2020年高考数学二轮复习70分解答题专项特训-专题5直线与圆锥曲线(含答案解析)
- 格式:docx
- 大小:59.43 KB
- 文档页数:8
1.【答案】A【解析】抛物线28x y =的焦点为()0,2,∴椭圆的焦点在y 轴上,∴2c =, 由离心率12e =,可得4a =,∴2223b a c =-=,故234m n -=-.故选A . 2.【答案】D【解析】双曲线()2222:10,0x y C a b a b -=>>的离心率2ce a ==,224c a =,2222213b b a a =+⇒=,3ba=,故渐近线方程为3by x x a =±=±,故答案为D .3.【答案】C【解析】Q 1F 、2F 是椭圆()2222:10x y C a b a b+=>>的两个焦点,P 为椭圆C 上一点,12·0PF PF =u u r ru u u u u 可得12PF PF ⊥u u u r u u u u r , 122PF PF a ∴+=,222124PF PF c +=,12192PF PF =, ()2221212424PF PF c PF PF a ∴+=+=,()2223644a c b ∴=-=,3b ∴=,故选C .方法二:利用椭圆性质可得12222πtan tan924PF F S b b b θ====△,3b ∴=. 4.【答案】C【解析】设A 、B 在准线上的射影分别为为M 、N ,准线与横轴交于点H ,则FH p =,由于点F 是AC 的中点,4AF =,∴42AM p ==,∴2p =, 设BF BN x ==,则BN BC FH CF =,即424x x -=,解得43x =, 答案与解析一、选择题416433AB AF BF ∴=+=+=,故答案为C . 5.【答案】B【解析】∵双曲线()2222:10,0x y C a b a b -=>>的两条渐近线互相垂直,∴渐近线方程为y x =±,∴a b =.∵顶点到一条渐近线的距离为1,∴12=,∴a b ==, ∴双曲线C 的方程为22122x y -=,焦点坐标为()2,0-,()2,0,∴双曲线的一个焦点到一条渐近线的距离为d ==B .6.【答案】D【解析】因为()2220x ay a a +=≠,所以222+1x y a a=,所以当20a a >>时,表示A ;当2a a <时,表示B ;当20a a >>时,表示C ; 故选D . 7.【答案】D【解析】如图,已知24y x =,可知焦点()1,0F ,准线:1x =-,过点A 作准线的垂线,与抛物线交于点M ,作根据抛物线的定义,可知BM MF =,MF MA MB MA +=+取最小值,已知()3,2A ,可知M 的纵坐标为2,代入22y x =中,得M 的横坐标为2, 即()2,2M ,故选D . 8.【答案】B【解析】抛物线2:8C y x =的焦点()2,0F ,M 是C 上一点FM 的延长线交y 轴于点N .若M 为FN 的中点,可知M 的横坐标为1,则M 的纵坐标为±26FN FM ===,故选B .9.【答案】B【解析】因为直线210x y -+=与双曲线()222210,0x y a b a b -=>>交于A ,B 两点,且线段AB 的中点M 的横坐标为1,所以1OM k =,设()11,A x y ,()22,B x y ,则有122x x +=,122y y +=,121212y y x x -=-,12121OM y y k x x +==+, 22112222222211x y a b x y ab ⎧⎪⎪⎨-=-=⎪⎪⎩,两式相减可化为,1212221212110y y y y a b x x x x -+-⋅⋅=-+, 可得2212b a =,2a b ∴=,3c b =,双曲线的离心率为3622c a ==,故选B . 10.【答案】C【解析】如图,设左焦点为1F ,设圆与x 轴的另一个交点为B ,∵APQ △的一个内角为60︒,∴30PAF ∠=︒,1603PBF PF AF a c PF a c ∠=︒⇒==+⇒=+, 在1PFF △中,由余弦定理可得,22243403403c ac a e e e ⇒-=⇒-=⇒=--, 故答案为C . 11.【答案】A【解析】因为OPMN 是平行四边形,因此MN OP ∥且MN OP =, 故2N ay =,代入椭圆方程可得32N b x =,所以3tan 3ON a k b α==.因ππ,64α⎛⎫∈ ⎪⎝⎭,所以33133a b <<,即33133a b <<,所以3a b <,即()2223a a c <-,解得603c a <<,故选A . 12.【答案】C【解析】设M 为椭圆短轴一端点,则由题意得120AMB APB ∠≥∠=︒,即60AMO ∠≥︒, 因为tan a OMA b ∠=,所以tan603ab≥︒=,3a b ∴≥,()2223a a c ≥-, 2223a c ∴≤,223e ≥,63e ≥,故选C .13.【答案】221189x y -=【解析】设双曲线方程为222x y λ-=,双曲线过点()6,3M -,二、填空题则222362918x y λ=-=-⨯=,故双曲线方程为22218x y -=,即221189x y -=.14.【答案】22186x y +=【解析】∵个椭圆中心在原点,焦点1F ,2F 在x 轴上,∴设椭圆方程为()222210x y a b a b +=>>,∵(P 是椭圆上一点,且1PF ,12F F ,2PF 成等差数列, ∴2243124a b a c+==⎧⎪⎨⎪⎩,且222a b c =+,解得a =,b,c = ∴椭圆方程为22186x y +=,故答案为22186x y +=.15.【答案】2【解析】设()1,0F c -,()()2,00F c c >, 1F 关于直线y x =-的对称点P 坐标为()0,c ,点P 在椭圆上,则2201c a+=, 则1c b ==,2222a b c =+=,则a =故12PF F △的周长为1212222PF PF F F a c ++=+=. 16.【答案】2【解析】由抛物线定义可得MF MN ='l 倾斜角为π3,MN l ⊥, 所以π3NMF ∠=,即三角形MNF 为正三角形,因此NF 倾斜角为2π3,由22 2y pxp y x =⎫=-⎪⎧⎪⎨⎪⎩⎭, 解得6p x =或32p x =(舍),即6Q p x =,62226P P NQ P P QF ⎛⎫-- ⎪⎝⎭==-.。
2020高考数学大二轮专题突破文科通用直线与圆圆锥曲线精选试题1.(节选)已知圆M:x2+y2=r2(r>0)与直线l1:x-y+4=0相切,设点A为圆上一动点,AB⊥x轴于B,且动点N满足=2,设动点N的轨迹为曲线C.(1)求曲线C的方程;(2)略.2.(2019甘肃武威第十八中学高三上学期期末考试)已知圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.(1)求证:圆C1和圆C2相交;(2)求圆C1和圆C2的公共弦所在直线的方程和公共弦长.3.已知圆O:x2+y2=4,点A(,0),以线段AB为直径的圆内切于圆O,记点B的轨迹为Γ.(1)求曲线Γ的方程;(2)直线AB交圆O于C,D两点,当B为CD的中点时,求直线AB的方程.4.(2019全国卷1,理19)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.5.(2019天津河北区高三二模)已知椭圆C:=1(a>b>0)过点P(2,1),且短轴长为2.(1)求椭圆C的方程;(2)过点P作x轴的垂线l,设点A为第四象限内一点且在椭圆C上(点A不在直线l上),点A关于l的对称点为A',直线A'P与椭圆C交于另一点B.设O为坐标原点,判断直线AB与直线OP的位置关系,并说明理由.6.(2019天津第一中学高三下学期第五次月考)已知椭圆C1:=1(a>b>0)的左、右焦点为F1,F2,F2的坐标满足圆Q方程(x-)2+(y-1)2=1,且圆心Q满足|QF1|+|QF2|=2a.(1)求椭圆C1的方程;(2)过点P(0,1)的直线l1:y=kx+1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆Q于C,D两点,M为线段CD中点,若△MAB的面积为,求k的值.参考答案专题突破练24直线与圆及圆锥曲线1.解(1)设动点N(x,y),A(x0,y0),因为AB⊥x轴于B,所以B(x0,0).已知圆M的方程为x2+y2=r2,由题意得r==2,所以圆M的方程为x2+y2=4.由题意,=2,所以(0,-y0)=2(x0-x,-y),即将A(x,2y)代入圆M:x2+y2=4,得动点N的轨迹方程为+y2=1.(2)略.2.(1)证明圆C1的圆心C1(1,3),半径r1=,圆C2的圆心C2(5,6),半径r2=4, 两圆圆心距d=|C1C2|=5,r1+r2=+4,|r1-r2|=4-,所以|r1-r2|<d<r1+r2.所以圆C1和C2相交.(2)解将圆C1和圆C2的方程相减,得4x+3y-23=0,所以两圆的公共弦所在直线的方程为4x+3y-23=0.因为圆心C2(5,6)到直线4x+3y-23=0的距离为d==3,故两圆的公共弦长为2-=2.3.解(1)设AB的中点为M,切点为N,连接OM,MN,则|OM|+|MN|=|ON|=2,|AB|=|ON|-(|OM|-|MN|)=2-|OM|+|AB|,即|AB|+2|OM|=4.取A关于y轴的对称点A',连接A'B,则|A'B|=2|OM|,故|AB|+2|OM|=|AB|+|A'B|=4.所以点B的轨迹是以A',A为焦点,长轴长为4的椭圆.其中a=2,c=,b=1,则曲线Γ的方程为+y2=1.(2)因为B为CD的中点,所以OB⊥CD,则.设B(x0,y0),则x0(x0-)+=0.又=1,解得x0=,y0=±.则k OB=±,k AB=∓,则直线AB的方程为y=±(x-),即x-y-=0或x+y-=0.4.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,则x1+x2=--.