KAI1及nm23-H<,1>蛋白在胃癌中的表达及临床病理学意义
- 格式:pdf
- 大小:2.38 MB
- 文档页数:33
Future Technology Devices International Ltd FT232H Single Channel Hi-Speed USB to MultipurposeUART/FIFO ICThe FT232H is a single channel USB 2.0 Hi-Speed (480Mb/s) to UART/FIFO IC. It has the capability of being configured in a variety of industry standard serial or parallel interfaces. The FT232H has the following advanced features:Single channel USB to serial / parallel ports with a variety of configurations.Entire USB protocol handled on the chip. No USB specific firmware programming required.USB 2.0 Hi-Speed (480Mbits/Second) and Full Speed (12Mbits/Second) compatible.Multi-Protocol Synchronous Serial Engine (MPSSE) to simplify synchronous serial protocol (USB to JTAG, I2C, SPI (MASTER) or bit-bang) design.UART transfer data rate up to 12Mbaud.(RS232 Data Rate limited by external level shifter).USB to asynchronous 245 FIFO mode for transfer data rate up to 8 Mbyte/Sec.USB to synchronous 245 parallel FIFO mode for transfers upto 40 Mbytes/SecSupports a proprietary half duplex FT1248 interface with a configurable width, bi-directional data bus (1, 2, 4 or 8 bits wide).CPU-style FIFO interface mode simplifies CPU interface design.Fast serial interface option.FTDI‟s royalty-free Virtual Com Port (VCP) and Direct (D2XX) drivers eliminate the requirement for USB driver development in most cases.Adjustable receive buffer timeout. Option for transmit and receive LED drive signals.Bit-bang Mode interface option with RD# and WR# strobesHighly integrated design includes 5V to 3.3/+1.8V LDO regulator for VCORE, integrated POR functionAsynchronous serial UART interface option with full hardware handshaking and modem interface signals.Fully assisted hardware or X-On / X-Off software handshaking.UART Interface supports 7/8 bit data, 1/2 stop bits, and Odd/Even/Mark/Space/No Parity.Auto transmit enable control for RS485 serial applications using the TXDEN pin.Operational mode configuration and USB Description strings configurable in external EEPROM over the USB interface.Configurable I/O drives strength (4, 8, 12 or 16mA) and slew rate.Low operating and USB suspend current. Supports self powered, bus powered and high-power bus powered USB configurations.UHCI/OHCI/EHCI host controller compatible. USB Bulk data transfer mode (512 byte packets in Hi-Speed mode).+1.8V (chip core) and +3.3V I/O interfacing (+5V Tolerant).Extended -40°C to 85°C industrial operating temperature range.Compact 48-pin Lead Free LQFP or QFN packageConfigurable ACBUS I/O pins.1Typical ApplicationsSingle chip USB to UART (RS232, RS422 or RS485)USB to FIFOUSB to FT1248USB to JTAGUSB to SPIUSB to I2CUSB to Bit-BangUSB to Fast Serial InterfaceUSB to CPU target interface (as memory) USB InstrumentationUSB Industrial ControlUSB EPOS ControlUSB MP3 Player InterfaceUSB FLASH Card Reader / Writers Set Top Box - USB interfaceUSB Digital Camera Interface USB Bar Code Readers1.1Driver SupportThe FT232H requires USB device drivers (listed below), available free from , to operate. The VCP version of the driver creates a Virtual COM Port allowing legacy serial port applications to operate over USB e.g. serial emulator application TTY. Another FTDI USB driver, the D2XX driver, can also be used with application software to directly access the FT232H through a DLL.Royalty free VIRTUAL COM PORT (VCP) DRIVERS for...Windows 7 and Windows 7 64-bitWindows Vista and Vista 64-bitWindows XP and XP 64-bitWindows XP EmbeddedWindows 2000, Server 2003, Server 2008 Windows CE 4.2, 5.0, 5.2 and 6.0Mac OS-XLinux (2.6.9 or later) Royalty free D2XX Direct Drivers (USB Drivers + DLL S/W Interface) Windows 7 and Windows 7 64-bitWindows Vista and Vista 64-bitWindows XP and XP 64-bitWindows XP EmbeddedWindows 2000, Server 2003, Server 2008 Windows CE 4.2, 5.0, 5.2 and 6.0Mac OS-XLinux (2.6.9 or later)1.2Part NumbersNote: Packaging codes for xxxx is:- Reel: Taped and Reel (LQFP = 1500 pieces per reel, QFN = 3000 pieces per reel) -Tray: Tray packing, (LQFP = 250 pieces per tray, QFN =260 pieces per tray) Please refer to section 8 for all package mechanical parameters.The FT232H is fully compliant with the USB 2.0 specification and has been given the USB-IF Test-ID (TID) 40770005.The timing of the rise/fall time of the USB signals is not only dependant on the USB signal drivers, it is also dependant system and is affected by factors such as PCB layout, external components and any transient protection present on the USB signals. For USB compliance these may require a slight adjustment. This timing can be modified through a programmable setting stored in the same external EEPROM that is used for the USB descriptors. Timing can also be changed by adding appropriate passive components to the USB signals.1.4Applicable DocumentsThe following application and technical documents can be downloaded by clicking on the appropriate links below:AN_108 – Command Processor For MPSSE and MCU Host Bus Emulation ModesAN_113 – Interfacing FT2232H Hi-Speed Devices To I2C BusAN_114 – Interfacing FT2232H Hi-Speed Devices To SPI BusAN_129 – Interfacing FT2232H Hi-Speed Devices to a JTAG TAPAN_135 – MPSSE BasicsAN_167_FT1248 Parallel Serial Interface BasicsFigure 2.1 FT232H Block DiagramA full description of each function is available in section 4.1Typical Applications (2)1.1Driver Support (2)1.2Part Numbers (2)1.3USB Compliant (3)1.4Applicable Documents (3)2FT232H Block Diagram (4)3Device Pin Out And Signal Descriptions (7)3.1Schematic Symbol (7)3.2FT232H Pin Descriptions (8)3.3Signal Description (9)3.4ACBUS Signal Option (12)3.5Pin Configurations (13)3.5.1FT232H pins used in an UART interface (13)3.5.2FT232H pins used in an FT245 Synchronous FIFO Interface (14)3.5.3FT232H pins used in an FT245 Style Asynchronous FIFO Interface (15)3.5.4FT232H can be configured as a Synchronous or Asynchronous Bit-Bang Interface. (16)3.5.5FT232H pins used in an MPSSE (17)3.5.6FT232H Pins used as a Fast Serial Interface (18)3.5.7FT232H Pins Configured as a CPU-style FIFO Interface (19)3.5.8FT232H Pins Configured as a FT1248 Interface (20)4Function Description (21)4.1Key Features (21)4.2Functional Block Descriptions (22)4.3FT232 UART Interface Mode Description (23)4.3.1RS232 Configuration (23)4.3.2RS422 Configuration (24)4.3.3RS485 Configuration (25)4.4FT245 Synchronous FIFO Interface Mode Description (26)4.4.1FT245 Synchronous FIFO Read Operation (27)4.4.2FT245 Synchronous FIFO Write Operation (27)4.5FT245 Style Asynchronous FIFO Interface Mode Description (28)4.6FT1248 Interface Mode Description (29)4.6.1Bus Width Protocol Decode (30)4.6.2FT1248: 1-bit interface (31)4.7Synchronous and Asynchronous Bit-Bang Interface Mode (33)4.7.1Asynchronous Bit-Bang Mode (33)4.7.2Synchronous Bit-Bang Mode (33)4.8.1MPSSE Adaptive Clocking (36)4.9Fast Serial Interface Mode Description (37)4.9.1Outgoing Fast Serial Data (38)4.9.2Incoming Fast Serial Data (38)4.9.3Fast Serial Data Interface Example (39)4.10CPU-style FIFO Interface Mode Description (40)4.11RS232 UART Mode LED Interface Description (42)4.12Send Immediate / Wake Up (SIWU#) (43)4.13FT232H Mode Selection (44)4.14Modes Configurations (45)5Devices Characteristics and Ratings (46)5.1Absolute Maximum Ratings (46)5.2DC Characteristics (47)5.3ESD Tolerance (49)6FT232H Configurations (50)6.1USB Bus Powered Configuration (50)6.2USB Self Powered Configuration (51)6.2.1Self Powered application example 2 (52)6.3Oscillator Configuration (53)7EEPROM Configuration (54)7.1EEPROM Interface (54)7.2Default EEPROM Configuration (55)8Package Parameters (57)8.1FT232HQ, QFN-48 Package Dimensions (57)8.2FT232HL, LQFP-48 Package Dimensions (58)8.3Solder Reflow Profile (59)9Contact Information (61)Appendix A – List of Figures and Tables (63)List of Tables (63)List of Figures (64)Appendix B – Revision History (65)3 Device Pin Out And Signal DescriptionsThe 48-pin LQFP and 48-pin QFN have the same pin numbering for specific functions. This pin numbering is illustrated in the schematic symbol shown in Figure 3.13.1Schematic SymbolFigure 3.1 FT232H Schematic SymbolThis section describes the operation of the FT232H pins. Both the LQFP and the QFN packages have the same function on each pin. The function of many pins is determined by the configuration of the FT232H. The following table details the function of each pin dependent on the configuration of the interface. Each of the functions is described in the following table (Note: The convention used throughout this document for active low signals is the signal name followed by #).Pins marked ** default to tri-stated inputs with an internal 75KΩ (approx) pull up resistor to VCCIO.Pin marked *** default to GPIO line with an internal 75KΩ pull down resistor to GND. Using the EEPROM this pin can be enabled USBVCC mode instead of GPIO mode.** If pin 40 (VREGIN) is +5.0V, pin 39 becomes an output and If pin 40 (VREGIN) is 3V3 pin 39 becomes an input.Table 3.4 UART Interface and ACBUS Group (see note 1)Notes:1. When used in Input Mode, the input pins are pulled to VCCIO via internal 75kΩ (approx) resistors. These pins can be programmed to gently pull low during USB suspend (PWREN# = “1”) by setting anoption in the EEPROM.If the external EEPROM is fitted, the following options can be configured on the CBUS I/O pins using the software utility FT_PROG which can be downloaded from the FTDI utilities page. CBUS signal options are common to both package versions of the FT232H. The default configuration is described in section 7.