2017年秋季新版北师大版九年级数学上学期2.2、用配方法求解一元二次方程学案16
- 格式:doc
- 大小:63.50 KB
- 文档页数:2
《22配方法公式法解一元二次方程》教案姓名年级性别教材第课教学课题教学目标1、利用配方法解数字系数的一般一元二次方程。
2、进一步理解配方法的解题思路。
课前检查作业完成情况:优□良□中□差□建议__________________________________________过程一.教学内容:用配方法和公式法解一元二次方程1.知道配方法的意义及用配方法解一元二次方程的主要步骤,能够熟练地用配方法解系数较简单的一元二次方程.2.理解用配方法推导出一元二次方程的求根公式,了解求根公式中的条件b2-4ac≥0的意义,知道b2-4ac的值的符号与方程根的情况之间的关系.3.能熟练地运用求根的公式解简单的数字系数的一元二次方程.二. 知识要点:1.形如x2=p或(mx+n)2=p(p≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.通过配方,方程的左边变形为含x的完全平方形式(mx+n)2=p(p≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.3.用配方法解一元二次方程的步骤:用配方法解一元二次方程ax²+bx+c=0(a≠0)的一般步骤:(1)移项:将常数项移到方程右边;(2)把二次项系数化为1:方程左右两边同时除以二次项系数(3)配方:方程左右两边同时加上一次项系数一半的平方,把原方程化为2()x m n+=的形式即将2x mx±的式子加上2()2m,可得到完全平方式⇒222()()22m mx mx x±+=±(4)当0n≥时,用直接开方法解变形后方程三. 重点难点:本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.【例题剖析】【衔接训练】1、一元二次方程230x -=的解是 ( )A 、3x =B 、3x =-C 、123,3x x ==-D 、123,3x x ==- 2、一元二次方程21090x x ++=可变形为 ( )A 、2(5)16x +=B 、2(5)34x +=C 、2(5)16x -=D 、2(5)25x +=5、用配方法解下列方程时,配方有错误的是 ( )A 、22430(2)7x x x --=-=化为 B 、227252730()416x x x -+=-=化为 C 、22525490()33636x x x --=-=化为 D 、22517215()416y y y +=+=化为 6、将二次三项式241x x -+配方后得 ( )A 、2(2)3x -+B 、2(2)3x --C 、2(2)3x ++D 、2(2)3x +-7、(1)226___(__)x x x ++=+; (2)224___(__)3x x x -+=-; (3)228___(__)x x x ++=+ (4)2214___(__)x x x -+=-(5)227___(__)x x x ++=+ (6)223___(__)5x x x -+=- (7)22___(__)x px x ++=+; (8)22___(__)b x x x a++=+;(9)222()___(__)x m n x x -++=- (10)22___(__)x ax x -+=- 8、用配方法解一元二次方程225033x x +-=时,此方程可变形为_____________,解得:12____,____x x == 9、解下列方程:(1)x 2=2 (2)4x 2-1=0 (3)(x +1)2= 2(4)22350x x --= (5) 22410x x --=(6)23(1)50x x +-= (7)(1)(2)12t t --=10、已知三角形两边长分别为2和4,第三边是方程2430x x -+=的解,求这个三角形的周长。
2.2用配方法求解一元二次方程第1课时用配方法解二次项系数为1的一元二次方程【学习目标】1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解二次项系数为1的一元二次方程.【学习重点】会用配方法解二次项系数为1的一元二次方程.【学习难点】用配方法解二次项系数为1的一元二次方程的一般步骤.一、情景导入生成问题1.如果一个数的平方等于4,则这个数是±2.2.已知x2=9,则x=±3.3.填上适当的数,使下列等式成立.(1)x2+12x+36=(x+6)2;x2-6x+9=(x-3)2.二、自学互研生成能力知识模块一探索用配方法解二次项系数为1的一元二次方程的方法先阅读教材P36“议一议”的内容.然后完成下列问题:1.一元二次方程x2=5的解是x1=5,x2=-5.2.