从而--,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2.由可得y2-2y+2t=0.所以y1+y2=2.从而-3y2+y2=2,故y2=-1,y1=3.代入C的方程得x1=3,x2=.故|AB|=.5.解(1)由题意得解得∴椭圆C的方程为=1.(2)直线AB与直线OP平行,证明如下:由题意知,直线PA的斜率存在且不为零.PA,PA'关于l:x=2对称,则直线PA与PA'斜率互为相反数.设直线PA:y-1=k(x-2),PB:y-1=-k(x-2).设A(x1,y1),B(x2,y2).由消去y得(4k2+1)x2-(16k2-8k)x+16k2-16k-4=0, -∴2x1=--.∴x1=--.同理,x2=-.∴x1-x2=-.∵y1=k(x1-2)+1,y2=-k(x2-2)+1,∴y1-y2=k(x1+x2)-4k=-.∵A在第四象限,∴k≠0 且A不在直线OP上,∴k AB=-.-又k OP=,∴k AB=k OP.故直线AB与直线OP平行.6.解(1)因为F2的坐标满足圆Q方程(x-)2+(y-1)2=1,故当y=0时,x=,即F2(,0),故c=.因为圆心Q满足|QF1|+|QF2|=2a,所以点Q(在椭圆上,故有=1.联立方程组解得所以椭圆方程为=1.(2)因为直线l2交圆Q于C,D两点,M为线段CD的中点,所以QM与直线l2垂直.又因为直线l1与直线l2垂直,所以QM与直线l1平行.所以点M到直线AB的距离即为点Q到直线AB的距离.即点M到直线AB的距离为d=.设点A(x1,y1),B(x2,y2).联立方程组解得(1+2k2)x2+4kx-2=0,Δ=b2-4ac=16k2+8(2k2+1)=32k2+8>0,由韦达定理可得--则|x1-x2|=----.所以AB=|x1-x2|=.所以△MAB的面积为.所以.即·|k|=,两边同时平方,化简得,28k4-47k2-18=0,解得k2=2或k2=-(舍).故k=±.此时l2:y=±x+1.圆心Q到l2的距离h=-<1成立.综上所述,k=±.。
专题五 第3讲 直线与圆锥曲线一、选择题(每小题4分,共24分)1.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为A.x 242-y 232=1B.x 2132-y 252=1 C.x 232-y 242=1D.x 2132-y 2122=1 解析 对于椭圆C 1,a =13,c =5,曲线C 2为双曲线,c =5,a =4,b =3, 故标准方程为x 242-y 232=1.故选A.答案 A2.设双曲线x 2a 2-y 2b2=1的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为A.54 B .5C.52D. 5解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =bax ,由方程组⎩⎪⎨⎪⎧y =b ax ,y =x 2+1消去y ,得x 2-bax +1=0有唯一解,所以Δ=⎝ ⎛⎭⎪⎫b a 2-4=0,所以b a =2,e =c a =a 2+b 2a=1+⎝ ⎛⎭⎪⎫b a 2=5,故选D. 答案 D3.(2012·惠州模拟)已知双曲线x 2-y 22=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1→·MF 2→=0,则点M 到x 轴的距离为A. 3B.233C.43D.53解析 设|MF 1→|=m ,|MF 2→|=n ,由⎩⎨⎧m 2+n 2=|F 1F 2→|2=12|m -n |=2,得m ·n =4,由S △F 1MF 2=12m ·n =12|F 1F 2|·d ,解得d =233.故选B.答案 B4.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点.则cos ∠AFB =A.45 B.35 C .-35D .-45解析 设点A (x 1,y 1),B (x 2,y 2).由题意,得点F (1,0),由⎩⎪⎨⎪⎧y 2=4x ,y =2x -4消去y ,得x 2-5x +4=0,x =1或x =4,因为点A (1,-2)、B (4,4),FA →=(0,-2),FB →=(3,4), cos ∠AFB =FA →·FB →|FA →||FB →|=0×3+-2×42×5=-45,故选D.答案 D5.(2012·课标全国卷)设F 1,F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为A.12 B.23 C.34D.45解析 利用椭圆的离心率概念结合图形求解. 由题意,知∠F 2F 1P =∠F 2PF 1=30°,∴∠PF 2x =60°.∴|PF 2|=2×⎝ ⎛⎭⎪⎫32a -c =3a -2c .∵|F 1F 2|=2c ,|F 1F 2|=|PF 2|,∴3a -2c =2c , ∴e =c a =34.答案 C6.在△ABC 中,已知A (-4,0),B (4,0),且sin A -sin B =12sin C ,则C 的轨迹方程是A.x 24+y 212=1 B.x 24-y 212=1(x <-2) C.x 212-y 24=1D.x 212-y 214=1(y ≠1) 解析 在△ABC 中,由正弦定理可得: sin A -sin B =12sin C ⇔a -b =12c ,即|CB |-|CA |=4,故C 点的轨迹为双曲线的一支, 由A (-4,0),B (4,0)为焦点,2a =4可得 其方程为x 24-y 212=1(x <-2). 答案 B二、填空题(每小题5分,共15分)7.(2012·武汉模拟)已知F 1、F 2是双曲线x 216-y 29=1的焦点,PQ 是过焦点F 1的弦,那么|PF 2|+|QF 2|-|PQ |的值是________.解析 因为双曲线方程为x 216-y 29=1,所以2a =8.由双曲线的定义得|PF 2|-|PF 1|=2a =8,① |QF 2|-|QF 1|=2a =8,② ①+②,得|PF 2|+|QF 2|-(|PF 1|+|QF 1|)=16. 所以|PF 2|+|QF 2|-|PQ |=16. 答案 168.设已知抛物线C 的顶点在坐标原点,焦点为F (1,0),直线l 与抛物线C 相交于A ,B 两点.若AB 的中点为(2,2),则直线l 的方程为________.解析 由已知,得抛物线方程为y 2=4x .直线l 的斜率不存在时,根据抛物线的对称性,点(2,2)不可能是AB 的中点,故直线l 的斜率存在,设其为k ,则直线l 的方程是y -2=k (x -2)且k ≠0,与抛物线方程联立,消掉x ,则y 2-4⎝⎛⎭⎪⎫y -2k +2=0,即y 2-4k y +8k -8=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4k ,又y 1+y 22=2,即2k =2,解得k =1,故所求的直线方程是y -2=x -2,即y =x .答案 y =x9.已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP →·QF →=FP →·FQ →,则动点P 的轨迹C 的方程是________.解析 设点P (x ,y ),则Q (-1,y ), 由QP →·QF →=FP →·FQ →,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ), 化简,得y 2=4x .故填y 2=4x . 答案 y 2=4x三、解答题(每小题12分,共36分)10.椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,点P 在椭圆上,∠F 1PF 2=60°,设|PF 1||PF 2|=λ. (1)当λ=2时,求椭圆离心率;(2)当椭圆离心率最小时,PQ 为过椭圆右焦点F 2的弦,且|PQ |=165,求椭圆的方程.解析 (1)∵|PF 1||PF 2|=2,∴|PF 1|=2|PF 2|,又|PF 1|+|PF 2|=2a ,∴|PF 1|=43a ,|PF 2|=23a ,cos ∠F 1PF 2=|PF 1|+|PF 2|2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1||PF 2|=12,∴4a 2-4c 22·89a 2=32,∴c 2a 2=13,∴e =33.(2)依题意得,⎩⎪⎨⎪⎧|PF 1|=λ|PF 2||PF 1|+|PF 2|=2a⇒⎩⎪⎨⎪⎧|PF 1|=λ1+λ·2a |PF 2|=11+λ·2a ,cos ∠F 1PF 2=|PF 1|+|PF 2|2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1||PF 2|=12,∴4a 2-4c 24a 2λ1+λ2=3,∴1-e 2=3λ1+λ2,∴e 2=1-3λ1+2λ+λ2=1-31λ+2+λ≥1-34=14,当λ=1时,上式取等号,|PF 2|=11+λ·2a =a ,∴P (0,b ),(或P (0,-b ),由对称性可知仅研究其一即可) ∴当e =12时,PQ 所在直线的斜率k =-bc =-3,∴PQ 所在直线的方程是y =-3(x -c ). 设Q (x 1,y 1),由⎩⎪⎨⎪⎧x 24c 2+y 23c 2=1y =-3x -c⇒5x 2-8cx =0,∴x 1=8c 5,y 1=-33c 5,|PQ |=⎝ ⎛⎭⎪⎫8c 52+⎝ ⎛⎭⎪⎫b +33c 52=165,∴c =1,∴所求椭圆方程为x 24+y 23=1.11.(2012·福州模拟)已知椭圆G 的中心在坐标原点,焦点在x 轴上,一个顶点为A (0,-1),离心率为63. (1)求椭圆G 的方程.