* Must be used with a 10kΩ resistor pull up.**When in USB suspend mode the outputs clocks are also suspended.The following section describes the function of the pins when the device is configured in different modes of operation.3.5.1FT232H pins used in an UART interfaceThe FT232H can be configured as a UART interface. When configured in this mode, the pins used and the descriptions of the signals are shown in Table 3.6** ACBUS I/O pinsFor a functional description of this mode, please refer to section 4.3NOTE: UART is the device default mode.The FT232H can be configured as a FT245 synchronous FIFO interface. When configured in this mode, the pins used and the descriptions of the signals are shown in Table 3.7. To set this mode the external EEPROM must be set to 245 modes. A software command (FT_SetBitMode) is then sent by the application to the FTDI D2xx driver to tell the chip to enter 245 synchronous FIFO mode. In this mode, data is written or read on the rising edge of the CLKOUT. Refer to Figure 4.4 for timing details.For a functional description of this mode, please refer to section 4.4The FT232H can be configured as a FT245 style asynchronous FIFO interface. When configured in this mode, the pins used and the descriptions of the signals are shown in Table 3.8. To enter this mode the external EEPROM must be set to 245 asynchronous FIFO mode. In this mode, data is written or read on the falling edge of the RD# or WR# signals.For a functional description of this mode, please refer to section 4.5Interface.Bit-bang mode is an FTDI FT232H device mode that changes the 8 IO lines into an 8 bit bi-directional data bus. This mode is enabled by sending a software command (FT_SetBitMode) to the FTDI driver. When configured in any bit-bang mode, the pins used and the descriptions of the signals are shown in Table 3.9For functional description of this mode, please refer to section 4.6The FT232H has a Multi-Protocol Synchronous Serial Engine (MPSSE). This mode is enabled by sending a software command (FT_SetBitMode) to the FTDI D2xx driver. The MPSSE can be configured to a number of industry standard serial interface protocols such as JTAG, I2C or SPI (MASTER), or it can be used to implement a proprietary bus protocol. For example, it is p ossible to connect FT232H‟s to an SRAM configurable FPGA such as supplied by Altera or Xilinx. The FPGA device would normally not be configured (i.e. have no defined function) at power-up. Application software on the PC could use the MPSSE (andD2XX driver) to download configuration data to the FPGA over USB. This data would define the hardware function on power up. The MPSSE can be used to control a number of GPIO pins. When configured in this mode, the pins used and the descriptions of the signals are shown in Table 3.10For functional description of this mode, please refer to section 4.8The FT232H can be configured for use with high-speed bi-directional isolated serial data. A proprietary FTDI protocol designed to allow galvanic isolated devices to communicate synchronously with the FT232H using just 4 signal wires (over two dual opto-isolators), and two power lines. The peripheral circuitry controls the data transfer rate in both directions, whilst maintaining full data integrity. 12 Mbps (USB full speed) data rates can be achieved when using the proper high speed opto-isolators (see App Note AN-131).When configured in this mode, the pins used and the descriptions of the signals are shown in Table 3.11.For a functional description of this mode, please refer to section 4.9The FT232H can be configured in a CPU-style FIFO interface mode which allows a CPU to interface to USB via the FT232H. This mode is enabled in the external EEPROM.When configured in this mode, the pins used and the descriptions of the signals are shown in Table 3.12For a functional description of this mode, please refer to section 4.10The FT232H can be configured as a proprietary FT1248 interface. This mode is enabled in the external EEPROM. When configured in this mode, the pins used and the descriptions of the signals are shown in Table 3.13.For functional description of this mode, please refer to section 4.The FT232H USB 2.0 Hi-Speed (480Mb/s) to UART/FIFO is an FTDI‟s 6th generation of ICs. It can be configured in a variety of industry standard serial or parallel interfaces, such as UART, FIFO, JTAG, SPI (MASTER) or I2C modes. In addition to these, the FT232H introduces the FT1248 interface and supports a CPU-Style FIFO mode, bit-bang and a fast serial interface mode.4.1Key FeaturesUSB Hi-Speed to UART/FIFO Interface. The FT232H provides USB 2.0 Hi-Speed (480Mbits/s) to flexible and configurable UART/FIFO Interfaces.Functional Integration. The FT232H integrates a USB protocol engine which controls the physical Universal Transceiver Macrocell Interface (UTMI) and handles all aspects of the USB 2.0 Hi-Speed interface. The FT232H includes an integrated +1.8V/3.3V Low Drop-Out (LDO) regulator. It also includes 1Kbytes Tx and Rx data buffers. The FT232H integrates the entire USB protocol on a chip with no firmware required.MPSSE. Multi-Protocol Synchronous Serial Engines (MPSSE), capable of speeds up to 30 Mbits/s, provides flexible synchronous interface configurations.FT1248 interface. The FT232H supports a new proprietary half-duplex FT1248 interface with a variable bi-directional data bus interface that can be configured as 1, 2, 4, or 8-bits wide and this enables the flexibility to expand the size of the data bus to 8 pins. For details regarding 2-bit, 4-bit and 8-bit modes, please refer to application note AN_167_FT1248_Serial_Parallel Interface Basics available from the FTDI website.Data Transfer rate. The FT232H supports a data transfer rate up to 12 Mbaud when configured as an RS232/RS422/RS485 UART interface upto 40 Mbytes/second over a synchronous 245 parallel FIFO interface or up to 8 Mbyte/Sec over a asynchronous 245 FIFO interface.Latency Timer. A feature of the driver used as a timeout to transmit short packets of data back to the PC. The default is 16ms, but it can be altered between 1ms and 255ms.Bus (ACBUS) functionality, signal inversion and drive strength selection. There are 11 configurable ACBUS I/O pins. These configurable options are:1.TXDEN - transmit enable for RS485 designs.2.PWREN# - Power control for high power, bus powered designs.3.TXLED# - for pulsing an LED upon transmission of data.4.RXLED# - for pulsing an LED upon receiving data.5.TX&RXLED# - which will pulse an LED upon transmission OR reception of data.6.SLEEP# - indicates that the device going into USB suspend mode.7.CLK30 / CLK15 / CLK7.5 - 30MHz, 15MHz and 7.5MHz clock output signal options.8.TriSt-PU – Input pulled up, not used9.DRIVE 1 – Output driving high10.DRIVE 0 - Output driving low11. I/O mode – ACBUS BitBangThe ACBUS pins can also be individually configured as GPIO pins, similar to asynchronous bit bang mode. It is possible to use this mode while the UART interface is being used, thus providing up to 4 general purpose I/O pins which are available during normal operation.The ACBUS lines can be configured with any one of these input/output options by setting bits in the external EEPROM see section 3.4.Functional Block DescriptionsMulti-Purpose UART/FIFO Controllers. The FT232H has one independent UART/FIFO Controller. This controls the UART data, 245 FIFO data, Fast Serial (opto isolation) or Bit-Bang mode which can be selected by SETUP (FT_SetBitMode) command. Each Multi-Purpose UART/FIFO Controller also contains an MPSSE (Multi Protocol Synchronous Serial Engine). Using this MPSSE, the Multi-Purpose UART/FIFO Controller can be configured under software command, to have one of the MPSSE (SPI (MASTER), I2C, JTAG).USB Protocol Engine and FIFO control. The USB Protocol Engine controls and manages the interface between the UTMI PHY and the FIFOs of the chip. It also handles power management and the USB protocol specification.Port FIFO TX Buffer (1Kbytes). Data from the Host PC is stored in these buffers to be used by the Multi-purpose UART/FIFO controllers. This is controlled by the USB Protocol Engine and FIFO control block.Port FIFO RX Buffer (1Kbytes). Data from the Multi-purpose UART/FIFO controllers is stored in these blocks to be sent back to the Host PC when requested. This is controlled by the USB Protocol Engine and FIFO control block.RESET Generator –The integrated Reset Generator Cell provides a reliable power-on reset to the device internal circuitry at power up. The RESET# input pin allows an external device to reset the FT232H. RESET# should be tied to VCCIO(+3.3V) if not being used.Baud Rate Generators –The Baud Rate Generators provides a x16 or a x10 clock input to the UART‟s from a 120MHz reference clock and consists of a 14 bit pre-scaler and 4 register bits which provide fine tuning of the baud rate (used to divide by a number plus a fraction). This determines the Baud Rate of the UART which is programmable from 183 baud to 12 Mbaud. See FTDI application note AN_120 on the FTDI website for more details.EEPROM Interface. If the external EEPROM is fitted, the FT232H can be configured as an asynchronous serial UART (default mode), parallel FIFO (245) mode, FT1248, fast serial (opto isolation) or CPU-Style FIFO. The EEPROM should be a 16 bit wide configuration such as a 93LC56B or equivalent capable of a1Mbit/s clock rate at VCCIO = +2.97V to 3.63V. The EEPROM is programmable in-circuit over USB using a utility program called FT_Prog available from FTDI web site.