一元二次方程2x2+3=5的解是x1=1,x2=-1.3.一元二次方程x2+2x+1=5,左边配方后得(x+1)2=5,此方程两边开平方,得x+1=±5,方程的两个根为x1=-1+5,x2=-1-5.用配方法解二次项系数为1的一元二次方程的一般步骤是:(以解方程x2-2x-3=0为例) 1.移项:将常数项移到右边,得:x2-2x=3;2.配方:两边同时加上一次项系数的一半的平方,得:x2-2x+12=3+12,再将左边化为完全平方形式,得:(x-1)2=4;3.开平方:当方程右边为正数时,两边开平方,得:x-1=±2(注意:当方程右边为负数时,则原方程无解);4.化为一元一次方程:将原方程化为两个一元一次方程,得:x-1=2或x-1=-2;5.解一元一次方程,写出原方程的解:x1=__3__,x2=-1.归纳结论:通过配成完全平方式的方法,将一元二次方程转化成(x+m)2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.知识模块二应用配方法求解二次项系数为1的一元二次方程解答下列各题:1.填上适当的数,使等式成立.(1)x2+4x+4=(x+2)2;(2)x2-10x+25=(x-5)2.2.用配方法解方程:x2+2x-1=0.解:①移项,得x2+2x=1;②配方,得x2+2x+1=1+1,即(x+1)2=2;③开平方,得x+1=±2,即x+1=2或x+1=-2;④所以x1=-1+2;x2=-1-2.典例讲解:解方程:x2+8x-9=0.解:可以把常数项移到方程的右边,得:x2+8x=9.两边都加42(一次项系数8的一半的平方),得:即x2+8x+42=9+42,即(x+4)2=25.两边开平方,得:x+4=±5,即x+4=5,或x+4=-5.所以x1=1,x2=-9.对应练习:1.解下列方程:(1)x2-10x+25=7;(2)x2-14x=8;(3)x2+3x=1; (4)x2+2x+2=8x+4.2.用配方法解方程x2-2x-1=0时,配方后得的方程为(D)A.(x+1)2=0B.(x-1)2=0C.(x+1)2=2D.(x-1)2=23.方程(x-2)2=9的解是(A)A.x1=5,x2=-1 B.x1=-5,x2=1C.x1=11,x2=-7 D.x1=-11,x2=7三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探索用配方法解二次项系数为1的一元二次方程的方法知识模块二应用配方法求解二次项系数为1的一元二次方程四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:_________________________________________2.存在困惑:_____________________________________第2课时用配方法解二次项系数不为1的一元二次方程【学习目标】1.理解配方法的意义,会用配方法解一般一元二次方程.2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣. 【学习重点】 用配方法解一般一元二次方程. 【学习难点】 用配方法解一元二次方程的一般步骤. 一、情景导入 生成问题1.用配方法解一元二次方程x 2-3x =5,应把方程两边同时( B ) A .加上32 B .加上94 C .减去32 D .减去942.解方程(x -3)2=8,得方程的根是( D )A .x =3+2 2B .x =3-2 2C .x =-3±2 2D .x =3±2 23.方程x 2-3x -4=0的两个根是x 1=4,x 2=-1.二、自学互研 生成能力知识模块一 探索用配方法解一般一元二次方程的方法先阅读教材P 38例2,然后完成下面的填空:用配方法解二次项系数不为1的一元二次方程的一般步骤是:(以解方程2x 2-6x +1=0为例)①系数化1:把二次项系数化为1,得x 2-3x +12=0;②移项:将常数项移到右边,得x 2-3x=-12;③配方:两边同时加上一次项系数的一半的平方,得:x 2-3x +⎝ ⎛⎭⎪⎫322=-12+94.再将左边化为完全平方形式,得:⎝ ⎛⎭⎪⎫x -322=74;;④开平方:当方程右边为正数时,两边开平方,得:x -32=±72(注意:当方程右边为负数时,则原方程无解);⑤解一次方程:得x =32±72,∴x 1=32+72,x 2=32-72.用配方法求解一般一元二次方程的步骤是什么?师生共同归纳结论:(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x +h)2=k 的形式;(4)用直接开平方法解变形后的方程.知识模块二 应用配方法解一般一元二次方程解答下列各题:1.