(2)设直线y =kx +m 与椭圆相交于不同的两点M ,N .当|AM |=|AN |时,求m 的取值范围.解析 (1)依题意可设椭圆方程为x 2a 2+y 2=1,则离心率e =c a =63,故c 2a 2=23,而b 2=1,解得a 2=3, 故所求椭圆的方程为x 23+y 2=1.(2)设P (x P ,y P )、M (x M ,y M )、N (x N ,y N ),P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m x 23+y 2=1得(3k 2+1)x 2+6mkx +3(m 2-1)=0,∵直线与椭圆相交,∴Δ=(6mk )2-4(3k 2+1)×3(m 2-1)>0 ⇒m 2<3k 2+1,①∴x P =x M +x N2=-3mk 3k 2+1,从而y P =kx P +m =m3k 2+1,当k ≠0时,∴k AP =y P +1x P =-m +3k 2+13mk(m =0不满足题目条件)∵|AM |=|AN |,∴AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1,②把②代入①得m 2<2m ,解得0<m <2, 由②得k 2=2m -13>0,解得m >12.故12<m <2. 当k =0时,∵直线y =m 是平行于x 轴的一条直线, ∴-1<m <1,综上,求得m 的取值范围是-1<m <2.12.(2012·西城一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为53,定点M (2,0),椭圆短轴的端点是B 1,B 2,且MB 1⊥MB 2.(1)求椭圆C 的方程.(2)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分∠APB ?若存在,求出点P 的坐标;若不存在,说明理由.解析 (1)由59=e 2=a 2-b 2a 2=1-b 2a 2,得b a =23.依题意△MB 1B 2是等腰直角三角形,从而b =2, 故a =3.所以椭圆C 的方程是x 29+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +2.将直线AB 的方程与椭圆C 的方程联立,消去x 得(4m 2+9)y 2+16my -20=0. 所以y 1+y 2=-16m 4m 2+9,y 1y 2=-204m 2+9.若PF 平分∠APB ,则直线PA ,PB 的倾斜角互补,所以k PA +k PB =0. 设P (a,0),则有y 1x 1-a +y 2x 2-a=0.将x 1=my 1+2,x 2=my 2+2代入上式, 整理得2my 1y 2+2-a y 1+y 2my 1+2-a my 2+2-a=0,所以2my 1y 2+(2-a )(y 1+y 2)=0. 将y 1+y 2=-16m 4m 2+9,y 1y 2=-204m 2+9代入上式, 整理得(-2a +9)·m =0.由于上式对任意实数m 都成立, 所以a =92.综上,存在定点P ⎝ ⎛⎭⎪⎫92,0,使PM 平分∠APB .。
高考数学复习—圆锥曲线练习试卷 第Ⅰ卷 (选择题 共50分)一、选择题(10×5′=50′)1.已知有向线段PQ 的起点P (-1,1),终点Q (2,2), 若直线l :x +my +m =0与有向线段PQ 的延长线相交,如图所示, 则m 的取值范围是 ( )A.⎪⎭⎫ ⎝⎛23,31 B.⎪⎭⎫ ⎝⎛--32,3 C.(-∞,-3) D.⎪⎭⎫ ⎝⎛+∞-,322.若P (x 1,y 1)是直线l :f (x ,y )=0上的一点,Q (x 2,y 2)是直线l 外一点,则方程f (x ,y )=f (x 1,y 1)+f (x 2,y 2)表示的直线 ( )A.与l 重合B.与l 相交于点P C.过点Q且与l 平行 D.过点Q 且与l 相交 3.直线l :y =kx +1(k ≠0),椭圆E :1422=+y m x .若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 所截弦长不是d 的直线是 ( )A.kx +y +1=0B.kx -y -1=0C.kx +y -1=0D.kx +y =04.若m 、n 是不大于6的非负整数,则C m 6x 2+C n 6y 2=1表示不同的椭圆的个数为 ( )A.A 27B.C 26C.A 24D.C 245.在椭圆上一点A 看两焦点F 1、F 2的视角为直角,设AF 1的延长线交椭圆于点B ,又|AB |=|AF 2|,则椭圆的离心率e 可能为 ( )第1题图A.2-22B.36- C.2-1 D.23-6.F 1、F 2分别为椭圆1422=+y x 的左、右焦点,AB 为其过点F 2且斜率为1的弦,则A F 1·B F 1的值为 ( )A.523 B.326 C.546 D.57.如果把圆C :x 2+y 2=1沿向量a =(1,m )平移到C ′,且C ′与直线3x -4y =0相切,则m 的值为 ( )A.2或-21 B.2或21 C.-2或21 D.-2或-218.在圆x 2+y 2=5x 内,过点⎪⎭⎫⎝⎛23,25有n 条弦的长度成等差数列,最小弦长为数列的首项a 1,最大弦长为a n ,若公差d ∈⎥⎦⎤⎢⎣⎡31,61,那么n 的取值集合为( )A.{3,4,5}B.{4,5,6}C.{3,4,5,6}D.{4,5,6,7} 9.若当p (m ,n )为圆x 2+(y -1)2=1上任意一点时,不等式m+n+c ≥0恒成立,则c 的取值范围是 ( )A.-1-2≤c ≤2-1 B.2-1≤c ≤2+1C.c ≤-2-1 D.c ≥2-110.过抛物线y 2=8(x +2)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,使|AF |>|BF |,过点A 作与x 轴垂直的直线交抛物线于点C ,则△BCF的面积是 ( )A.64B.32C.16D.8 二、填空题(4×4′=16′)11.一个圆周上有10个点,每两点连成一条弦,这些弦在圆内的交点最多有 个.12.设圆C 经过点M (-2,0)和点N (9,0),直线l 过坐标原点,圆C 与直线l 相交于点P 、Q ,当直线l 绕原点在坐标平面内旋转时,弦PQ 长度的最小值是 .13.函数y =x1的图象是平面上到两定点距离之差的绝对值等于定长的点的轨迹,则这个定长是 .14.椭圆12222=+b y a x (a>b>0)的两焦点为F 1、F 2,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为 . 三、解答题(4×10′+14′=54′)15.对任意的实数λ,直线(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2)的距离为d ,求d 的取值范围.16.已知椭圆E :12222=+b y a x (a>b>0),以F 1(-c ,0)为圆心,以a-c 为半径作圆F 1,过点B 2(0,b )作圆F 1的两条切线,设切点为M 、N.(1)若过两个切点M 、N 的直线恰好经过点B 1(0,-b )时,求此椭圆的离心率;(2)若直线MN 的斜率为-1,且原点到直线MN 的距离为4(2-1),求此时的椭圆方程;(3)是否存在椭圆E ,使得直线MN 的斜率k 在区间(-33,22)内取值?若存在,求出椭圆E 的离心率e 的取值范围;若不存在,请说明理由.17.椭圆的焦点在y 轴上,中心在原点,P 为椭圆上一点,F 1、F 2为椭圆两焦点,点P 到两准线的距离分别为556和5512,且PF 1⊥PF 2.(1)求椭圆的方程;(2)过点A (3,0)的直线l 与椭圆交于M 、N 两点,试判断线段MN 的中点Q 与点B (0,2)的连线能否过椭圆的顶点,若能则求出l 的方程,若不能则说明理由.18.椭圆E 的中心在原点O ,焦点在x 轴上,离心率e =32,过点C (-1,0)的直线l 交椭圆于A 、B 两点,且满足:CA =λBC .(1)若λ为常数,试用直线l 的斜率k (k ≠0)表示△OAB 的面积; (2)若λ为常数,当△OAB 的面积取得最大值时,求椭圆E 的方程;(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程.19.有一张矩形纸片ABCD,如图(1)所示那样折叠,使每次折叠后,点A都落在DC边上,试确定:是否存在一条曲线,使这条曲线上的每一点都是某条折痕(满足以上条件)与该曲线的切点,且每条折痕与该曲线相切[如图(2)].第19题图圆锥曲线练习参考答案一、选择题1.B 易知k PQ =31)1(212=---,直线x+my+m =0过点M (0,-1).当m =0时,直线化为x =0,一定与PQ 相交,所以m ≠0. 当m ≠0时,k 1=-m1.考虑直线l 的两个极限位置.(1)l 经过点Q ,即直线为l 1,则k 1l =2302)1(2=---.(2)l 与PQ 平行,即直线为l 2,则k 2l =k PQ =31.∴31<-m1<23.∴-3<m <-32.故选B.2.C 由题意知f (x 1,y 1)=0,f (x 2,y 2)=m (m 为非零常数).所以方程f (x ,y )=f (x 1,y 2)+f (x 2,y 2),即f (x ,y )-m=0.所以f (x )表示的直线过点Q,且平行于直线l .3.D 因为A 、B 、C 三个选项分别是直线l 关于x 轴、原点、y 轴的对称直线,又椭圆E 关于x 轴、原点、y 轴都对称,所以A 、B 、C 三个选项所表示的直线被椭圆E 所截弦长都是d .故选D.4.C 因为C m6只有4个不同的值,故选C.5.B 由题意知|AF 1|≠|AF 2|.∴2(|AF 1|2+|AF 2|2)>(|AF 1|+|AF 2|)2.∴2×4c 2>4a 2.∴e =ac >22≈0.707.