+1.8/3.3V LDO Regulator. The +3.3/+1.8V LDO regulator generates +1.8 volts for the core and the USB transceiver cell and +3.3V for the IO and the internal PLL and USB PHY power supply.UTMI PHY. The Universal Transceiver Macrocell Interface (UTMI) physical interface cell. This block handles the Full speed / Hi-Speed SERDES (serialise – deserialise) function for the USB TX/RX data. It also provides the clocks for the rest of the chip. A 12 MHz crystal must be connected to the OSCI and OSCO pins or 12 MHz Oscillator must be connected to the OSCI, and the OSCO is left unconnected. A 12K Ohm resistor should be connected between REF and GND on the PCB.The UTMI PHY functions include:Supports 480 Mbit/s “Hi-Speed” (HS)/ 12 Mbit/s “Full Speed” (FS).SYNC/EOP generation and checkingData and clock recovery from serial stream on the USB.Bit-stuffing/unstuffing; bit stuff error detection.Manages USB Resume, Wake Up and Suspend functions.Single parallel data clock output with on-chip PLL to generate higher speed serial data clocks.The FT232H can be configured as a UART with external line drivers, similar to operation with the FTDI FT232R devices. The following examples illustrate how to configure the FT232H with an RS232, RS422 or RS485 interface.4.3.1RS232 ConfigurationFigure 4.1 illustrates how the FT232H can be configured with an RS232 UART interface.Figure 4.1 RS232 Configuration4.3.2RS422 ConfigurationFigure 4.2 illustrates how the FT232H can be configured as a RS422 interface.Figure 4.2 Dual RS422 ConfigurationIn this case the FT232H is configured as UART operating at TTL levels and a level converter device (full duplex RS485 transceiver) is used to convert the TTL level signals from the FT232H to RS422 levels. The PWREN# signal is used to power down the level shifters such that they operate in a low quiescent current when the USB interface is in suspend mode.Figure 4.3 illustrates how the FT232H can be configured as a RS485 interface.Figure 4.3 Dual RS485 ConfigurationIn this case the FT232H is configured as a UART operating at TTL levels and a level converter device (half duplex RS485 transceiver) is used to convert the TTL level signals from the FT232H to RS485 levels. With RS485, the transmitter is only enabled when a character is being transmitted from the UART. The TXDEN pin on the FT232H is provided for exactly that purpose, and so the transmitter enables are wired to the TXDEN. RS485 is a multi-drop network – i.e. many devices can communicate with each other over a single two wire cable connection. The RS485 cable requires to be terminated at each end of the cable. Links are provided to allow the cable to be terminated if the device is physically positioned at either end of the cable.When FT232H is configured in an FT245 Synchronous FIFO interface mode the IO timing of the signals used are shown in Figure 4.4 which shows details for read and write accesses. The timings are shown in Figure 4.4.Note that only a read or a write cycle can be performed at any one time. Data is read or written on the rising edge of the CLKOUT clock.Figure 4.4 FT245 Synchronous FIFO Interface Signal WaveformsCLKOUT clock for the external system to use.Note that Asynchronous FIFO mode must be selected in the EEPROM before selecting the Synchronous FIFO mode in software.4.4.1FT245 Synchronous FIFO Read OperationA read operation is started when the chip drives RXF# low. The external system can then drive OE# low to turn the data bus drivers around before acknowledging the data with the RD# signal going low. The first data byte is on the bus after OE# is low. The external system can burst the data out of the chip by keeping RD# low or it can insert wait states in the RD# signal. If there is more data to be read it will change on the clock following RD# sampled low. Once all the data has been consumed, the chip will drive RXF# high. Any data that appears on the data bus, after RXF# is high, is invalid and should be ignored.4.4.2FT245 Synchronous FIFO Write OperationA write operation can be started when TXE# is low. WR# is brought low when the data is valid. A burst operation can be done on every clock providing TXE# is still low. The external system must monitor TXE# and its own WR# to check that data has been accepted. Both TXE# and WR# must be low for data to beaccepted.The FT232H can be configured as an asynchronous FIFO interface. This mode is similar to the synchronous FIFO interface with the exception that the data is written to or read from the FIFO on the falling edge of the WR# or RD# signals.This mode does not provide a CLKOUT signal and it does not expect an OE# input signal. The following diagrams illustrate the asynchronous FIFO mode timing.Figure 4.5 FT245 Asynchronous FIFO Interface READ Signal WaveformsFigure 4.6 FT245 Asynchronous FIFO Interface WRITE Signal Waveforms4.6FT1248 Interface Mode DescriptionThe FT232H supports a half duplex FT1248 Interface that provides a flexible data communication and high performance interface between the FT232H as a FT1248 slave and an external FT1248 master. The FT1248 protocol is a dynamic bi-directional data bus interface that can be configured as 1, 2, 4, or 8-bitswide.In the FT1248 there are 3 distinct phases:While SS_n is inactive, the FT1248 reflects the status of the write buffer and read buffers on theMIOSIO[0] and MISO wires respectively. Additionally, the FT1248 slave block supports multiple slavedevices where a master can communicate with multiple FT1248 slave devices. When the slave is sharing buses with other FT1248 slave devices, the write and read buffer status cannot be reflected on the MIOSIO[0] and MISO wires during SS_n inactivity as this would cause bus contention. Therefore, it is possible for the user to select whether they wish to have the buffer status switched on or off during inactivity. When SS_n is active a command/bus size phase occurs first. Following the command phase is the data phase, for each data byte transferred the FT1248 slave drives an ACK/NAK status onto the MISO wire. The master can send multiple data bytes so long as SS_n is active, if a unsuccessful data transfer occurs, i.e. a NAK happens on the MISO wire then the master should immediately abort the transfer by de-asserting SS_n.MISOFigure 4.8: FT1248 Basic Waveform Protocol.Section 4.6.2 illustrates the FT1248 write and read protocol operating in 1-bit mode. For details regarding2-bit, 4-bit and 8-bit modes, please refer to application note AN_167_FT1248 Parallel Serial InterfaceBasics available at .In order for the FT1248 master to determine the bus width within the command phase the bus width is encoded along with the actual commands on the first active clock edge when SS_n is active and has a data width of 8-bits.If any of the MIOSIO [7:4] signals are low then the data transfer width equals 8-bits If any of the MIOSIO [3:2] signals are low then the data transfer width equals 4-bits If MIOSIO [1] signal is low then the data transfer width equals 2-bits Else the bus width is defaulted to 1-bitPlease note that if both of the MIOSIO bit signals are low then the data transfer width is equal to the width of high priority MIOSIO bit signal. For example if both of the MIOSIO [7:3] signals are low then the data transfer width equals 8-bits or if both of the MIOSIO [3:1] signals are low then the data transfer width equals 4-bitsIn order to successfully decode the bus width, all MIOSIO signals must have pull up resistors. By default, all MIOSIO signals shall be seen by the FT232H in FT1248 mode as logic …1‟. This means that when a FT1248 master does not wish to use certain MIOSIO signals the slave (FT232H) is still capable of determining the requested bus width since any unused MIOSIO signals shall be pull up in the slave. The remaining bits used during the command phase are used to contain the command itself which means that it is possible to define up to 16 unique commands.Figure 4.9: FT1248 Command StructureFor more details about FT1248 Interface, please refer to application note AN_167_FT1248 Parallel Serial Interface Basics available at .1-bit Bus Width2-bit Bus Width4-bit Bus Width8-bit Bus Width。
胰腺癌侵袭转移分子机制和靶向治疗郑家平【摘要】胰腺癌具有高度侵袭、转移特性.研究表明,人体内多种基因、分子、蛋白的异常表达与胰腺癌侵袭转移相关,针对这些靶点研发的药物、疫苗或者采取靶向性基因干扰/导入技术等均能显著地抑制胰腺癌的侵袭转移能力.因此,多靶点治疗将有望改善胰腺癌患者的预后.现对近年来胰腺癌侵袭转移相关的分子靶标和靶向治疗的研究进展进行综述.【期刊名称】《医学综述》【年(卷),期】2010(016)011【总页数】4页(P1635-1638)【关键词】胰腺癌;侵袭转移性;分子靶向治疗【作者】郑家平【作者单位】浙江中医药大学附属浙江省肿瘤医院介入病区,杭州,310022【正文语种】中文【中图分类】R735.9胰腺癌明显的侵袭转移生物学行为是预后不良的关键,据统计,只有约 15%的病例可进行手术治疗,5年生存率<3%,>90%的患者在确诊后 l年内死亡,平均存活期<6个月[1]。
