米B.1.2×10﹣8米C.12×10﹣8米D.12×10﹣9米
3.如图,几何体的三视图对应的正三棱柱是()
A.B.C.D.
4.关于x的不等式组的解集为x>1,则a的取值范围是()
A.a>1 B.a<1 C.a≥1 D.a≤1
5.下列关于矩形的说法,正确的是()
A.对角线相等的四边形是矩形
B.对角线互相平分的四边形是矩形
C.矩形的对角线相等且互相平分
D.矩形的对角线互相垂直且平分
6.已知A(x1,y1),B(x2,y2)是反比例函数y=﹣图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1<y2B.y1=y2 C.y1>y2D.大小不确定
7.“关于x的函数y=(1﹣m)x2+2x+1的图象与x轴至少有一个交点”是真命题,则m的值不可以是()A.m=1 B.m=0 C.m=﹣1 D.m=2
8.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,。