对照备选答案,只有B 可能.6.C 分析 本题可把直线AB 与椭圆两方程联立求出A 、B 坐标后写出A F 1、B F 1的坐标表示,再按定义进行.也可先求出向量A F 2、B F 2,利用A F 1·B F 1=(21F F +A F 2)·(21F F +B F 2)来做.解法一 ⎪⎩⎪⎨⎧-==+3,1422x y y x 消去y 得5x 2-83x +8=0,设A (x 1,y 1),B (x 2,y 2). ∴A F 1·B F 1=(x 1+3,y 1)·(x 2+3,y 2)=(x 1+3,x 1-3)·(x 2+3,x 2-3)=(x 1+3)(x 2+3)+(x 1-3)(x 2-3)=2(x 1x 2+3)=2(58+3)=546,选C.解法二 设直线AB 方程为⎪⎪⎩⎪⎪⎨⎧=+=223t y t x ,代入椭圆方程1422=+y x ,有5t 2+26t -2=0A F 1·B F 1=(21F F +A F 2)·(21F F +B F 2)=(21F F )2+21F F ·(A F 2+B F 2)+A F 2·B F 2=(23)2+23·⎪⎪⎭⎫ ⎝⎛-562·21+⎪⎭⎫ ⎝⎛-52=546.选C. 7.A 平移后圆的方程为(x -1)2+(y -m )2=1.由题意知平移后所得的圆的圆心到直线的距离d =2243|43|+-m =1,解得m =2或-21.8.D 如图,⊙C 的圆心为C (0,25),半径R =|CB |=25,最短弦a 1=|AB |=4,最长弦a n =|DE |=5.由a n =a 1+(n -1)d ,得d =1111-=--n n a an ,已知d ∈⎥⎦⎤⎢⎣⎡31,61,∴n -1∈[3,6],n ∈[4,7],即n =4,5,6,7.选D.9.D 本题是解析几何题型,而又求数的范围,故适合用数形结合思想直观解之.如图,圆C 恒在直线y =-x-c 上方,至少直线l 与圆相切于A 点,若l 交y 轴于B ,∵k l =-1,∴△ABC 为等腰直角三角形.|AB |=|AC |=1,|BC |=2,必有B (-2+1,0),即直线的纵截距-c ≤-2+1时圆恒在直线l 上方,∴c ≥2-1.选D.10.C 分析 如图由抛物线关于x 轴对称知∠AFC =90°,第8题图解第9题图解△BFC 为Rt △,只须求FB 、FC 之长即可.解 抛物线顶点为(-2,0),且焦参数p =4,知焦点F (0,0)为原点. ∴直线AB 的方程为y=x ,代入抛物线方程:x 2=8(x +2). 即(x -4)2=32,∴x =4±42.故有A (4+42,4+42),B (4-42,4-42),C (4+42,-4-42).由条件知∠AFx =∠CFx =45°,∴在△BFC 中∠BFC =90°. ∴S △BFC =21|FB|·|FC |=212222)424()424()424()424(--++⋅-+-=22)424()424(+-=32-16=16.∴选C.二、填空题11.210 分析 本题直接求解较难,可转化为求圆的内接四边形的个数(由于每一个四边形,对应着对角线的一个交点),从而使问题简化.解 在圆内相交于一点的两弦,可作为一个四边形的两条对角线,它对应着一个圆内接四边形.反之,每一个圆内接四边形,都对应着对角线的一个交点.这样,圆内接四边形与弦在圆内的交点可建立一一对应的关系.因此,弦在圆内的交点最多有C 410=210个.12.62当直线l 绕原点O 旋转到使OC 垂直于l 时,|PQ |最小.因为O 为PQ 的中点,所以由相交弦定理得|OP ||OQ |=|OM ||ON |=18,即|OP |2=18,所以|OP |=32.所以|PQ |=2|OP |=62.13.22 由⎪⎩⎪⎨⎧==.,1x y x y 得A (-1,-1)、B (1,1),所以2a =|AB |=22.14.3-1 设过左焦点F 1的正三角形的边交椭圆于点A ,则|AF 1|=c ,|AF 2|=3c .∴2a =(1+3)c .∴e =ac =13312-=+. 三、解答题15.解 将原方程化为(2x -y -6)+λ(x-y -4)=0,它表示的是过两直线2x -y -6=0和x -y -4=0交点的直线系方程,但其中不包括直线x -y -4=0.因为没有λ的值使其在直线系中存在.解方程组⎩⎨⎧=--=--.04,062y x y x 得⎩⎨⎧-==.2,2y x 所以交点坐标为(2,-2).当所求直线过点P和交点时,d 取最小值为0;当所求直线与过点P和交点的直线垂直时,d 取最大值,此时有d =24)22()22(22=--++.但是此时所求直线方程为x-y -4=0.而这条直线在直线系中不存在.所以d 的取值范围是[)24,0.16.解 (1)圆F 1的方程是(x+c )2+y 2=(a-c )2,因为B 2M 、B 2N 与该圆切于M 、N 点,所以B 2、M 、F 1、N 四点共圆,且B 2F 1为直径,则过此四点的圆的方程是(x +2c )2+(y -2b )2=422b c+,从而两个圆的公共弦MN 的方程为cx +by +c 2=(a-c )2,又点B 1在MN 上,∴a 2+b 2-2ac =0,∵b 2=a 2-c 2, ∴2a 2-2ac -c 2=0,即e 2+2e -2=0,∴e =3-1.(负值已舍去)(2)由(1)知,MN 的方程为cx+by+c 2=(a-c )2,由已知-bc =-1. ∴b=c ,而原点到MN 的距离为d =aa ac bc c a c |2||)(|22222-=+--=|2c-a |=(2)a ,∴a =4,b2=c2=8,所求椭圆方程是181622=+y x; (3)假设这样的椭圆存在,由(2)则有-22<-b c <-33,∴33<b c <22,∴31<22bc <21,∴31<222c a c -<21.故得2<222c c a -<3,∴3<22ca <4,求得21<e <33,即当离心率取值范围是(21,33)时,直线MN 的斜率可以在区间(22,-33)内取值.17.解 (1)设椭圆的方程为12222=+a y b x (a>b>0),c =22b a -, |PF 1|=m ,|PF 2|=n ,则由题意和椭圆的性质得m+n =2a ,n =2m ,m 2+n 2=4c 2,551822=ca解得a =3,b =2,c =5.故所求的椭圆方程为19422=+y x . (2)由(1)知直线l 与椭圆相交时斜率一定存在,故设l 的方程为y =k (x -3),代入19422=+y x ,整理得(9+4k 2)x 2-24k 2x +36k 2-36=0 由Δ=(-24k 2)2-4(9+4k 2)(36k 2-36)>0, 得-553553<<k .设M (x 1,y 1),N (x 2,y 2),Q (x 0,y 0)则x 0=222149122k k x x +=+,y 0=k (x 0-3)=-24927k k+当k =0时,Q 为坐标原点,BQ 过椭圆顶点(0,3)和(0,-3),此时l 的方程为y =0;当k ≠0时,x 0≠0,则直线BQ 的方程为y =002x y -x +2,若直线BQ 过顶点(2,0),则002x y -×2+2=0,即x 0+y 0=2,所以22249274912k k k k +++=2⇒4k 2-27k -18=0, 解得k =8113327-或k =8113327+(舍去)此时l 的方程为y =8113327-x +2若直线BQ 过顶点(-2,0),则002x y -×(-2)+2=0,即x 0-y 0=-2,所以22249274912k kk k +-+=-2⇒20k 2+27k +18=0.方程无实根,直线l 不存在 18.解 设椭圆方程为12222=+b y a x (a>b >0). 由e =ac=32及a 2=b 2+c 2得a 2=3b 2,故椭圆方程为x 2+3y 2=3b 2①(1)∵直线l :y =k (x +1)交椭圆于A (x 1,y 1),B (x 2,y 2)两点,并且CA =λBC (λ≥2),∴(x 1+1,y 1)=λ(-1-x 2,-y 2),即⎩⎨⎧λ-=+λ-=+2121)1(1y y x x ②把y =k (x +1)代入椭圆方程,得(3k 2+1)x 2+6k 2x +3k 2-3b 2=0,且k 2(3b 2-1)+b 2>0,∴x 1+x 2=-13622+k k , ③x 1x 2=1333222+-k b k , ④∴S △OAB =21×1×|y 1-y 2|=21|λ+1|·|y 2|=2|1|+λ·|k |·|x 2+1|. 联立②、③得x 2+1=)13)(1(22+λ-k ,∴S △OAB =11-λ+λ·13||2+k k (k ≠0),(2)S △OAB =11-λ+λ·||1||31k k +≤32111⋅-λ+λ(λ≥2).当且仅当3|k |=||1k ,即k =±33时,S △OAB 取得最大值,此时,x 1+x 2=-1,又∵x 1+1=-λ(x 2+1), ∴x 1=11-λ,x 2=1-λλ-,代入④得3b 2=22)1(1-λ+λ故此时椭圆的方程为x 2+3y2=22)1(1-λ+λ(λ≥2).(3)由②、③联立得:x 1=1)13)(1(22-+λ-λ-k ,x 2=1)13)(1(22-+λ--k , 将x 1、x 2代入④,得3b 2=1)13()1(422++⋅-λλk .由k2=λ-1得3b 2=1)23()1(42+-λ⋅-λλ=⎥⎥⎦⎤⎢⎢⎣⎡-λ-λ+-λ)23()1(2)1(13422+1. 易知,当λ≥2时,3b 2是λ的减函数,故当λ=2时,(3b 2)max =3. 故当λ=2,k =±1时,椭圆短半轴长取得最大值,此时椭圆方程为x 2+3y 2=3.19.解 以AD 的中点为原点建立直角坐标系(如图), 设|AD |=p ,则点A 的坐标为(0,-2p ).A ′是DC 上任意一点,EF 是A 与A ′重合时的折痕,易证:EF 是AA ′的中垂线,过A ′作A ′T ⊥DC ,交EF 于T ,设T 的坐标为(x ,y ),于是有|A ′T |=2p -y ,|AT |=22)2(p y x ++,由|TA ′|=|AT |,得 (2p -y )2= x 2+(y +2p )2,整理得y =-p21x 2,由此可知点T 的轨迹为一段抛物线,下面证明每一条折痕EF 与抛物线y =-p21x 2相切于点T ,设AA ′的斜率为k ,则易得k =A x p ',由于EF 是AA ′的中垂线,所以EF 的方程为y =-)2(A A xx p x ''-. 联立直线EF与抛物线的方程:⎪⎪⎩⎪⎪⎨⎧-=--=''.21),2(2x py xx p x y A A第19题图解得x 2-2x A ′·x +x 2A ′=0,(x -x A ′)2=0,解得重根x =x A ′,直线EF 与抛物线y =-p21x 2相切于点T ,故存在一条曲线(抛物线),这条曲线(抛物线)上的每一点都是某条折痕与该曲线的切点,且每条折痕与该曲线相切.。