因此,深入揭示胰腺癌侵袭和转移的分子机制具有重要的理论和临床应用价值,同时也为有效抑制胰腺癌的侵袭和转移提供了有价值的分子靶标。
现就胰腺癌侵袭转移的分子机制以及分子靶向治疗最新进展进行阐述。
1 血管内皮生长因子血管生成是包括胰腺癌在内的实体肿瘤生长和转移的必要因素。
如果没有血管生成,原发性肿瘤一般不会超过 2 mm。
在肿瘤细胞分泌的多种血管生成因子中,血管内皮生长因子(vascular endothelial growth factor,VEGF)又处于核心地位,是目前已知活性最强、专属性最高的血管生成因子。
研究表明,VEGF诱导血管生成,提高肿瘤血管通透性,从而促进肿瘤繁殖、促使肿瘤细胞进入血液循环,最终导致肿瘤转移[2]。
Ikeda等[3]用免疫组化法测定 40例胰腺癌患者肿瘤内微血管密度(micro-vessel density,MVD)及VEGF蛋白表达,发现 VEGF的表达与 MVD的增高有中等相关度;Cox多元分析认为,MVD和 VEGF的表达是胰腺癌各项临床病理变量的独立预后因子。
Kiss-1基因编码产物Kisspeptins在抑制肿瘤转移过程中的重要作用温彩玲(综述);刘迪群;钟华(审校)【摘要】Kisspeptins(KPs)是由Kiss-1基因编码的C-末端羧基酰胺化产物。
近年研究表明,Kiss-1基因具有抑制肿瘤转移、影响滋养细胞浸润、启动青春发育、调控能量平衡以及生物节律的功能。
此外,Kiss-1基因在各种肿瘤转移抑制机制中深入研究 GPR54受体,能为KPs信号通路提供大量证据。
本文主要通过Kiss-1/GPR54系统机制阐述在肿瘤进展中KPs和Kiss-1基因作用的最新研究,为肿瘤患者提供一种新的治疗方法。
因此,有必要进一步研究KPs,阐明其复杂的调控机制,并且如何将这些机制参与到肿瘤转移抑制机制中。
【期刊名称】《实用临床医学》【年(卷),期】2015(000)008【总页数】4页(P104-107)【关键词】Kisspeptins;GPR54受体;Kiss-1 基因;转移;肿瘤【作者】温彩玲(综述);刘迪群;钟华(审校)【作者单位】南华大学附属第一医院消化内科,湖南衡阳 421001;南华大学附属第一医院消化内科,湖南衡阳 421001;南华大学附属第一医院消化内科,湖南衡阳 421001【正文语种】中文【中图分类】R73肿瘤是一类以不能自身控制细胞生长速度为特征的疾病,这也是病死率极高的重要原因。
2008年癌症患者死亡人数统计达7.6万人,WHO预测到2030年可能高达13.1万人,由于肿瘤具有极强的侵袭行为,它通常会导致远处转移[1]。
转移是一个多步骤、极其复杂的过程,它包括细胞与细胞间黏附作用,侵犯周围组织,通过血液循环和淋巴管道播散,也可通过血管内皮细胞到达远处器官[2],对于转移性肿瘤,其每一个步骤都应有序完成。
目前,肿瘤的主要研究方向是延缓肿瘤患者早期发生远处转移。
因此,有研究[3-4]表明,转移抑制基因可能参与抗肿瘤活性的作用,它的基因表达机制和抑制肿瘤转移的基因产物可能是未来潜在的一种分子靶向治疗,其有望降低肿瘤患者的病死率。
目录1.产品概述 (2)2.主要特性 (2)3.系统框图 (2)4.封装及引脚说明 (3)5.功能描述 (5)5.1输出模式和选项脚位 (5)5.2按键最长输出时间 (5)5.3低功耗模式 (5)5.4灵敏度调整 (5)6.应用电路 (6)7.电气特性 (7)7.1电气特性极限参数 (7)7.2直流特性 (7)8.封装信息 (8)8.1SOT23-6封装 (8)8.2DFN2x2-6L封装尺寸 (9)8.3DFN2x2-6L编带信息 (10)8.4DFN1x1-4L封装尺寸 (11)8.5DFN1x1-4L编带信息 (12)9.历史记录 (12)单触控单输出IC文件编号:PT-DS210071.产品概述PT2041A是一款单通道触摸检测芯片。
该芯片内建稳压电路,提供稳定电压给触摸感应电路使用,同时内部集成高效完善的触摸检测算法,使得芯片具有稳定的触摸检测效果。
该芯片专为取代传统按键而设计,具有宽工作电压与低功耗的特性,可广泛地满足不同消费类应用的需求。
2.主要特性⚫工作电压范围:2.4~5.5V⚫工作温度范围:-40~85℃⚫抗干扰性能优良:内置稳压电路、上电复位、低压复位功能及环境自适应算法等多种措施⚫待机工作电流:典型值2uA@V DD=3V/无负载⚫按键最长响应时间:低功耗模式下约200ms@V DD=3V⚫可接外部电容(1~50pF)调整触摸灵敏度⚫输出模式选择(TOG):同步输出或锁存(toggle)输出⚫CMOS输出(QC)有效电平选择(AHLB):高电平或低电平输出有效⚫按键最长输出时间:16秒(±30%)⚫上电约0.4秒的初始化时间,此期间内不要触摸检测点,且此时所有功能被禁止⚫HBM ESD:大于2KV⚫封装形式:SOT23-6、DFN2*2-6L、DFN1*1-4L3.系统框图传感器震荡电路时序计算器 &功能选项控制电路系统振荡电路传感器 &参考检测电路触摸检测电路输出&驱动电路TCHQCTOGAHLB图1 系统框图4.封装及引脚说明QC VSS TCHTOGVDDAHLB 34 PT2041AT6图2 PT2041A SOT23-6管脚示意图TCH VSS QCAHLBVDDTOG65423PT2041AD6 1图3 PT2041A DFN2x2-6L管脚示意图注:引脚布局与SOT23-6反向VDD TCHQCVSS43 2PT2041AD41图4 PT2041A DFN1x1-4L封装管脚示意图注:固定为同步输出模式,输出高电平有效表1引脚说明表223VSS P地312TCH I触摸感应输入46/AHLB I-PL 输出高电平有效或低电平有效选择0(默认值):高电平有效;1:低电平有效551VDD P电源64/TOG I-PL 输出模式选择0(默认值):同步输出;1:锁存(toggle)输出引脚类型:I:CMOS输入O:CMOS输出I/O:CMOS输入/输出P:电源/接地I-PH:CMOS输入内置上拉电阻I-PL:CMOS输入内置下拉电阻5.功能描述5.1 输出模式和选项脚位AHLB 和TOG 选项脚位为锁存类型:上电默认状态为0,若上电前管脚被接至VDD ,则上电后状态变为1,且不会有电流漏电。
基因功能分类Apoptosis Panel for Monitoring Cell Programmed Death and Survival:TNF Ligand Family:LTA, LTB, TNF, TNFSF4, TNFSF5, TNFSF6, TNFSF7, TNFSF8, TNFSF9, TNFSF10, TNFSF11, TNFSF12, TNFSF13, TNFSF13B, TNFSF14, TNFSF15, TNFSF18. TNF Receptor Family:LTBR, TNFRSF1A, TNFRSF1B, TNFRSF4, TNFRSF5, TNFRSF6, TNFRSF6B, TNFRSF7, TNFRSF8, TNFRSF9, TNFRSF10A, TNFRSF10B, TNFRSF10C, TNFRSF10D, TNFRSF11A, TNFRSF11B, TNFRSF12, TNFRSF14, TNFRSF17, TNFRSF18, TNFRSF21.Bcl-2 Family: BAD, BAG1, BAG3, BAG4, BAK1, BAX, BBC3, BCL2, BCL2A1, BCL2L1, BCL2L11, BCL2L2, BIK, BLK, BNIP3, BOK, HRK, MCL1.Caspase Family: CASP1, CASP2, CASP3, CASP4, CASP5, CASP6, CASP7, CASP8, CASP9, CASP10, CASP13, CASP14.IAP Family: BIRC1, BIRC2, BIRC3, BIRC4, BIRC5, BIRC6.TRAF Family: TANK, TRAF1, TRAF2, TRAF3, TRAF4, TRAF5, TRAF6, TRIP. CARD Family: APAF1, ASC, BCL10, NOD1, RIPK2.Death Domain Family:CRADD, DAPK2, FADD, MYD88, RIPK1.Death Effector Domain Family: BFAR, CASP8AP2, CFLAR, FADD.CIDE Domain Family: CIDEA, CIDEB, DFFA, DFFB.p53 and ATM Pathway: ATM, CHEK1, CHEK2, GADD45A, MDM2, RPA3, TP53, TP73L..Cell Cycle Panel for Monitoring Proliferation / Carcinogenesis and Growth Arrest / Senescence:Cell Division Cycle Proteins and Kinases:CDC2, CDC6, CDC7, CDC16, CDC20, CDC25A, CDC25B, CDC25C, CDC27, CDC34, CDC37, CDC45L, CKS1, CKS2.Cyclins, Cyclin-Dependent Kinases and Inhibitors:CCNA1, CCNA2, CCNB1, CCNB2, CCNC, CCND1, CCND2, CCNE1, CCNE2, CCNF, CCNG1, CCNG2, CCNH, CDK2, CDK4, CDK6, CDK7, CDK8, CDKN1A, CDKN1B, CDKN1C, CDKN2A, CDKN2B, CDKN2C, CDKN2D.Cyclin and Kinase Inhibitor Degradation:CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5, NEDD8, RBX1, SKP1A, SKP2. DNA Damage Checkpoint / p53 and ATM Pathways:ABL1, APAF1, ATM, BAP1, BAX, BCL2, BRCA1, CHEK1, CHEK2, GADD45A, HUS1, MDM2, MRE11A, MRE11B, NBS1, RAD9, RAD17, RAD50, RAD51, RPA3, TIMP3, TP53, UBE1, UBE3A, UBL1.DNA Replication, Transcriptional Control and Others:E2F1, E2F2, E2F3, E2F4, E2F5, E2F6, FOXM1, MAD2L1, MAD2L2, MCM2,MCM3, MCM4, MCM5, MCM6, MCM7, MKI67, PCNA, PRC1, RB1, RBL1, RBL2, TFDP1, TFDP2.Stress & Toxicity Panel for Monitoring the Type of Stress Induced: Oxidative & Metabolic Stress:CAT, CRYAB, CYP1A1, CYP1B1, CYP2E, CYP7A1, CYP7B1, EPHX2, FMO1, FMO5, GPX1, GSR, GSTM3, HMOX1, HMOX2, MT1A, MT2A, MT1H, POR, PTGS2, SOD1, SOD2.Heat Shock & Related Stress:DNAJA1, DNAJB4, HSF1, HSP105B, HSPA1A, HSPA1B, HSPA1L, HSPA2, HSPA4, HSPA5, HSPA6, HSPA8, HSPA9B, HSPB1, HSPCA, HSPCB, HSPD1, HSPE1. DNA Damage & Repair Stress: ATM, CHEK2, DDB1, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, RAD50, UGT1A9, UNG, XRCC1, XRCC2, XRCC3, XRCC4, XRCC5. Inflammation Stress: BCL3, BCL6, CCL3, CCL4, CCL21, CSF2, CXCL10, IL1A, IL1B, IL6, IL18, LTA, MIF, NFKB1, NOS2A, SERPINE1. TNF Ligand Family:LTA (TNF- ), LTB (LT- ), TNF (TNF- ), TNFSF4 (OX40 Ligand), TNFSF5 (CD40 Ligand), TNFSF6 (FasL), TNFSF7 (CD27 Ligand), TNFSF8 (CD30 Ligand), TNFSF9 (4-1BB Ligand), TNFSF10 (TRAIL), TNFSF11 (TRANCE), TNFSF12 (Apo3L), TNFSF13 (APRIL), TNFSF14 (HVEM-L);TNF Receptor Family:LTBR, TNFRSF1A (TNFR1), TNFRSF1B (TNFR2), TNFRSF4 (OX40), TNFRSF5 (CD40), TNFRSF6 (Fas), TNFRSF7 (CD27), TNFRSF8 (CD30), TNFRSF9 (4-1BB), TNFRSF10A (DR4), TNFRSF10B (DR5), TNFRSF10C (DcR1), TNFRSF10D (DcR2), TNFRSF12 (DR3), TNFRSF14 (HVEM);Bcl-2 Family:BAD, BAK1, BAX, BCL2, BCL2A1 (bfl-1), BCL2L1 (bcl-x), BCL2L11 (bim-like protein), BCL2L2 (bcl-w), BIK, BLK, BNIP3 (nip3), BOK (Mtd), HRK, MCL-1; Caspase Family:CASP1, CASP2, CASP3, CASP4, CASP5, CASP6, CASP7, CASP8, CASP9,CASP10, CASP13, CASP14;IAP Family:BIRC1 (NIAP), BIRC2 (IAP2), BIRC3 (IAP1), BIRC4 (XIAP), BIRC5 (Survivin), BIRC6 (Bruce);TRAF Family:TANK (I-TRAF), TRAF1, TRAF2, TRAF3 (CRAF1), TRAF4, TRAF5, TRAF6, TRIP;CARD Family:APAF1, ASC, BCL10 (HuE10), NOD1 (CARD4), NOL3 (Nop30), RIPK2 (CARDIAC);Death Domain Family:CRADD, DAPK2, FADD, MYD88, RIPK1;Death Effector Domain Family:CASP8AP2 (FLASH), CFLAR (CASPER), FADD, LOC51283 (BAR);CIDE Domain Family:CIDEA, CIDEB, DFFA, DFFB;p53 and ATM Pathway:ATM, CHEK1 (chk1), CHEK2 (chk2, Rad53), GADD45A, MDM2, P63, RPA3,TP53 (p53)G1 Phase:CCND1 (cyclin D1), CCND2 (cyclin D2), CCND3 (cyclin D3), CCNE1 (cyclin E1), CCNE2 (cyclin E2), CDC7L1, CDC34, CDC37, CDK2, CDK4, CDK6, CDKN1A (p21), CDKN1B (p27), CDKN1C (p57), CDKN2A (p16), CDKN2B (p15), CDKN2C (p18), CDKN2D (p19), CKS1, CKS2, CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5, E2F1, E2F2, E2F3, E2F4, E2F5, E2F6, NEDD8, RB1, RBL1 (p107 RB), RBL2 (p130 RB2), SKP1A, SKP2, TFDP1 (DP1), TFDP2 (DP2);S Phase:CCNA1 (cyclin A1), CCNA2 (cyclin A2), CCNC (cyclin C), CCNG1 (cyclin G1), CCNG2 (cyclin G2), CCNH (cyclin H), CDC25A, CDC45L, CDC6, CDK7, CDK8, MCM2, MCM3, MCM4 (CDC21), MCM5 (CDC46), MCM6 (Mis5), MCM7(CDC47), MKI67 (Ki67), PCNA;G2 Phase:CCNB1 (cyclinB1), CCNB2 (cyclin B2), CCNF (cyclin F);M Phase:CDC2 (CDK1), CDC16, CDC20 (p55cdc), CDC27, FOXM1 (MPP2), MAD2L1, MAD2L2, PRC1, RBX1;DNA Damage Checkpoint / p53 and ATM Pathways:ABL1 (c-Abl), APAF1, ATM, BCL2, BAX, BRCA1, CHEK1 (chk1), CHEK2 (chk2, Rad53), GADD45A, HUS1, MDM2, MRE11A, MRE11B, NBS1 (nibrin), RAD9, RAD17, RAD50, RAD51, RPA3, TIMP3, TP53 (p53), UBC (ubiquitin C), UBE1, UBE3A (E6-AP), UBL1 (SUMO-1)Specific Promoters and Inhibitors:AMOT (KIAA1071/angiomotin), ANG (angiogenin), ANGPT1 (angiopoietin-1), ANGPT2 (angiopoietin-2), CHGA (vasostatin);Growth Factors and Receptors:Ephrin Family Members:EFNA2 (Ephrin A2), EFNA5 (Ephrin A5), EFNB2 (Ephrin B2), EPHB4 (Ephrin B4); Fibroblast Growth Factors & Receptors:FGF1 (aFGF), FGF2 (bFGF), FGF4, FGF6, FGF7, FGFR1, FGFR2 (KGFR), FGFR3, FGFR4;Platelet-derived Growth Factors & Receptors:PDGFA, PDGFB, PDGFRA, PDGFRB, PF4 (Platelet factor 4);Transforming Growth Factors & Receptors:TGFA, TGFB1, TGFB2, TGFB3, TGFBR1, TGFBR2, TGFBR3;Vascular Endothelial Growth Factors & Receptors:FIGF (VEGFD), FLK1 (KDR), FLT1 (VEGFR2), PGF, VEGF, VEGFB, VEGFC; Others:CD36, EDG1, EGF, EGFR, GRO1, HGF (Scatter factor), IGF1, TEK (Tie-2), TIE; Cytokines and Chemokines:CSF3, IFNA1, IFNB1, IFNG, IL10, IL12A, IL8, MDK, NRP1 (neuropilin-1), PRL (prolactin), PTN (pleiotrophin), SCYA2, SPARC, TNFA, TNFSF15 (VEGI); Adhesion Molecules:CDH5 (VE-Cadherin), ITGA5 (integrin 5), ITGAV (integrin V), ITGAV (integrin V), ITGB3, PECAM1;Matrix Proteins, Proteases and Inhibitors:ADAMTS1 (METH1), ADAMTS8 (METH2), COL18A1 (LOC51695 /endostatin), FN1 (fibronectin), HPSE (heparanase), MMP2, MMP9, MSR1, PLAU (uPA), SERPINB5 (maspin), SERPINF1 (PEDF), THBS1, THBS2, THBS3, THBS4, TIMP1, TIMP2; Transcription Factors:ERBB2, ETS1, HIF1A, ID1, ID3, MADH1 (SMAD1);Other Related