用配方法解方程3x 2-9x -32=0,先把方程化为x 2+bx +c =0的形式,则下列变形正确的是( D )A .x 2-9x -32=0B .x 2-3x -32=0C .x 2-9x -12=0D .x 2-3x -12=02.方程2x 2-4x -6=0的两个根是x 1=3,x 2=-1.典例讲解:1.解方程3x 2-6x +4=0.解:移项,得3x 2-6x =-4;二次项系数化为1,得x 2-2x =-43;配方,得x 2-2x +12=-43+12;(x -1)2=-13.因为实数的平方不会是负数,所以x 取任何实数时,(x -1)2都是非负数,上式不成立,即原方程无实数根.2.做一做:一小球以15m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10米的高度?解:根据题意得15t -5t 2=10;方程两边都除以-5,得t 2-3t =-2;配方,得t 2-3t +⎝ ⎛⎭⎪⎫322=-2+⎝ ⎛⎭⎪⎫322;⎝ ⎛⎭⎪⎫t -322=14;t -32=±12;t =2,t 2=1;答:当t =2s 或t =1s 时,小球达到10米的高度. 对应练习:1.解下列方程:(1)3x 2-9x +2=0; (2)2x 2+6=7x ; (3)4x 2-8x -3=0.2.方程3x 2-1=2x 的两个根是x 1=-13,x 2=1.3.方程2x 2-4x +8=0的解是无实数解.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索用配方法解一般一元二次方程的方法知识模块二 应用配方法解一般一元二次方程四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________2.存在困惑:____________________________________________。
2.2 配方法
一、学习目标:
1、会用开平方法解形如(x +m)2=n (n ≥0)的方程;
2、理解一元二次方程的解法——配方法.
3、把一元二次方程通过配方转化为(x 十m)2
=n(n 0)的形式,体会转化的数学思想。
学习重点:用开平方法解形如(x +m)2=n (n ≥0)的方程
学习难点:理解一元二次方程的解法——配方法 二、学习过程:课前热身:
配方:填上适当的数,使下列等式成立:
(1)x 2+12x +_____=(x +6)2
(2)x 2―4x +______=(x ―____)2
(3)x 2+8x +______=(x +_____)2
从上可知:常数项配上____________________________.
自主学习:
1、用直接开平方法解下列方程:
(1)x 2=9 (2)(x +2)2=16
(3) (x+1)2-144=0 (4)21
(2x+1)2=3
阅读书P53-54,
解方程:
x 2+12x -15=0(配方法)
解:移项,得:________________
配方,得:__________________.(两边同时加上__________的平方)
即:____________________
开平方,得:_____________________
即:______________________
所以:_________________________
注意:
用配方法解一元二次方程的基本思路:将方程转化为_____________ 的形式,它的一边是一个_________,另一边是一个常数。
当_________时,两边___________便可求出它的根;当_____________时,原方程无解.
课堂小结:
(1)什么叫配方法?
(2)配方法的基本思路是什么?
(3)怎样配方?
三、反馈检测:
1.一元二次方程x 2
-2x -m=0,用配方法解该方程,配方后的方程为( )
A.(x -1)2=m 2+1
B.(x -1)2=m -1
C.(x -1)2=1-m
D.(x -1)2=m+1
2.用配方法解方程
48222+=++x x x
3、1)若x 2+4=0,则此方程解的情况是____________.
2)若2x 2-7=0,则此方程的解的情况是__________.
3)若5x 2=0,则方程解为________
4、由上题总结方程ax 2+c=0(a ≠0)的解的情况是:
当ac >0时__________________;当ac=0时__________________; 当ac <0时__________________.
5、关于x 的方程(x+m)2=n,下列说
法正确的是( )
A.有两个解x=±n
B.两个解x=±n -m
C.当n ≥0时,有两个解x=±m n -
D.当n ≤0时,方程无实根。