第2讲 圆锥曲线的定义、方程及性质[做小题——激活思维]1.椭圆C :x 225+y 216=1的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A ,B 两点,则△F 1AB 的周长为( )A .12B .16C .20D .24 C [△F 1AB 的周长为 |F 1A |+|F 1B |+|AB |=|F 1A |+|F 2A |+|F 1B |+|F 2B | =2a +2a =4a .在椭圆x 225+y 216=1中,a 2=25,a =5,∴△F 1AB 的周长为4a =20,故选C.]2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线D [由已知得|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.]3.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左、右两个焦点,若|PF 1|=9,则|PF 2|=________.17 [由题意知|PF 1|=9<a +c =10,所以P 点在双曲线的左支,则有|PF 2|-|PF 1|=2a =8,故|PF 2|=|PF 1|+8=17.]4.设e 是椭圆x 24+y 2k =1的离心率,且e =23,则实数k 的值是________.209或365[当k >4时,有e =1-4k =23,解得k =365;当0<k <4时,有e =1-k4=23,解得k =209.故实数k 的值为209或365.]5.双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.5 [∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3ax .又双曲线的一条渐近线方程为y =35x ,∴a =5.]6.抛物线8x 2+y =0的焦点坐标为________.⎝ ⎛⎭⎪⎫0,-132 [由8x 2+y =0,得x 2=-18y . ∴2p =18,p =116,∴焦点为⎝⎛⎭⎪⎫0,-132.][扣要点——查缺补漏]1.圆锥曲线的定义及标准方程(1)应用圆锥曲线的定义解题时,一定不要忽视定义中的隐含条件,如T 3.(2)凡涉及椭圆或双曲线上的点到焦点的距离、抛物线上的点到焦点距离,一般可以利用定义进行转化.如T 1,T 2.(3)求解圆锥曲线的标准方程的方法是“先定型,后计算”. 2.圆锥曲线的几何性质(1)确定椭圆和双曲线的离心率的值及范围,就是确立一个关于a ,b ,c 的方程(组)或不等式(组),再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,如T 4.(2)要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.圆锥曲线的定义与标准方程(5年4考)[高考解读] 高考对圆锥曲线的定义及标准方程的直接考查较少,多对于圆锥曲线的性质进行综合考查.1.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 切入点:|AF 2|=2|F 2B |,|AB |=|BF 1|.关键点:挖掘隐含条件,确定点A 的位置,求a ,b 的值.B [设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆定义可得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|, ∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又∵|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴B ⎝ ⎛⎭⎪⎫32,-b 2.将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选B.]2.(2015·全国卷Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.切入点:△APF 的周长最小.关键点:根据双曲线的定义及△APF 周长最小,确定P 点坐标.126 [由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P 在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长=|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+662=15为定值,所以当(|AP |+|PF 1|)最小时,△APF 的周长最小,由图象可知,此时点P 在线段AF 1与双曲线的交点处(如图所示).由题意可知直线AF 1的方程为y =26x +66,由⎩⎪⎨⎪⎧y =26x +66,x 2-y 28=1,得y 2+66y -96=0,解得y =26或y =-86(舍去), 所以S △APF =S △AF 1F -S △PF 1F=12×6×66-12×6×26=12 6.] [教师备选题]1.[一题多解](2015·全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.x 24-y 2=1 [法一:∵双曲线的渐近线方程为y =±12x , ∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3), ∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上,故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1.]2.(2018·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 23-y 29=1B.x 29-y 23=1C.x 24-y 212=1 D.x 212-y 24=1 A [设双曲线的右焦点为F (c,0).将x =c 代入x 2a 2-y 2b 2=1,得c 2a 2-y 2b 2=1,∴ y =±b 2a.不妨设A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a . 双曲线的一条渐近线方程为y =bax ,即bx -ay =0,则d 1=⎪⎪⎪⎪⎪⎪b ·c -a ·b 2a b 2+-a2=|bc -b 2|c=bc(c -b ),d 2=⎪⎪⎪⎪⎪⎪b ·c +a ·b 2a b 2+-a2=|bc +b 2|c=bc(c +b ),∴ d 1+d 2=bc·2c =2b =6,∴ b =3. ∵ c a=2,c 2=a 2+b 2,∴ a 2=3, ∴ 双曲线的方程为x 23-y 29=1.故选A.]1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d (d 为M 点到准线的距离).易错提醒:应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误. 2.求解圆锥曲线标准方程的方法是“先定型,后计算”(1)定型:就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程; (2)计算:即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线方程常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆方程常设为mx 2+ny 2=1(m >0,n >0,且m ≠n ),双曲线方程常设为mx 2-ny 2=1(mn >0).1.(椭圆的定义)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514 B.59 C.49 D.513D [如图,设线段PF 1的中点为M ,因为O 是F 1F 2的中点,所以OM ∥PF 2,可得PF 2⊥x 轴,|PF 2|=b 2a =53,|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=513.故选D.]2.(双曲线的标准方程)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为45,渐近线方程为2x ±y =0,则双曲线的方程为( )A.x 24-y 216=1 B.x 216-y 24=1 C.x 216-y 264=1 D.x 264-y 216=1 A [易知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点在x 轴上,所以由渐近线方程为2x ±y =0,得b a=2,因为双曲线的焦距为45,所以c =2 5.