Genes:ENG (endoglin), F2 (thrombin), NOS3, PTGS1 (cox-1), PTGS2 (cox-2), RSN (restin), SPP1 (osteopontin)Growth Factors and Receptors:CSF1 (csf-1), CSF1R (c-fms/MC-SF-R), FGF1 (a-FGF), FGF2 (b-FGF2), HGF (Scatter factor), IGF2, NGFB, PDGFA, TGFA (TGF- ), TG FB1 (TGF- 1), VEGF, VEGFC; Cell-Cell and Cell-Matrix Interaction Molecules:CAV1 (caveolin-1), CDH1 (cadherin-1/ E-cadherin), COL4A2 (collagen 2(IV)), ICAM5 (telencephalin), ITGA2, ITGA3, ITGA5, ITGA6, ITGB1, ITGB3, LAMB1 (laminin 1), LAMC1 (laminin 2), MICA (MUC-18), MUC1, NCAM1, PECAM1, VTN (vitronectin); Metastasis-Associated Proteases:Matrix Metalloproteinases:MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP11, MMP13,MMP14, MMP15, MMP16;Others:CASP8, CASP9, CST3 (cystatin C), CTSB (cathepsin B), CTSD (cathepsin D), CTSL (cathepsin L), ELA2 (elastase), HPSE (heparanase), MGEA5 (meningioma hyaluronidase 5), PLAU (uPA), TMPRSS4;Protease Inhibitors:SERPINB2 (PAI-2), SERPINB5 (maspin), SERPINE1 (PAI-1), THBS1, THBS2, TIMP1, TIMP2, TIMP3;Signal Transduction Molecules:LIMK1 (LIM kinase), PLAUR (uPAR), PIK3C2B, RAC1Oncogenes:ERBB2 (c-erb-2/neu), ETS1 (c-ets-1), ETS2 (c-ets-2), ETV4 (PEA3), FES, FOS(c-fos), HRAS (c-hRas), MDM2, MYC (c-myc), RAF1, SRC (c-src);Metastasis Suppressors: BRMS1 (BrMS1), CD44, DCC, KAI1, KISS1 (KiSS-1), MAP2K4 (mkk4 (JNKK1), MTA1, NM23A (NM23), NME4, PTEN;Other Related Genes:API5 (apoptosis inhibitor 5), ARHC (Rho C), EHM2, ENPP2 (autotaxin/ ATX), MGAT3 (acetylglucosaminyltransferase III), MGAT5 (acetylglucosaminyltransferase V), ODC1, PTGS2 (cox-2), S100A4 (mts-1), SNCG (BCSG1), SPP1 (osteopontin) Apoptosis:Anti-Apoptosis (18):AKT1, BCL2, BRAF, CCL2, FOXO1A, HDAC1, IER3, IGF1R, MYBL2, NFKB1, NOTCH2, PEA15, RELA, SEMA4D, TGFB1, TNF, TNFRSF6, VHL.Caspase Activation (4):F2R, STAT1, TNFRSF10A, TNFRSF10B.DNA damage response, signal transduction resulting in induction of apoptosis (3): ABL1, TP53, TP73.Factors involved In other aspect of apoptosis (24):BRCA1, E2F1, FASTK, IL1B, RAF1, RIPK1, SIVA, TNFRSF1A, TNFRSF1B, TNFSF7, TP53BP2, TRADD, BAX, BCL2, F2R, IER3, NFKB1, PEA15, TNF, TNFRSF10A, TNFRSF10B, TNFRSF6, TP53, TP73.Induction of apoptosis (8):DCC, NME3, BAX, NOTCH2, TNFRSF10A, TNFRSF10B, TNFRSF6, TRADD. Induction of apoptosis by signals: intracellular and extracellular, by death domain, and by hormones (10):BTK, TIMP3, BAX, FASTK, SIVA TP53, CDKN1A, CUL1, TNFRSF10A, TNFRSF10B. Regulation of apoptosis (6): BAX, BCL2, BRCA1, PEA15,TNFRSF10B, TNFRSF6. Others (apoptogenic cytochrome c release channel activity, apoptotic mitochondrial changes, apoptotic program):VDAC1, BAX, VDAC1.Cell Cycle:Cell Cycle Arrest (13):CGRRF1, MYC, PA2G4, TBRG4, CDKN1A, CDKN1B, CDKN1C, CDKN2A, CDKN2B, CDKN2D, CUL1, MAPK12, NOTCH2.Cell Cycle Checkpoint (4):RB1, BRCA1, CDKN2A, TP53.Factors involved In other aspect of cell cycle (29):ATM, CCND1, CCND2, CCND3, CCNE1, CDC20, CDK4, CDK5, CDKN1B, CDKN1C, CDKN2A, CDKN2B, CDKN2D, CHAF1A, E2F3, MAPK12, MAPK13, MCM2, PLK2, RBBP4, RBL2, SEPT6, TAF1, TFDP1, TFDP2, CDKN1A, CUL1,E2F1, TP53BP2. Regulation of cell cycle (81):APC, ING1, KLK10, MCC, MSH2, NF1, NF2, NME1, NME2, PTCH, PTEN,RAP1A, WT1, ATM, BAX, BRCA1, CDKN1C, CDKN2A, CDKN2B, CDKN2D, DCC, MAPK12, RB1, RBL2, TP53, TP73, VHL, AXL, BRCA2, CDC25A, CDC25B, CDK9, CDKL1, CLK1, CSK, E2F5, FRAP1, GSPT1, IFITM1, KRAS2, LCK, MAPRE1, NRAS, PCNA, PCTK1, PCTK2, PDGFA, PDGFB, PIK3CB, PTMA, PTN, SFN, TGFA, VEGF, WEE1, ABL1, APC, ATM, BCL2, CCND1, CCND2, CCND3, CCNE1, CDC20, CDK4, CDKN1A, CDKN1B, E2F1, E2F3, F2R, IGF1R, IL1B, MYBL2, RAP1A, RB1, STAT1, TFDP1, TFDP2, TGFB1, TP53BP2, VHL.Cell Growth and Differentiation (167):Cell Differentiation/ Cell Fate Determination (6):NOTCH1, NOTCH4, NRG1, SKI, SKIL, NOTCH2.Cell Growth and/or Main-tenance (63):ABL1, ABL2, ARHGEF5, AXL, BCL2, BRAF, CBFB, CCND1, CDK4, CSF1R, DEK, ETV1, ETV6, FES, FGFR1, FGR, FOS, FOXO1A, GNAS, IER3, IGFBP3, IGFBP4, IGFBP5, JUN, KIT, KRAS2, LCK, LYN, MAP3K8, MAS1, MDM2, MET, MLLT3, MYB, MYC, MYCN, NF1, NFKB2, NOTCH2, NPM1, NRAS, PDGFA, PDGFB, PHB, PIM1, RAF1, RARA, RARB, REL, RET, RHOA, RHOB, RHOC, SEMA3C, SKI, SKIL, SMO, SRC, TGFB1, VEGF, WNT1, WNT3, YES1.Cell Proliferation (41):CDC25, CCYR61, EGFR, ERBB2, ERBB4, GAS6, HDGF, KITLG, LRPAP1, MT3, OSM, PDGFRA, TGFBI, CDC25A, CDK4, CDK5, CDK9, CLK1, CSF1R, E2F1, FES, GSPT1, IGFBP4, IL1B, MAPRE1, MAS1, MET, MYC, PA2G4, PCNA, PDGFA, PDGFB, PTCH, PTN, RAF1, SFN, TFDP1, TGFA, TGFB1, NFSF7, VEGF. Growth Factors (11):GDF15, HDGF, IL1B, KITLG, NRG1, PDGFA, PDGFB, PTN, TGFA, TGFB1, VEGF. Regulation of Cell Proliferation, Differentiation, Growth, and Volume (46): BCL2, BRCA1, CAPN1, CAPNS1, CDC25B, CDC2L5, CDK10, CDKN1A,CDKN1B, CDKN1C, CDKN2A, CDKN2B, CDKN2D, CGRRF1, CLNS1A, CUL1, CYR61, DLG3, FOSL1, IFITM1, IGF1R, IGFBP3, IGFBP4, IGFBP5, IL1B, MDM2, MDM4, MT3, NF1, NF2, NME1, NME2, NOTCH2, NOTCH4, OSM, PTN, RBBP4, SOCS1, SOCS3, TBRG4, TGFBR2, TIMP1, TOB1, TSG101, VEGF, VHL.Cell Motility:Cell Migration and Motility (10):FN1, GNA13, HMMR, NEO1, RAC1, SPINT2, STAT3, THBS1, TPBG, F2R.Cell-Cell Adhesion (2):CD44, ICAM1.Cell-matrix adhesion (6):ILK, ITGA3, ITGA6, ITGB4, NID, CD44.Metalloendopeptidases (MMPs) and MMP inhibitors (10):ACY1, ANPEP, MME, MMP1, MMP14, MMP17, MMP2, PA2G4, TIMP1, TIMP3. Signal Transduction:Cell surface receptor linked signal transduction (13):CBLB, CD59, FZD2, FZD5, FZD9, MYD88, STC1, CCL2, FGFR1, IFITM1, PDGFA, PDGFRA, SMO.Frizzled and Frizzled-2 Signaling Pathways (9):DVL1, DVL3, TLE1, FZD9, WNT2, WNT2B, WNT5A, WNT1, WNT3.G-protein coupled receptor protein signaling pathway (17):CRHR1, GNB2, GPR39, NMBR, PIK3CG, RGS19, AKT1, CCL2, F2R, FZD2,FZD5, FZD9, GNA13, GNAS, MAS1, PIK3CB, SMO.Insulin receptor signaling pathway (2):PDPK1, IGF1R.integrin-mediated signaling pathway (4):ILK, ITGA3, ITGA6, ITGB4.Intracellular Signaling Cascade (29):FKBP8, GRB2, JAK1, PRKAR1A, RASGRF1, SHB, STAT2, STAT5B, ZAP70, ABL1, ABL2, BRAF, BTK, CBLB, CSK, DVL1, DVL3, FES, FGR, LCK, LYN, RAC1, RAF1, SOCS1, SOCS3, SRC, STAT1, STAT3, YES1.JAK-STAT Cascade (6):CCL2, SOCS1, STAT1, STAT2, STAT3, STAT5B.Notch signaling pathway (2):NOTCH2, NOTCH4.RAS protein signal transduction (3):GRB2, LCK, NF1.Rho protein signal transduction (4):ARHGAP5, RHOD, RHOA, RHOB.Small GTPase mediated signal transduction (13):ACK1, RAB5A, SIAH2, KRAS2, NRAS, RAC1, RAP1A, RASGRF1, RGS19, RHOA, RHOB, RHOC, RHOD.Wnt receptor signaling pathway (16)CSNK1G2, CTNNB1, FRZB, TCF7L2, APC, DVL1, DVL3, FZD2, FZD5, FZD9, TLE1, WNT1, WNT2, WNT2B, WNT3, WNT5A.Other Cancer-Related Genes (188):AARS, ABCB1, ABCC4, ABI2, ACP2, ADSL, AK1, AKR1C2, ALB, ANXA5, ANXA7, AP2M1, ARID4A, ASNS, ATF4, ATP5B, ATP5O, BARD1, BHLHB2, BLMH, CANX, CAP1, CAV1, CCT5, CD24, CEBPG, CENPC1, CIB1, CKMT1, CLK2, CLK3, CLTC, COL1A1, COL6A3, COX6C, COX7A2, CRAT, CTNNA1, CTPS, CTSC, CTSD, DCN, DDX10, DHCR7, DHRS2, DHX8, EGR1, EIF5, EPHA2, ERBB3, ERCC3, ETV3, FBN1, FBN2, FOSL2, FOXG1A, FTL, G22P1, GCN5L2, GNB2L1, GSK3A, GTF2I, HPRT1, HRB, HSPA4, HSPA5, HSPA8, HSPB1, HSPH1, HYAL1, HYOU1, ID1, ID2, IDUA, IGF2R, IRF3, JARID1A, JUNB, JUND,K-ALPHA-1, KPNA2, KRT18, KRT2A, KRT9, LAMB1, LAMP2, LCN2, LEP, LITAF, LTF, LZTR1, MADH1, MAP2K2, MAPKAPK3, MARS, MCM4, MGST1, MICB, MNDA, MSH6, MYBL1, MYCL1, MYL9, MYLK, NINJ1, NQO1, NR1D1, NR2F1, NR2F6, NSEP1, PABPC1, PCTK3, PFDN4, PFDN5, PGAM1, PIK3CA, PKM2, PKMYT1, PPARD, PPARG, PPIH, PPP1CA, PPP2R5A, PRDX2, PRDX4, PRKCBP1, PRNP, PRSS15, PSMA1, PTGS1, PTPRN, RAD50, RALBP1, REA, RELB, RFC2, RPN2, RPS6KB1, RRM1, SARS, SELENBP1, SEPP1, SERPINH1, SFPQ, SFRS7, SHH, SLC16A1, SLC1A4, SLC20A1, SMPD1, SNAI2, SND1, SNRPB2, SOD1, SORT1, SPRY2, SRPX, TBL3, TCF1, TFAP2C, TGFBR3, TIE, TJP1, TK1, TNK1, TP53I3, TPT1, TRAM1, TRRAP, TUFM, TXNRD1, TYRO3, UBC, UBE2L6, UCHL1, USP7, VIL2, XRCC1, YWHAB, YWHAZ, ZNF9.Cell cycle control & DNA Damage Repair:ATM, BRCA1, BRCA2, CCND1 (cyclin D1), CCNE1 (cyclin E1), CDC25A, CDK4, CDKN1A (p21Waf1), CDKN1B (p27Kip1), CDKN2A (p16Ink4), CHEK2(chk2/Rad53), MDM2, PRKDC (DNA-PK), RB1, TP53 (p53);Apoptosis and Cell Senescence:APAF1, BAD, BAX, BCL2, BCL2L1 (bcl-X), BIRC5 (Survivin), CASP8, CASP9, CFLAR (CASPER), TERT (telomerase), TNFRSF1A (TNF- receptor), TNFRSF6 (Fas), TNFRSF10B (DR5), TNFRSF12 (DR3);Signal Transduction Molecules and Transcription Factors:AKT1, CTNNB1 ( -catenin), ERBB2, ETS2, FOS, JUN, MAPK14 (p38 MAPK), MAP2K1 (MEK), MYC, NFKB1 (NF B), NFKBIA (I B ), PIK3CB (PI3Kp110 ), PIK3R1 (PI3K p85 ), RAF1, RASA1, SRC;Adhesion:CD44, CDH1 (E-cadherin), ICAM1, ITGA1 (integrin 1), ITGA2 (integrin 2), ITGA3 (integrin 3), ITGA4 (integrin 4), ITGA5 (integrin 5), ITGA6 (integrin 6), ITGAV (integrin V), ITGB1 (integrin 1), ITGB3 (integrin 3), ITGB5 (integrin 5), MICA (MUC18), NCAM1;Angiogenesis:ANGPT1 (angiopoietin-1), ANGPT2 (angiopoietin-2), COL18A1 (endostatin), EGF, EGFR, FGF2 (bFGF), FGFR2, FLT1 (VEGFR), HGF, IFNA1 (IFN ), IFNB1 (IFN ), IGF1, IL8, PDGFA, PDGFB, TEK (tie-2), TGFB1, TGFBR1 (ALK-5), THBS1 (thrombospondin-1), THBS2 (thrombospondin-2), TNF, VEGF;Invasion and metastasis:KISS1, KAI1, MMP1 (collagenase-1), MMP2 (gelatinase A), MMP9 (gelatinase B), MTA1, NME4 (Nm23), PLAU, PLAUR, SERPINB2 (PAI2), SERPINB5 (maspin), SERPINE1 (PAI1), TIMP1Androgen Pathway:CDK2, CDKN1A (p21Waf1/p21Cip1), EGFR, FOLH1, KLK2 (hGK2), KLK3 (PSA), TMEPAI.Cox-2 Pathway:FOS, HSPA4 (hsp70), MCL1, PPARG, PTGS2 (Cox-2), TNFRSF10B (DR5).DNA Damage / p53 Pathways:BAX, BCL2, CDKN1A (p21Waf1/p21Cip1), GADD45A (gadd45), HIF1A, HSPA4 (hsp70), IGFBP3, MDM2, PIG3, TNFRSF6 (Fas), TNFRSF10B (TrailR/DR5), TRAF1, WIG1. Estrogen Pathway:BCL2, BRCA1, CTSD (cathepsin D), EGFR, PGR (PR), ZNF147 (Efp).Hedgehog Pathway:BMP2, BMP4, EN1 (engrailed), HHIP, FOXA2 (HNF3B), PTCH, PTCH2, WNT1, WNT2, WSB1.Hypoxia Pathway:ADRA1B, CDKN1A, EDN1, EPO, HK1, HMOX1 (HO-1), IGFBP3, NOS2A (iNOS), SLC2A1, TF, TFRC, VEGF.Inflammation / NFkB Pathways: ICAM1, IL2, LTA (TNFb), NFKB1 (NFkB), NFKBIA (IkBa), NOS2A (iNOS), PECAM1, TNF (TNFa), VCAM1.MAP Kinase Pathway:COL1A1 (Collagen I), EGR1 (egr-1), FOS (c-fos), JUN (c-jun).PI-3 Kinase / AKT Pathways:BCL2, CCND1 (cyclin D1), FN1 (fibronectin), HIF1A, JUN (c-jun), MMP7 (matrilysin), MYC (c-myc), TNFSF10 (TRAIL)STAT Pathway:A2M (a2macroglobulin), BCL2, BCL2L1 (Bcl-XL), CSN2 (b –casein), CXCL9 (MIG), IL4, IL4R, IRF1, MMP10 (stromelysin-2), NOS2A (iNOS).Stress / Heat Shock Pathways:HSF1 (tcf5), HSPA4 (hsp70), HSPB1 (hsp27), HSPB2, HSPCA (hsp90)Stress / p38 & JNK Pathways:ABCB1 (Mdr1), ATF2, COL1A1 (Collagen I), DUSP1 (MKP1), ENPP2 (Autotaxin), FOS, HSPA4 (hsp70), HSPA5 (Grp78), HSPB1 (hsp27), HSPB2, MYC, TP53. Survival / NFkB Pathway:AKT1, BCL2A1 (Bfl-1/A1), BCL2L1 (Bcl-xL), BIRC1 (NAIP), BIRC2 (c-IAP2), BIRC3 (c-IAP1), TNFAIP3 (A20), TRAF1.TGFß Pathway:CDKN1A (p21Waf1, p21Cip1), CDKN1B (p27), CDKN1C (p57Kip2), CDKN2A (p16Ink4), CDKN2B (p15 Ink2b), CDKN2C (p18, cdk4 inhibitor), CDKN2D (p19). Wnt Pathway:ABCB1 (Mdr1), BMP4, CCND1 (cyclin D1), ENPP2 (Autotaxin), FOSL1 (Fra-1), ID2, JUN (c-jun), MMP7, MYC (c-myc), VEGF, WISP1.Apoptosis genes:ABL1, BRCA1, CIDEA, CIDEB, GADD45A, GADD45G, GML, IHPK3, PCBP4, PDCD8, PPP1R15A, RAD21, TP53, TP73.Cell cycle genes: Cell cycle arrest: CHEK1, CHEK2, DDIT3, GADD45A, GML, GTSE1, HUS1, MAP2K6, MAPK12, PCBP4, PPP1R15A, RAD17, RAD9A, SESN1, ZAK. Cell cycle checkpoint: ATR, BRCA1, FANCG, NBS1, RAD1, RBBP8,SMC1L1, TP53.DNA repair:Damaged DNA binding:ANKRD17, BRCA1, DDB1, DDB2, DMC1, ERCC1, ERCC3, FANCG, FEN1, GTF2H3, MPG, MSH2, MSH3, MSH4, MSH5, MSH6, N4BP2, NBS1, OGG1, PMS2L4, PMS2L9, PNKP, RAD1, RAD18, RAD51, RAD51C, RAD51L1,RAD51L3, REV1L, SEMA4A, XPA, XPC, XRCC1, XRCC2, XRCC3.Base-excision repair:APEX1, MBD4, MPG, MUTYH, NTHL1, OGG1, RAD51L3, UNG, UNG2. Double-strand break repair:BRCA2, CIB1, FEN1, G22P1, KUB3, MRE11A, NBS1, PRKDC, RAD21, RAD50, RAD52, XRCC4, XRCC5.Mismatch repair:ABL1, ANKRD17, EXO1, MLH1, MLH3, MSH2, MSH3, MSH4, MSH5, MSH6, MUTYH, N4BP2, PMS1, PMS2, PMS2L4, PMS2L9, TP73, TREX1.Others:APEX2, ATM, ATRX, BTG2, CCNH, CDK7, CKN1, CRY1, CRY2, ERCC2, ERCC4, ERCC5, GTF2H1, GTF2H2, IGHMBP2, INPPL1, LIG1, LIG3, LIG4,MNAT1, NUDT1, PCNA, RAD23A, RAD23B, RAD54L, RPA1, RPA3, SUMO1, TREX2.ATR/ATM signaling network:53BP1, ATM, ATR, CDS1, CHEK1, CHEK2 (Rad53), FOXO3A, HUS1, MRE11A, NBS1 (nibrin), RAD1, RAD9, RAD17, RAD50, TREX1 (ATRIP);DNA damage response pathways:Cell cycle arrest pathway:CDC20 (p55cdc), CDC25A, CDC25B, CDC25C, CDK4, CDKN1A (p21), CENPE, DDIT3 (GADD153), E2-EPF, EXT1, GADD45A, GADD45B, GADD45G, GTSE1 (B99), KNSL5 (MKLP-1), KNSL6 (MCAK), MDM2, PIN1, PPM1D (Wip1), PTPRCAP (LPAP), REPRIMO, SFN (14-3-3 sigma), TP53, WEE1;Apoptosis pathway:APAF1, BAK1, BAX, BBC3 (PUMA), BCL6, BIRC2 (MIHB), BIRC3 (MIHC), BNIP3 (NIP3), LGMN (Legumain), LRDD (PIDD), P53AIP1, TNF (TNF-a), TNFRSF4 (OX40), TNFRSF6 (Fas), TNFRSF10 (DR5);Genome stability/repair pathway:APEX (REF-1), ATRX (RAD54), BRCA1, BRCA2, BTG2, CKN1 (CSA), DDB1, DDB2, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, FEN1, GADD45A, GADD45B, GADD45G, H2AFL, MLH1, MPG, MSH2, MSH3, MSH6, PA26, PCNA, PMS1, PMS2, PRKDC (DNA-PK), PURA, RAD23A, RAD23B, RAD50, RAD51, RAD52, RPA3, RRM2B (p53R2), UNG, UNG2, XPA, XPC, XRCC1, XRCC2, XRCC3, XRCC4, XRCC5 (Ku-80)DNA Damage Repair:Base-excision repair:APEX1, APEX2, FLJ10858, LIG3, MBD4, MPG, MUTYH, NEIL1, NEIL2, NTHL1, OGG1, PARP1, PARP3, SMUG1, TDG, UNG, UNG2, XRCC1.Nucleotide Excision Repair:ATXN3, BRIP1, CCNH, CDK7, CETN2, CKN1, DDB1, DDB2, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, GTF2H1, GTF2H2, GTF2H3, GTF2H4, LIG1, MMS19L, MNAT1, PNKP, POLL, RAD23A, RAD23B, RPA1, RPA3, SLK, XAB2, XPA, XPC. Mismatch Excision Repair:ANKRD17, MLH1, MLH3, MSH2, MSH3, MSH4, MSH5, MSH6, N4BP2, PMS1, PMS2, PMS2L1, PMS2L9, POLD3, TP73, TREX1.DSB Repair:BRCA1, BRCA2, CIB1, DMC1, FEN1, G22P1, KUB3, LIG4, MRE11A, NBS1, PRKDC, RAD21, RAD50, RAD51, RAD51C, RAD51L1, RAD51L3, RAD52,RAD54B, RAD54L, XRCC2, XRCC3, XRCC4, XRCC5.RAD6-dependent pathway:RAD18, UBE2A, UBE2B, UBE2I, UBE2N, UBE2V2.Other DNA-repair related genes:ATM, ATR, EXO1, MGMT, TERF2, TERT.Genome stability:Telomere maintenance:DKC1, MRE11A, PINX1, RAD50, RFC1, TEP1, TERF1, TERF2, TERF2IP, TERT, TINF2, TNKS, TNKS1BP1, TNKS2.Other genome-stability related genes:ATM, TOP3A, TOP3B.Direct reversal of damage:DEPC-1, MGMTBase exision repair:ADPRT, ADPRTL2, ADPRTL3, APEX1 (APEX, REF1), APEX2 (APEXL2),FLJ10858, LIG3, MBD4, MUTYH (MYH), NEIL1, NEIL2, NTHL1 (NTH1), OGG1, SMUG1, TDG, UNG, XRCC1.Nucleotide excision repair:CCNH, CDK7, CETN2, CKN1 (CSA), DDB1, DDB2, ERCC1, ERCC2 (XPD), ERCC3 (XPB), ERCC4 (XPF), ERCC5 (XPG), ERCC6 (CSB), GTF2H1, GTF2H2, GTF2H3, GTF2H4, LIG1, MNAT1, RAD23A (HHR23A), RAD23B (HR23B),RPA1, RPA2, RPA3, XAB2 (HCNP), XPA, XPC.Mismatch excision repair:MLH1, MLH3, MSH2, MSH3, MSH4, MSH5, MSH6, PMS1, PMS2, PMS2L3,PMS2L4 (PMS6).DSB repair-homologous recombination and end joining):BRCA1, BRCA2 (FANCB/FANCD1), DCLRE1C (SNM1C), DMC1, G22P1 (KU70), LIG4, MRE11A, NBS1, PRKDC, RAD50, RAD51C, RAD51L1 (RAD51B),RAD51L3 (RAD51D), RAD54B, RAD54L, XRCC2, XRCC3, XRCC4, XRCC5 (KU80).RAD6-dependent pathway:RAD18, UBE2A (RAD6A), UBE2B (RAD6B), UBE2I (UBC9), UBE2N (UBC13), UBE2V2 (MMS2).Other genome stability related genes: ATM, ATR, DCLRE1A (SNM1), DCLRE1B, DUT, EXO1, FEN1, PNKP, RECQL4, RECQL5, TERF1, TERF2, TERT (TCS1), TOP3A, TOP3B.Apoptosis genes:Induction of apoptosis:BAK1, BAX, BID, CDKN1A, CRADD, DAPK1, EI24, FADD, FOXO3A, PCBP4, PLAGL1, PRKCA, PYCARD, TNFRSF10B, TNFSF6, TP53, TP73, TP73L.Anti-apoptosis:AATF, BAG1, BCL2, BCL2A1, BIRC5, BNIP3, CASP2, HDAC1, IGF1R, MCL1, NFKB1, RELA, SNCA, TNF.Other apoptosis genes:APAF1, BRCA1, CASP9, DAXX, E2F1, FAF1, GADD45A, GML, LRDD, P53AIP1, PPP1R13B, RAI, SIAH1, SIRT1, TP53BP2, TRAF2, TRAF4, TRAF5.Cell cycle genes:Cell cycle arrest:CDKN1A, CDKN2A, CHEK1, CHEK2, GADD45A, GAS1, GML, GTSE1, MYC, PCAF, PCBP4, PLAGL1, PPP1R9B, RPRM, SESN1, SESN2, SESN3.Cell cycle checkpoint:ATR, BRCA1, CCNE2, CCNG2, CDKN2A, RB1, TP53.Negative regulation of cell cycle:ATM, BAX, BRCA1, CDKN2A, MSH2, NF1, PTEN, PYCARD, RB1, SMARCB1, TP53, TP73, TP73L, TSC1, TSC2, WT1.Regulation of cell cycle:BRCA2, CDC2, CDC25A, CDK4, CDK7, E2F1, E2F3, FRAP1, GAK, HK2, IGF1R, KRAS2, PLK1, PPM1D, PRKCA, SFN, STAT1, TADA3L, TP53BP2.Other cell cycle genes:BIRC5, CCNH, ESR1.Cell growth, proliferation and differentiation genes:Negative regulation of cell proliferation:BAI1, BAP1, BCL2, BTG2, CDKN1A, CDKN2A, CHEK1, GAS1, GML, IFNB1,IL6, MDM2, MDM4, NF1, PCAF, PMP22, PPM1D, SESN1.Positive regulation of cell proliferation:CIAO1, IGF1R, IL6, SHC1, TSHR.Cell proliferation:BRCA1, CDC25A, CDC25C, CDK4, CDK7, CYR61, E2F1, MYC, PLK1, PPP1R9B, PRKCA, SCGB3A1, SFN.Cell growth and differentiation:COPEB, CYR61, ESR1, MCL1, MYOD1, NDRG1, PPP1R9B, PRKCQ, SCGB3A1, SHC1. Others:FOXO3A, JUN, KRAS2, PHB, PML, PTTG1, TSC2.DNA repair genes:ATM, ATR, BRCA1, BTG2, CCNH, CDK7, FRAP1, GADD45A, MSH2, PTTG1, TP53.P53 family:TP53, TP63, TP73;p53 upstream signal/p53 modifiers:p53 expression and stability:BZRP (pBR), CREBBP (CBP), D5S346 (DP1), E2F1 (E2F), EP300 (p300), MDM2, MTBP, NFKB1, NUMB;p53 modification:ATM, ATR, CCNH (cyclin H), CDK7 (CAK), CHEK1 (Chk1), CHEK2 (Chk2), CREBBP (CBP), CSNK1A1 (CK1), CSNK2A1, CSNK2A2, CSNK2B, EP300 (p300), HIPK2, KIP2, KIP3, MAP2K4, MAP2K7, MAPK8IP2, PCAF, PML, PRKCA, PRKCB1, PRKCG, PRKCQ, PRKDC (DNA-PK), SIRT1;p53 interactions:APEX (Ref-1), BAP1, BRAP, BRCA1, CDKN2A (p14ARF), E1B-AP5 (E1B55K),E2F1, MDM2, MYC, RASA1 (Ras), RB1 (pRB), TEAD1 (SV40), WRN, WT1;p53 downstream signal/p53 effectors:Cell-cycle control:ABCB1 (MDR1), ACTA1 (actin), AD022, APR-3, CDC2, CDKN1A (P21Waf1), DAXX, ESR1, FADD, FAF1, GADD45A, GTSE1 (B99), HIF1A, HSPA4 (Hsp70), LRDD, MAP4, NDRG (RTP), PIG8 (E124), PMP22, RELA, REPRIMO, SFN(14-3-3), SP1, STAT5A, TBP, THRA, TNFAIP1, TNFSF6, TP53TGI, TRAF1, TRAF4, TRAF5, WIG1;Apoptosis regulators:APAF1, BAX, BBC3 (PUMA), BCL2, CASP9 (Caspase-9), CTSD (Cathepsin D), LRDD (PIDD), P53AIP1, PMAIP1 (NOXA), PMP22 (GAS-3), TNF, TNFRSF10B (Killer5/DR5), TNFSF6 (Fas), TP53BP2 (ASPP2);DNA repair:GADD45A, RRM2B (p53R2);Controllers of angiogenesis and metastasis:BAI1, SERPINB5 (Maspin), THBS1 (TSP1)Oxidative or Metabolic Stress:CAT (catalase), CRYAB (a-Crystallin B), CYP1A1, CYP1B1, CYP2E1, CYP7A1, CYP7B1, EPHX2, FMO1, FMO5, GPX1 (glutathione peroxidase), GSR (glutathione reductase), GSTM3 (glutathione S-transferase M3), HMOX1, HMOX2, MT2A, POR, PRDX1, PRDX2, PTGS1, PTGS2 (cox-2), SOD1, SOD2.Heat Shock:DNAJA1, DNAJB4, HSF1 (tcf5), HSPA1A (hsp70 1A), HSPA1L (hsp70 1L),HSPA2 (hsp70 2), HSPA4 (hsp70), HSPA5 (grp78), HSPA6 (hsp70B), HSPA8, HSPA9B (mortalin-2), HSPB1 (hsp27), HSPCA (hsp90), HSPCB (hsp90 b), HSPD1 (chaperonin), HSPE1 (chaperonin 10), HSPH1 (hsp105).Proliferation and Carcinogenesis:CCNC (cyclin C), CCND1 (cyclin D1), CCNG1 (cyclin G), E2F1, EGR1, PCNA. Growth Arrest and Senescence:CDKN1A (p21Waf1/p21Cip1), DDIT3 (GADD153/CHOP), GADD45A, GADD45B, GDF15 (PLAB), IGFBP6, MDM2, TP53.Inflammation:CCL3 (MIP-1a), CCL4 (MIP-1b), CCL21 (MIP-2), CXCL10 (IP10), CSF2(GM-CSF), IL1A, IL1B, IL6, IL18, LTA (TNF b), MIF, NFKB1, NOS2A (iNOS), SERPINE1 (PAI-1).Necrosis or Apoptosis:DNA Damage and Repair:ATM, CHEK2 (RAD53), DDB1, ERCC1, ERCC3, ERCC4, ERCC5, RAD23A,RAD50, UGT1A10, UNG, XRCC1, XRCC2, XRCC4, XRCC5.Apoptosis Signaling:ANXA5 (annexin v), BAX, BCL2L1 (bcl-x), BCL2L2 (bcl-w), CASP1 (caspase1/ ICE), CASP8 (caspase8 / FLICE), CASP10 (caspase-10/mch4), NFKBIA(ikBa/mad3), TNF, TNFRSF1A (TNFR1), TNFSF6 (Fas Ligand), TNFSF10 (TRAIL), TRADD.Antioxidant & Pro-Oxidant Enzymes:ACADSB, CAT, GPX1, GPX2, SOD1, SOD2, XDH.Molecular Chaperones:Heat shock proteins: CRYAA, CRYAB, DNAJA1, DNAJA2, DNAJA3, DNAJA4, DNAJB1, DNAJB11, DNAJB2, DNAJB4, DNAJB5, DNAJB6, DNAJB9, DNAJC4, DNAJC5, DNAJC6, DNAJC7, DNAJC8, DNAJC9, DNAJD1, HMOX1, HMOX2, HSPA12A, HSPA2, HSPA4, HSPA5, HSPA6, HSPA8, HSPA9B (GRP75), HSPB1, HSPB2, HSPB3, HSPCA, HSPCB, HSPD1, HSPE1, HSPH1, SERPINH1 (HSP47), TRA1 (GRP94).Others:BAG1, CALR, CANX, CCT2, CCT3, CCT4, CCT5, CCT7, CCT8, CLU, GRP58, HOP, PPID, ST13, TCP1.Xenobiotic Metabolism:Cytochrome P450s:CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2C9, CYP2D6, CYP2E1, CYP2F1, CYP4A11, CYP4B1, CYP7A1, CYP11A1, CYP11B2.Others:CES1, DIA1, EPHX2, FMO1, FMO4, FMO5, GSR, GSTM3, GSTO1 (GSTTLp28), GSTP1, GSTT1, MAOA, MAOB, MGST1, NAT2, NNMT, NUDT1, PON3, TPMT, UGT1A10.Other Stress Proteins:HSF1, HYOU1Antioxidant & Pro-Oxidant Enzymes:Acadsb, Cat, Gpx1, Gpx2, Sod1, Sod2, Sod3, Xdh.Molecular Chaperones:Heat shock proteins:Cryaa, Cryab, Dnaja1, Dnaja2, Dnaja3, Dnaja4, Dnajb1, Dnajb10, Dnajb11, Dnajb12, Dnajb4, Dnajb5, Dnajb6, Dnajb9, Dnajc1, Dnajc4, Dnajc5, Dnajc6, Dnajc7, Dnajc8, Dnajc9, Dnajd1, Hmox1, Hmox2, Hsp105, Hspa1a, Hspa1l, Hspa12a, Hspa2, Hspa4, Hspa5, Hspa8, Hspa9a, Hspb1, Hspb2, Hspb3, Hspca, Hspd1, Hspe1, Serpinh1 (HSP47), Tra1 (GRP94).Others:Bag1, Cai (Erp72), Calr, Canx, Cct2, Cct3, Cct4, Cct5, Cct7, Cct8, Clu, Grp58, Hod, Ppid, St13, Tcp1, Tebp-pending (p23).Xenobiotic Metabolism:Cytochrome P450s:Cyp11a1, Cyp11b2, Cyp17a1, Cyp1a1, Cyp1a2, Cyp1b1, Cyp2c29, Cyp2c37,Cyp2c38, Cyp2c40, Cyp2d22, Cyp2e1, Cyp2f2, Cyp4a10, Cyp4b1, Cyp7a1, Cyp7b1. Others:Ces1, Dia1, Ephx2, Fmo1, Fmo4, Fmo5, Gsr, Gsta1, Gstm3, Gsto1 (GSTTLp28), Gstp1, Gstt1, Maoa, Maob, Mgst1, Nat2, Nnmt, Nudt1, Pon1, Pon2, Pon3, Sult1a1, Tpmt, Ugt1a6. Other Stress Proteins:Hsf1, Hyou1, Stip1, Ubc.。
FLASH PRODUCTSELECTION GUIDESerial NOR Flash Memory Parallel NOR Flash Memory NAND Flash MemoryMacronix International Co., Ltd.16, Li-Hsin Road, Science Park, Hsinchu, Taiwan Tel: +886-3-578-6688Fax: +886-3-563-2888Macronix International Co., Ltd.19F, 4, Min-Chuan E. Road, Sec. 3, Taipei, Taiwan Tel: +886-2-2509-3300Fax: +886-2-2509-2200Macronix (Hong Kong) Co., Limited, SuZhou Office No. 55, Su Hong Xi Rd, SuZhou Industrial Park,SuZhou China 215021Tel: +86-512-6258-0888Fax: +86-512-6258-6799Macronix (Hong Kong) Co., Limited, ShenZhen Office Room 1401, Block A Tian An Hi-Tech Plaza Tower CheGongMiao Futian District Shenzhen 518040 PRC Tel: +86-755-8343-3579Fax: +86-755-8343-8078Macronix (Hong Kong) Co., Ltd.702-703, 7/F, Building 9, Hong Kong Science Park, 5 Science Park West Avenue, Sha Tin, N.T.Tel: +852-2607-4289Fax: +852-2607-4229Macronix Pte. Ltd.1 Marine Parade Central #11-03 Parkway Centre Singapore 449408Tel: +65-6346-5505Fax: +65-6348-8096Macronix Asia Limited.NKF Bldg. 5F, 1-2 Higashida-cho, Kawasaki-ku Kawasaki-shi, Kanagawa Pref. 210-0005, Japan Tel: +81-44-246-9100Fax: +81-44-246-9105Macronix Asia Limited.#906, 9F, Kangnam Bldg., 1321-4, Seocho-Dong, Seocho-Ku,135-070, Seoul, Korea Tel: +82-2-588-6887Fax: +82-2-588-6828Macronix America, Inc.680 North McCarthy Blvd. Milpitas, CA 95035, U.S.A.Tel: +1-408-262-8887Fax: +1-408-262-8810Macronix Europe N.V.Koningin Astridlaan 59, Bus 1, 1780 Wemmel, Belgium Tel: +32-2-456-8020Fax: +32-2-456-8021Copyright© Macronix International Co., Ltd. 2011-2012. All rights reserved, including trademarks and tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, NBiit, Macronix NBit, eLiteFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC, Kingtech, MXSMIO, Macronix vEE, Macronix MAP, Rich Audio, Rich Book, Rich TV, and FitCAM. The names and brands of third party referred thereto (if any) are for identification purposes only.Except for specially designed product, Macronix' products shall not be used for applications relating to nuclear facility, military, life saving, life sustaining, aircraft, or systems where failure or malfunction may result in personal injury.JANUARY. 2012MACRONIX23SERVICEMacronix is committed to providing reliable and stable support to satisfy customers' expectation for a long-lasting partnership. Macronix customers are served by efficient global logistic coverage, a dedicated service team, a dependable product roadmap, and innovative technology for next generation requirements.MANUFACTURINGMacronix has over 20 years of IDM experience with manufacturing excellence and in-house design capabilities which facilitate continuous improvement processes in all aspects of the development and production cycle. We provide high quality parts that make driving more reliable, comfortable and eco-friendly; this is our passion and common goal that we share with our customers.QUALITYOur stringent quality standards, based on the ISO 9001 philosophy, have resulted in TS16949 certification. With the mind-set of building up a responsible business, Macronix is ISO14001(Environmental Management), IECQ QC 080000(Hazardous Substances Management), and SA 8000(Social Accountability Management) certified. Our Green Product Management system has been highly recognized by our customers, thereby, Macronix is SONY's Green Partner, and has green partnership approvals from Nintendo, Samsung, LG and Canon. All Macronix products do not use the so called "Conflict Metals" as the raw materials; and our products are ROHS compliant, Halogen-Free, Phthalate-Free, and are free of SVHC (Substances of Very High Concern). Macronix has a well- run program working with our supply chain partners to fully comply with green product requirements.ABOUT MACRONIXMacronix, the leading provider of innovative Non-Volatile Memory (NVM) semiconductor solutions, is the largest supplier of ROM products and Serial NOR Flash worldwide. The company currently produces a wide range of ROM, NOR Flash and NAND Flash memories across various densities in embedded, consumer, enterprise, wireless, and automotive applications. Flash products are also available in packages with a small footprint and thin profile for space- constrained applications.Macronix is one of the few IDM companies worldwide with complete capabilities of Design, Manufacturing and Marketing with own Brand. Macronix dedicates itself to developing top-notch home-grown technologies and improving its manufacturing capability to offer its customers high quality products and services.MACRONIX hAS RECEIVEd• Green Product Certifications from well-known electronics companies • Social Accountability Management SA 8000 Certificate • ISO 14064 GreenHouse Gases Emissions VerificationS e r i a l F l a S hSerial FlaShSerial Flash Function ListDeviceFunction 3V 1.8V xx05xx06Exx08Dxx08Exx25Cxx26Exx33Exx35D 1635E12835E/25835Exx36D8036E/1636E6436E/12836Exx37Dxx45Exx55EU2033E/4033E/8033EU1635EH/W ACC Pin ●H/W Hold# Pin ●●●●●●●1I/O (1-1-1) ●●●●●●●●●●●●●●●●●●1I/2O (1-1-2)*●●●●●●2I/O (1-2-2)**●●●●●●●●●●●●1I/4O (1-1-4)**●●●4I/O (1-4-4)**●●●●●●●●●●QPI (4-4-4)**●DTR function●●BPx Bits (NVM)●●●●●●●●●●●●●●●●BPx Bits (SRAM)●●WPSEL Mode(BPx mode individual WP mode)●●●●●●Security Function (BPG, read lock)●Security OTP & Register ●*●●●●●●●●●●●●●●Unique ID ●●CP mode ●●●●●●●●VI/O●Note* 4Mb/2Mb None** I/O Nomenclature defined in Command, Address (Input), Data (Output) Configuration For eg: 1-1-1 denotes 1-Command, 1-Address (Input), 1-Data (Output)Serial Flash Portfolio Table512Kb1Mb 2Mb 4Mb 8Mb 16Mb 32Mb 64Mb 128Mb 256Mb3VMX25Lxx05/06Standard Serial Interface ●●●●●●●●MX25Lxx08Unique ID series●●●MX25Lxx25/26Default Lock Protection series ●●●●MX25Lxx35/36/45MXSMIO ® &MXSMIO ® Duplex series ●●●●●●MX25Lxx55MXSMIO ® Secure series ●●●●●2.5VMX25Vxx05/06Standard Serial Interface ●●●●MX25Vxx35MXSMIO ® series ●●1.8VMX25Uxx35/33MXSMIO ® series●●●●●●●3V Serial Flash Family:S e r i a l F l a S hSerial FlaSh3V MXSMIO ® & MXSMIO ®Duplex Family:2.5V Serial Flash Family: Standard Serial Interface Series92.5V Serial Flash Family: MXSMIO® Series:1.8V MXSMIO® Family:ApplicationsSegment Application 512Kb1Mb2Mb4Mb8Mb16Mb32Mb64Mb128Mb256MbComputerMobile PC●●●●●DeskTop PC●●●●Server●●●●●Printer●●●●●Graphics●●●HDD●●●●ODD ●●●●●CommunicationDSL ●●●●Cable Modem●●●●IAD/HomeGateway●●●WiMAX●●●●IP Phone●●●AP Router●●●●●ConsumerDigital TV ●●●●Digital Audio/DAM●●●DVD Player●●●Set Top Box●●●●●●Automotive After Market/In Cabin●●●●●●●●●●SerialFlaSh Serial FlaSh1011Parallel FlaShMacronix's industry standard Parallel Flash memories offer an extensive line of 3V products from 4Mb to 1Gb densities. Macronix Flash memory provides customers with cost-effective, high performance and reliable products that offer low-power consumption and high endurance. 