结合c 2=a 2+b 2,可得a =2,b =4,所以双曲线的方程为x 24-y 216=1.]3.(抛物线的定义)过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A ,B 两点,若|AF |=2|BF |=6,则p =________.4 [设直线AB 的方程为x =my +p2,A (x 1,y 1),B (x 2,y 2),且x 1>x 2,将直线AB 的方程代入抛物线方程得y 2-2pmy -p 2=0,所以y 1y 2=-p 2,4x 1x 2=p 2.设抛物线的准线为l ,过A 作AC ⊥l ,垂足为C (图略),过B 作BD ⊥l ,垂足为D ,因为|AF |=2|BF |=6,根据抛物线的定义知,|AF |=|AC |=x 1+p 2=6,|BF |=|BD |=x 2+p2=3,所以x 1-x 2=3,x 1+x 2=9-p ,所以(x 1+x 2)2-(x 1-x 2)2=4x 1x 2=p 2,即18p -72=0,解得p =4.]圆锥曲线的性质(5年17考)[高考解读] 高考对圆锥曲线性质的考查主要涉及椭圆和双曲线的离心率、双曲线的渐近线,难度适中.1.(2019·全国卷Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p=( )A .2B .3C .4D .8 切入点:抛物线的焦点是椭圆的焦点. 关键点:正确用p 表示抛物线和椭圆的焦点.D [抛物线y 2=2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆x 23p +y 2p=1的焦点坐标为(±2p ,0).由题意得p2=2p ,∴p =0(舍去)或p =8.故选D.]2.(2019·全国卷Ⅱ)设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3 C .2 D. 5切入点:以OF 为直径的圆与圆x 2+y 2=a 2相交且|PQ |=|OF |.关键点:正确确定以OF 为直径的圆的方程.A [令双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c,0),则c =a 2+b 2.如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c2,由|OM |2+|MP |2=|OP |2,得⎝ ⎛⎭⎪⎫c 22+⎝ ⎛⎭⎪⎫c 22=a 2,∴c a =2,即离心率e = 2.故选A.]3.[一题多解](2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)切入点:C 上存在点M 满足∠AMB =120°.关键点:求椭圆上的点与椭圆两端点连线构成角的范围建立关于m 的不等式. A [法一:设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0).故tan∠AMB =tan(∠AMN +∠BMN ) =3+x |y |+3-x |y |1-3+x |y |·3-x |y |=23|y |x 2+y 2-3. 又tan∠AMB =tan 120°=-3,且由x 23+y 2m =1可得x 2=3-3y 2m,则23|y |3-3y 2m+y 2-3=23|y |⎝ ⎛⎭⎪⎫1-3m y2=- 3. 解得|y |=2m3-m. 又0<|y |≤m ,即0<2m3-m ≤m ,结合0<m <3解得0<m ≤1.对于焦点在y 轴上的情况,同理亦可得m ≥9. 则m 的取值范围是(0,1]∪[9,+∞).故选A.法二:当0<m <3时,焦点在x 轴上, 要使C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°=3,即3m≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°=3,即m3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞). 故选A.] [教师备选题]1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x A [因为双曲线的离心率为3,所以c a=3,即c =3a .又c 2=a 2+b 2,所以(3a )2=a 2+b 2,化简得2a 2=b 2,所以b a = 2.因为双曲线的渐近线方程为y =±bax ,所以y =±2x .故选A.]2.(2017·全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32D [因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D.]3.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13A [由题意知以A 1A 2为直径的圆的圆心坐标为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2aba 2+b2=a ,解得a =3b ,∴b a=13,∴e =c a =a 2-b 2a=1-⎝ ⎛⎭⎪⎫b a 2=1-⎝ ⎛⎭⎪⎫132=63. 故选A.]1.椭圆、双曲线的离心率(或范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求ca的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或a b的值.②利用渐近线方程设所求双曲线的方程.1.(椭圆的离心率)[一题多解]直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34B [法一:如图,|OB |为椭圆中心到l 的距离,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b 2,所以e =c a =12.故选B.法二:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),由题意可取直线l 的方程为y =ba 2-b 2x +b ,椭圆中心到l 的距离为b a 2-b 2a ,由题意知b a 2-b 2a =14×2b ,即a 2-b 2a =12,故离心率e =12.] 2.(双曲线的离心率)设F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,M为双曲线右支上一点,N 是MF 2的中点,O 为坐标原点,且ON ⊥MF 2,3|ON |=2|MF 2|,则C 的离心率为( )A .6B .5C .4D .3B [连接MF 1(图略),由双曲线的定义得|MF 1|-|MF 2|=2a ,因为N 为MF 2的中点,O 为F 1F 2的中点,所以ON ∥MF 1,所以|ON |=12|MF 1|,因为3|ON |=2|MF 2|,所以|MF 1|=8a ,|MF 2|=6a ,因为ON ⊥MF 2,所以MF 1⊥MF 2,在Rt△MF 1F 2中,由勾股定理得(8a )2+(6a )2=(2c )2,即5a =c ,因为e =c a,所以e =5,故选B.]3.(椭圆与抛物线的综合)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12B [抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2.从而椭圆E 的半焦距c=2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),因为离心率e =c a =12,所以a =4,所以b 2=a2-c 2=12.由题意知|AB |=2b 2a =2×124=6.故选B.]直线与圆锥曲线的综合问题(5年5考)[高考解读] 直线与圆锥曲线的位置关系是每年高考的亮点,主要涉及直线与抛物线、直线与椭圆的综合问题,突出考查研究直线与圆锥曲线位置关系的基本方法,注意通性通法的应用,考查考生的逻辑推理和数学运算核心素养.角度一:直线与圆锥曲线的位置关系1.(2018·全国卷Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .切入点:①直线l 过点A ;②l 与C 交于M ,N 两点;③l 与x 轴垂直. 关键点:将问题转化为证明k BM 与k BN 具有某种关系.[解] (1)当l 与x 轴垂直时,l 的方程为x =2,可得点M 的坐标为(2,2)或(2,-2).所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明:当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k x -2,y 2=2x 得ky 2-2y -4k =0,可知y 1+y 2=2k,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+2y 1+y 2x 1+2x 2+2.①将x 1=y 1k +2,x 2=y 2k+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k y 1+y 2k=-8+8k=0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .角度二:直线与圆锥曲线的相交弦问题2.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:2|FP →|=|FA →|+|FB →|. 切入点:①直线l 与椭圆C 相交;②AB 的中点M (1,m ).关键点:根据FP →+FA →+FB →=0及点P 在C 上确定m ,并进一步得出|FP →|,|FA →|,|FB →|的关系.[证明] (1)设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34,从而P 1,-32,|FP →|=32.于是|FA →|=x 1-12+y 21=x 1-12+31-x 214=2-x 12.同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|. [教师备选题](2018·北京高考)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为2 2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(1)求椭圆M 的方程;(2)若k =1,求|AB |的最大值;(3)设P (-2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若C ,D 和点Q ⎝⎛⎭⎪⎫-74,14共线,求k .[解] (1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =63,2c =22,解得a =3,b =1.所以椭圆M 的方程为x 23+y 2=1. (2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =x +m ,x 23+y 2=1,得4x 2+6mx +3m 2-3=0,所以x 1+x 2=-3m 2,x 1x 2=3m 2-34.所以|AB |= x 2-x 12+y 2-y 12= 2x 2-x 12= 2[x 1+x 22-4x 1x 2]=12-3m 22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6. (3)设A (x 1,y 1),B (x 2,y 2), 由题意得x 21+3y 21=3,x 22+3y 22=3. 直线PA 的方程为y =y 1x 1+2(x +2).由⎩⎪⎨⎪⎧y =y 1x 1+2x +2,x 2+3y 2=3,得[(x 1+2)2+3y 21]x 2+12y 21x +12y 21-3(x 1+2)2=0. 设C (x C ,y C ),所以x C +x 1=-12y 21x 1+22+3y 21=4x 21-124x 1+7. 所以x C =4x 21-124x 1+7-x 1=-12-7x 14x 1+7.所以y C =y 1x 1+2(x C +2)=y 14x 1+7. 设D (x D ,y D ),同理得x D =-12-7x 24x 2+7,y D =y 24x 2+7.记直线CQ ,DQ 的斜率分别为k CQ ,k DQ ,则k CQ -k DQ =y 14x 1+7-14-12-7x 14x 1+7+74-y 24x 2+7-14-12-7x 24x 2+7+74=4(y 1-y 2-x 1+x 2). 因为C ,D ,Q 三点共线,所以k CQ -k DQ =0. 故y 1-y 2=x 1-x 2. 所以直线l 的斜率k =y 1-y 2x 1-x 2=1.1.判断直线与圆锥曲线公共点的个数或求交点问题的两种常用方法(1)代数法:联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得到一个一元二次方程,此方程根的个数即为交点个数,方程组的解即为交点坐标;(2)几何法:画出直线与圆锥曲线,根据图形判断公共点个数. 2.弦长公式设斜率为k 的直线l 与圆锥曲线C 的两交点为P (x 1,y 1),Q (x 2,y 2). 则|PQ |=|x 1-x 2|1+k 2=[x 1+x 22-4x 1x 2]1+k2.或|PQ |=|y 1-y 2|1+1k2=[y 1+y 22-4y 1y 2]⎝⎛⎭⎪⎫1+1k 2(k ≠0).3.弦的中点圆锥曲线C :f (x ,y )=0的弦为PQ .若P (x 1,y 1),Q (x 2,y 2),中点M (x 0,y 0),则x 1+x 2=2x 0,y 1+y 2=2y 0.1.(直线与椭圆的综合)已知离心率为12的椭圆x 2a 2+y2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,上顶点为B ,且BA 1→·BA 2→=-1.(1)求椭圆的标准方程;(2)过椭圆左焦点F 的直线l 与椭圆交于M ,N 两点,且直线l 与x 轴不垂直,若D 为x 轴上一点,|DM →|=|DN →|,求|MN ||DF |的值.[解] (1)A 1,A 2,B 的坐标分别为(-a,0),(a,0),(0,b ),BA 1→·BA 2→=(-a ,-b )·(a ,-b )=b 2-a 2=-1,∴c 2=1. 又e =c a =12,∴a 2=4,b 2=3.∴椭圆的标准方程为x 24+y 23=1.(2)由(1)知F (-1,0),设M (x 1,y 1),N (x 2,y 2), ∵直线l 与x 轴不垂直,∴可设其方程为y =k (x +1). 当k =0时,易得|MN |=4,|DF |=1,|MN ||DF |=4.当k ≠0时,联立⎩⎪⎨⎪⎧x 24+y 23=1,y =k x +1,得(3+4k 2)x 2+8k 2x +4k 2-12=0,∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2, ∴|MN |=x 1-x 22+y 1-y 22=1+k 2|x 1-x 2|=1+k2x 1+x 22-4x 1x 2=12+12k 23+4k2. 又y 1+y 2=k (x 1+x 2+2)=6k3+4k2, ∴MN 的中点坐标为⎝ ⎛⎭⎪⎫-4k 23+4k 2,3k 3+4k 2,∴MN 的垂直平分线方程为y -3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x +4k 23+4k 2(k ≠0), 令y =0得,1k x +k 3+4k 2=0,解得x =-k23+4k2.|DF |=⎪⎪⎪⎪⎪⎪-k 23+4k 2+1=3+3k 23+4k 2,∴|MN ||DF |=4.综上所述,|MN ||DF |=4.2.(直线与抛物线的综合)过抛物线E :x 2=4y 的焦点F 的直线交抛物线于M ,N 两点,抛物线在M ,N 两点处的切线交于点P .(1)证明点P 落在抛物线E 的准线上; (2)设MF →=2FN →,求△PMN 的面积.[解] (1)抛物线x 2=4y 的焦点坐标为(0,1),准线方程为y =-1.设直线MN 的方程为y =kx +1,代入抛物线方程x 2=4y ,整理得x 2-4kx -4=0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. 对y =14x 2求导,得y ′=12x ,所以直线PM 的方程为y -y 1=12x 1(x -x 1).①直线PN 的方程为y -y 2=12x 2(x -x 2).②联立方程①②,消去x ,得y =-1. 所以点P 落在抛物线E 的准线上.(2)因为MF →=(-x 1,1-y 1),FN →=(x 2,y 2-1),且MF →=2FN →.所以⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2y 2-1,得x 21=8,x 22=2.不妨取M (22,2),N (-2,12),由①②得P ⎝ ⎛⎭⎪⎫22,-1.易得|MN |=92,点P 到直线MN 的距离d =322,所以△PMN 的面积S =12×92×322=2728.。
2020年高考数学二轮复习70分解答题专项特训-专题5直线与圆锥曲线1.(2019·深圳市高级中学适应性考试)在平面直角坐标系xOy 中,离心率为63的椭圆C :x 2a2+y 2b 2=1(a >b >0)过点M ⎝⎛⎭⎫1,63. (1)求椭圆C 的标准方程;(2)若直线x +y +m =0上存在点G ,且过点G 的椭圆C 的两条切线相互垂直,求实数m 的取值范围.解 (1)由题意,得⎩⎪⎨⎪⎧ c a =63,a 2=b 2+c 2,解得a 2=3b 2, 又1a 2+23b 2=1,解得⎩⎨⎧a 2=3,b 2=1, 所以椭圆C 的标准方程为x 23+y 2=1. (2)①当过点G 的椭圆C 的一条切线的斜率不存在时,另一条切线必垂直于y 轴,易得G (±3,±1).②当过点G 的椭圆C 的切线的斜率均存在时,设G (x 0,y 0),x 0≠±3,切线方程为y =k (x -x 0)+y 0,代入椭圆方程得(3k 2+1)x 2-6k (kx 0-y 0)x +3(kx 0-y 0)2-3=0,Δ=[6k (kx 0-y 0)]2-4(3k 2+1)[3(kx 0-y 0)2-3]=0,化简得(kx 0-y 0)2-(3k 2+1)=0,由此得(x 20-3)k 2-2x 0y 0k +y 20-1=0, 设过点G 的椭圆C 的切线的斜率分别为k 1,k 2,所以k 1k 2=y 20-1x 20-3. 因为两条切线相互垂直,所以y 20-1x 20-3=-1, 即x 20+y 20=4(x 0≠±3),由①②知G 在圆x 20+y 20=4上,又点G 在直线x +y +m =0上,所以直线x +y +m =0与圆x 2+y 2=4有公共点, 所以|m |1+1≤2, 所以-22≤m ≤2 2.综上所述,m 的取值范围为[-22,22].2.(2019·北京市海淀区模拟)已知抛物线G :y 2=2px ,其中p >0.点M (2,0)在抛物线G 的焦点F 的右侧,且点M 到抛物线G 的准线的距离是M 与F 距离的3倍.经过点M 的直线与抛物线G 交于不同的A ,B 两点,直线OA 与直线x =-2交于点P ,经过点B 且与直线OA 垂直的直线l 交x 轴于点Q .(1)求抛物线G 的方程和点F 的坐标;(2)判断直线PQ 与直线AB 的位置关系,并说明理由.解 (1)抛物线G :y 2=2px 的准线方程为x =-p 2, 焦点坐标为F ⎝⎛⎭⎫p 2,0,所以有2+p 2=3⎝⎛⎭⎫2-p 2,解得p =2, 所以抛物线G 的方程为y 2=4x ,焦点坐标为F (1,0).(2)方法一 直线PQ ∥AB .理由如下:设A (x 1,y 1),B (x 2,y 2),设直线AB 的方程为x =my +2,联立方程⎩⎨⎧x =my +2,y 2=4x , 消元得,y 2-4my -8=0,Δ>0显然成立.所以y 1+y 2=4m ,y 1y 2=-8,x 1x 2=116 y 21y 22=4, 显然x 1x 2y 1y 2≠0, 直线OA 的方程为y =y 1x 1x , 令x =-2,则y =-2y 1x 1, 则P ⎝⎛⎭⎫-2,-2y 1x 1, 因为OA ⊥BQ ,所以k BQ =-x 1y 1,直线BQ 的方程为y -y 2=-x 1y 1(x -x 2), 令y =0,得x =y 1y 2x 1+x 2=y 1y 2+x 1x 2x 1=-4x 1, 则Q ⎝⎛⎭⎫-4x 1,0. ① 当m =0时,直线AB 的斜率不存在,x 1=2,可知,直线PQ 的斜率不存在,则PQ ∥AB .② 当m ≠0时,k PQ =2y 1x 1-4x 1+2=y 1-2+x 1 =y 1-2+(my 1+2)=1m,k AB =1m , 则PQ ∥AB ,综上所述,PQ ∥AB .方法二 直线PQ ∥AB .① 若直线AB 的斜率不存在,根据对称性,不妨设A (2,-22),B (2,22),直线OA 的方程为y =-2x ,则P (-2,22),直线BQ 的方程为y -22=22(x -2),即y =22x +2, 令y =0,则Q (-2,0),则直线PQ 的斜率不存在,因此PQ ∥AB ,②当直线AB 的斜率存在时,设A (x 1,y 1),B (x 2,y 2),设直线AB 的方程为y =k (x -2),k ≠0,联立方程,得⎩⎨⎧y 2=4x ,y =k (x -2), 消元得,k 2x 2-4k 2x +4k 2-4x =0,整理得,k 2x 2-(4k 2+4)x +4k 2=0,由根与系数的关系,可得x 1+x 2=4k 2+4k2,x 1x 2=4, y 21y 22=16x 1x 2=64, 因为y 1y 2<0,可得y 1y 2=-8.显然x 1x 2y 1y 2≠0,直线OA 的方程为y =y 1x 1x , 令x =-2,则y =-2y 1x 1,则P ⎝⎛⎭⎫-2,-2y 1x 1, 因为OA ⊥BQ ,所以k BQ =-x 1y 1, 直线BQ 的方程为y -y 2=-x 1y 1(x -x 2), 令y =0,则x =y 1y 2x 1+x 2=y 1y 2+x 1x 2x 1=-4x 1, 则Q ⎝⎛⎭⎫-4x 1,0, k PQ =2y 1x 1-4x 1+2=2y 1-4+2x 1=2k (x 1-2)2x 1-4=k , 则PQ ∥AB ,综上所述,PQ ∥AB .3.(2019·柳州模拟)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点A 为椭圆C 上任意一点,A 关于原点O 的对称点为B ,有|AF 1|+|BF 1|=4,且∠F 1AF 2的最大值为π3.(1)求椭圆C 的标准方程;(2)若A ′是A 关于x 轴的对称点,设点N (4,0),连接NA 与椭圆C 相交于点E ,问直线A ′E 与x 轴是否交于一定点.如果是,求出该定点坐标;如果不是,说明理由.解 (1)因为点A 为椭圆上任意一点,A 关于原点O 的对称点为B ,所以|AF 1|=|BF 2|,又|AF 1|+|BF 1|=4,所以|BF 2|+|BF 1|=2a =4,所以a =2.又∠F 1AF 2的最大值为π3, 知当A 为上、下顶点时,∠F 1AF 2最大,所以a =2c ,所以c =1,所以b 2=a 2-c 2=3.所以椭圆C 的标准方程为x 24+y 23=1. (2)由题意知直线NA 的斜率存在,设直线NA 的方程为y =k (x -4).由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 23=1,消去y 并整理得(4k 2+3)x 2-32k 2x +64k 2-12=0.因为直线NA 与椭圆交于A ,E 两点,所以Δ=(-32k 2)2-4(4k 2+3)(64k 2-12)>0,解得-12<k <12. 设A (x 1,y 1),E (x 2,y 2),则A ′(x 1,-y 1),且x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,① 由题意得,直线A ′E 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2), 令y =0得x =x 2-y 2(x 2-x 1)(y 2+y 1), 将y 1=k (x 1-4),y 2=k (x 2-4)代入上式整理,得x =2x 1x 2-4(x 1+x 2)x 1+x 2-8. 将①代入上式,得x =2×64k 2-124k 2+3-4×32k 24k 2+332k 24k 2+3-8=1, 所以直线A ′E 与x 轴交于定点Q (1,0).4.(2019·衡阳市高中毕业班联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=43x 有共同的焦点,且椭圆C 的一个焦点和短轴的两个顶点的连线构成等边三角形.(1)求椭圆C 的标准方程;(2)已知过椭圆C 的左顶点A 的两条直线l 1,l 2分别交椭圆C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点,并求出该定点坐标;(3)在(2)的条件下求△AMN 面积的最大值.解 (1)由已知可得,c =3,2b =b 2+3⇒b =1,∴a =b 2+c 2=2.∴椭圆C 的标准方程为x 24+y 2=1. (2)由题意得直线l 1,l 2的斜率存在且不为0.∵A (-2,0),设l 1:x =my -2,l 2:x =-1my -2, 由⎩⎪⎨⎪⎧x =my -2,x 24+y 2=1,得(m 2+4)y 2-4my =0. ∴M ⎝ ⎛⎭⎪⎫2m 2-8m 2+4,4m m 2+4, 同理,N ⎝ ⎛⎭⎪⎫2-8m 21+4m 2,-4m 1+4m 2. ①当m ≠±1时,k MN =5m 4(m 2-1), l MN :y =5m 4(m 2-1)⎝⎛⎭⎫x +65, 此时过定点⎝⎛⎭⎫-65,0. ②当m =±1时,l MN :x =-65,过点⎝⎛⎭⎫-65,0. ∴l MN 恒过定点⎝⎛⎭⎫-65,0. (3)由(2)知S △AMN =12×⎝⎛⎭⎫2-65|y M -y N | =25⎪⎪⎪⎪4m m 2+4+4m 1+4m 2=8⎪⎪⎪⎪⎪⎪m 3+m 4m 4+17m 2+4 =8⎪⎪⎪⎪⎪⎪m +1m 4⎝⎛⎭⎫m +1m 2+9. 令t =⎪⎪⎪⎪m +1m ,则t ≥2(当且仅当m =±1时取等号), ∴S △AMN =8·t 4t 2+9=8⎝ ⎛⎭⎪⎫14t +9t ≤1625(当且仅当t =2时取等号), ∴当m =±1时,S △AMN 有最大值1625. 5.(2019·黄冈联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,O 为坐标原点,点A ,B 分别为椭圆C 的左、右顶点,P 为椭圆C 上异于A ,B 的一点,直线AP ,BP 的斜率分别是k 1,k 2.(1)求证:k 1k 2为定值;(2)设直线l 交椭圆C 于M ,N 两点,AP ∥OM ,BP ∥ON ,且△OMN 的面积是22,求椭圆C 的标准方程.(1)证明 由题意得,A (-a ,0),B (a ,0),1-b 2a 2=22,即a =2b , 则椭圆C 可化为x 2+2y 2-2b 2=0,设P (x 0,y 0),则x 20=2b 2-2y 20, ∴k 1k 2=y 0x 0+2b ·y 0x 0-2b =y 20x 20-2b 2=y 202b 2-2y 20-2b 2=-12. (2)解 ①当MN 垂直于x 轴时,设M (x 0,y 0),N (x 0,-y 0),则12·|x 0|·2|y 0|=22, ∴|x 0y 0|=2 2.又∵y 0x 0·⎝⎛⎭⎫-y 0x 0=-12, ∴x 20=2y 20, ∴x 20=4,y 20=2, 又∵点M 在椭圆上,∴b 2=4,a 2=8.∴椭圆C 的标准方程是x 28+y 24=1. ②当MN 不垂直于x 轴时,设直线MN 的方程为y =kx +t ,联立得⎩⎨⎧y =kx +t ,x 2+2y 2-2b 2=0,得(1+2k 2)x 2+4ktx +2t 2-2b 2=0,Δ=8(b 2+2k 2b 2-t 2)>0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-2b 21+2k 2, ∵AP ∥OM ,BP ∥ON ,∴k OM ·k ON =-12, 即y 1y 2x 1x 2=-12, ∴(kx 1+t )(kx 2+t )x 1x 2=-12, ∴(1+2k 2)x 1x 2+2kt (x 1+x 2)+2t 2=0,即2t 2-2b 2-2kt ·4kt 1+2k 2+2t 2=0, 得2t 2=(1+2k 2)b 2,Δ=8t 2>0, ∵|MN |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫4kt 1+2k 22-8t 2-8b 21+2k 2 =2·b 21+k 2t 2, 点O 到直线MN 的距离d =|t |1+k 2, ∴S △OMN =12·|MN |·d =22b 2=22, 解得b 2=4,则a 2=8,综上,椭圆C 的标准方程是x 28+y 24=1.。