4Mb and 8Mb products are also offered in 4mm x 6mm BGA packages for space-constrained applications. Macronix also offers a family of 1.8V products from 4Mb to 128Mb, whereas the 16Mb and 32Mb products interface an I/O voltage of 1.8V and the 32Mb to 128Mb products are featured by AD-Mux and Burst Mode. These products are used in applications like Bluetooth, MP3 Players, GPSas well as other portable applications.Standard Read Access Page Mode Read Access the system for both read and program P a r a l l e l F l a S hOPTION :G: RoHS Compliant Q: RestrictedVcc : (3.0V-3.6V), RoHS CompliantParallel Flash ExampleMX 29GL 256 F h XF I - 90 QdEVICE :29F: 5V29LV / 29GL / 68GL: 3V 29SL: 1.8V29LA/ 29GA: Security typedENSITY :20x: 2Mb 40x: 4Mb80x: 8Mb 16x: 16Mb 32x: 32Mb 64x: 64Mb 12x: 128Mb 25x: 256Mb 51x: 512MbPACKAGE TYPE :P: PDIP M: SOP Q: PLCC T/T2: TSOPXB - 0.8 mm Ball Pitch / 0.3 mm Ball Size XC - 1.0 mm Ball Pitch / 0.4 mm Ball SizeXE - 0.8 mm Ball Pitch / 0.4 mm Ball Size XF - 1.0 mm Ball Pitch / 0.6 mm Ball Size XH - 0.5 mm Ball Pitch / 0.3 mm Ball Size GB - 0.5 mm Ball Pitch / 0.25 mm Ball Size XG - 0.8 mm Ball Pitch / 0.4 mm Ball SizeTEMPERATURE RANGE :C: Commercial(0˚C to 70˚C)I: Industrial(-40˚C to 85˚C)S : Automotive Grade 3(-40˚C to 85˚C)R: Automotive Grade 2(-40˚C to 105˚C)Q: Automotive Grade 1(-40˚C to 125˚C)SPEEd :55: 55ns 70: 70ns 90: 90ns 10: 100ns 11: 110nsBLOCK TYPE :T: Top Boot B: Bottom BootH: Uniform Sector, Highest Address Sector Protected L: Uniform Sector, Lowest Address Sector ProtectedU: VI/O=1.65 to VCC, VCC=2.7 to 3.6V, Highest Address Sector Protected D: VI/O=1.65 to VCC, VCC=2.7 to 3.6V, Lowest Address Sector ProtectedGENERATIONNaND FlaSh MeMory 17。
中国医科大学硕士学位论文KAI1和nm23-H<,1>蛋白在胃癌中的表达及临床病理学意义姓名:孟丽辉申请学位级别:硕士专业:肿瘤学指导教师:辛彦20040301中文摘要月口置胃癌目前仍是我国发病率和死亡率最高的恶性肿瘤之一。
肿瘤细胞生长的无限性和难以控制的浸润转移是胃癌治疗失败导致死亡的主要原因,而肿瘤细胞的生长及浸润转移受多种癌基因的调控。
在肿瘤转移过程中除存在原癌基因激活、抑癌基因的失活、细胞间的粘附异常以及金属蛋白酶和其抑制剂表达失调外,转移抑制基因的失活和表达下调在癌症的演进中起重要作用。
KAll基因属四跨膜超家族(transmembranee4superfamily,TM4SF)的成员,其结构为细胞膜糖蛋白,主要存在于白细胞和其它组织细胞表面,位于人的11号染色体的P11.2上,KAII基因的启动子区域有许多结合基序可与多种转录因子结合,提示该基因表达受多种机制的调节。
研究认为KAll/CD82对多种肿瘤的转移具有抑制作用,KAll对肿瘤转移的抑制作用可能源于其对细胞运动、转移和增生的影响。
nm23基因是肿瘤转移抑制相关基因,由Steeg等首先在1988年分离并鉴定出来,有三种亚型,其中nm23一H。
的mRNA水平与癌细胞转移的关系更为密切,该基因编码一种具有二磷酸核苷激酶(NDPK)活性的蛋白质,通过影响微管聚合状态及G蛋白介导的信号传导通路而调节细胞代谢,从而对肿瘤的增殖、分化、侵袭及转移起重要作用。
本文对抑癌基因KAll/CD82在胃癌组织中的表达进行观察分析,并与转移抑制基因rim23作比较研究,期望发现预测胃癌浸润转移的分子生物学指标,正确判断胃癌患者预后,为胃癌转移的防治提供科学的依据。
实验材料和方法1、病例资料:收集2002年7月至2003年6月间辽宁省肿瘤医院、中国医科大学附属第一医院肿瘤科手术切除胃癌存档蜡块共87例。
男性60例,女27例,平均年龄56岁。
早期胃癌5例,中期胃癌12例,晚期胃癌70例。
伴有淋巴结转移者65例,无淋巴结转移者22例。
每例病人均选择癌组织、癌与正常组织交界处和淋巴结转移癌组织的常规石蜡包埋蜡块各一枚,制做成4um厚的连续切片供检测用。
每例均由两名资深病理医师做病理学诊断。
2、主要实验试剂与实验器材:兔抗人KAll多克隆抗体(1:50)、鼠抗人nm23一H,单克隆抗体(1:10(3)分别购自SantaCruz和北京中山生物技术有限公司,PV一9000试剂盒购自北京中山生物技术有限公司。
3、免疫组化染色结果判定:免疫组化方法采用PV一9000免疫组化二步法。
KAll和nm23一H,蛋白免疫染色阳性信号定位于细胞浆,呈棕黄色颗粒。
每个标本随机观察5个高倍视野,每个视野计数200个肿瘤细胞,取平均值。
阳性细胞数<5%为阴性(一),5%~25%为弱阳性(+),25%~50%为中度阳性(++),>50%为强阳性(+++)。
4、统计学方法利用X2检验比较率的差异。
P<0.05视为差异有统计学意义。
实验结果1、Y,L气11和nrn23一H,蛋白在胃癌组织中的表达:胃癌组织中KAll蛋白表达阳性率为69%,显著低于癌旁组织84%(P<0.05);nm23一H。
蛋白在胃癌组织中表达阳性率为33%,显著低于癌旁组织59%(P<0.05)。
2、KAll和nm23一H,蛋白在胃癌组织中的表达与胃癌的组织学类型及病理生物学行为的关系:本研究结果显示肠型胃癌KAll蛋白表达阳性率85%高于弥漫型胃癌64%,但两者无统计学意义(P>0.05);伴有淋巴结转移的胃癌组织中KAll蛋白表达阳性率60%明显低于无淋巴结转移的胃癌组织95%(P<0,05);早中期胃癌组织中KAll蛋白表达阳性率94%显著高于晚期胃癌组织63%(P<0.05)。
肠型胃癌nm23一H,蛋白表达阳性率30%低于弥漫型胃癌34%,但两者无统计学意义(P>0.05);伴有淋巴结转移的胃癌组织中nm23一H.蛋白表达阳性率18%明显低于无淋巴结转移的胃癌组织77%(P<0.05);早中期胃癌组织中nm23一14。
蛋白表达阳性率65%明显高于晚期胃癌组织26%(P<0.05)。
.2.KAll蛋白表达与胃癌患者生存期密切相关(P<0.01),KAll蛋白高表达者其生存期亦较长。
3、胃癌组织中KAll和nm23一H,蛋白表达的关系:60例KAll蛋白表达阳性的胃癌组织中nm23一H.蛋白表达阳性率为45%,27例KAll蛋白表达阴性的胃癌中nm23一H,蛋白表达阳性率为7%,两者相比有显著差异(P<0.05)。
结论KAll和nm23一H.蛋白均与胃癌侵袭转移有关,且KAll表达与胃癌患者预后密切相关,将两种指标联合检测,可作为正确判断胃癌患者预后,指导临床治疗的分子生物学指标。
关键词:KAll基因;nm23基因;胃癌;蛋白表达・3・andNm23一H1ClinicopathologicalSignificanceofKAI1ExpressioninGastricCancerABSTRACTIntroductionAtpresent,gastriccarcinomaisoneofthemostincidenceandmortalityratemalignanttumorsinChina.Tumorcellischaracterizedbyunlimitedgrowth,uncontrolledinfiltrationandmetastasis,whichmightbethemostimpor-tantreasonwhygastriccancerhasbeenalwaysmetwiththerapeuticfailureandtumorcellsareregula—resultingdeath.7thegrowth,infiltrationandmetastasisoftedbysomeonce’genesandtumorsuppressorgenes.Inthecourseofmetastasis,inactivationanddecreasedexpressionofmetastaticsuppressorgenesplayanim-portantroleintheprogressionofcancer-—genesisbesidestheactivationofpro・-tooneogene,inactivationofanti—oncogene,abnormalintercellularadhesionandexpressiondisturbancebetweenmetalloproteinases(MMP)anditsinhibitor.KAllgenelocatedinchromosome11pl1.2belongstomemberofbans—membraneprotein4supeffamily(TM4SF),encodingacellmembraneglycopro-tein,whichmostlyexistsinthesurfaceofwhitecellsandothertissueceHs.SomemotifofKAllpromotercanbindwithmanytranscriptionfactor,suggestingacomplexityofregulatorymechanismingeneexpression.IthasbeenthoughtthatKAll/CD82exertaninhibitiononmanytumors7metastasisresultedfromitsinfluenceoncellmovement,metastasisandproliferation.Steegetal缸stlyseparatedandidentifiedatumorsuppressor—associatedgenenamednm23(nonmetastasis23gene)classifiedasthreesubtypes,amongwhichexpressionlevelofnm23一H1Wasassociatedcloselywithcancerousceils7metastasis.nm23encodesaactiveproteinofnucleoside—diphosphatekinase(NDPK),whichplayanimportantroleintumors’proliferation,differentia一・d・tion,invasionandmetastasisbecauseoftheregulationofcellmetabolismbyin・fluencingmicrotubularpolymerizationandG——proteinmediatedsignaltransduc-・tionpathwayThisstudywasdesignedtocomparedtheexpressionoftumorsuppressorKAll/CD82andmetastaticsuppressorgenenm23ingastriccancertis‘gerlesues,andhopedtofindapredictedmolecularmarkerforinfiltrationandmetasta—sisofgastriccancertojudgetheprognosisofgastriccancerandprovideascien—tificfoundatio趋forclinicaltherapeuticapplication.MaterialsandMethodsSpecimensEighty——sevencasesofparaffin——embeddedspecimensofgastriccancerwerederivedfromLiaoningprovinceTumorHospitalandNo.1HospitalofChinaMedicalUniversityspanningthedurationfromJuly2002toJune2003,speci-mensincludemale60cases,female27cases(mean56yearsold),5casesofearlygastriccancers(EGC),12mediumand70lategastriccancers,65gastricwithlymphnodemetastasis,theother22withoutlymphnodemetasta—cancerssis.Primarygastriccancerous,borderlineandmetastaticlymphnodeparaffin—embeddedspecimensofeachpatientwereobtainedtoprepare4——microncontin・・HOUSsectionsdiagnosedbytwoseniorpathologists.ReagentandinstrumentsRabbitanti—humankailpolyclonalantibody(1:50)andmouseanti—hu—manrim23一H1rnonoclonalantibody(1:100)wereboughtrespectivelytYomSantaCruzandZhongshanBiotechnologyCompanyLtd.Beijing.PV一9000kitfromZhongshanBiotechnologyCompanyLtd,Beijing.EvaluationofImmunostainingPositivekailandnm23一H1immunostainingwerelocatedincytoplasm,displayingdarkbrown.TheevaluationofimmunostainingwasaccordingtothepercentageofpositiveceHsfrom5randomlyselectivehighpowerfieldsofeachsection.ineachoneofwhich200ceNswerecounted.山edegreeofinununos—tainingwasgradedasfollows:positiveonesincountedcells:negative(一),・5・positiverate<5%;(+),5%一25%;(++),25%一50%;(+++),>50%.StatisticalAnalysisStatisticalanalysiswasperformedusingchi—squaretest.P<0.05wasconsideredasstatisticallysignificant.ResultsExpressionofkAllandnm23一HlproteiningastriccancersPositiveexpressionrateofKAll1proteinwas69%ingastriccancers,s唔一nificanflylowerthaninpara—cancerousgastricmucosa84%(P<0.05=;nm23一H.expressionratesingastriccancerandpara—cancerousmucosawere33%and59%respectively,theformerislowerthanthelattersignificantly(P<0.05).RelationshipbetweenexpressionsofKAll,nm23一H1proteinsandhisto—logicaltypesandpathobiologicalbehaviorofgastriccancerThoughKAI1expressionrate(85%)inintestinaltypeofgastriccarcinomawashigherthanindiffusivetype(64%),nostatisticsignificancewasfound(P>0.05);WhileKAllexpressionrateingastriccancerswithlymphnodemetas—tasis60%wassignificantlylowerthaninthosewithnolymphnodemetastasis95%(P<0.05);KAllexpressionratesinearlyandmetaphasegastriccancers94%washigherthanthatinlatephaseofgastriccancers63%.(P<0.05).nm23一HIexpressionrate(30%)inintestinaltypeofgastriccancerwash)werthanindiffusivetype(34%),butnostatisticsignificancewasfound(P>0.05);nm23一H4expressionrate(18%)ingastriccancerswithlymphnodemetastasislowerthanthatwithoutlymphnodemetastasis(77%)(P<0.05);nm23一H1expressionrate(65%)inearlyandmetaphasegastriccancersWashigherthanthatinlatephaseofgastriccancers26%(P<0.05).ICMlproteinexpressionWasassociatedcloselywithsurvivaltimeofpa—tientswithgastriccancer(P<0.01),thepatientswhthKAllpositivetumortendedtohavealongersurvivaltime.RelationshipbetweenKAllandnm23一Hlproteinexpressioningastric・6・CancersAmong60casesgastriccancerswithpositiveKAllexpression,therewas45percentofgastriccancerssimultaneouslywithpositivenm23一Hlexpression,whilein27caseswithoutKAIIexpression,only7%caseswithnm23一H1ex—pression,therewasstatisticallysignificantbetweenthetwogroups(P<0.05).CoNCLUSIoNtCMlandnm23一H1werebothassociatedwithinvasiveabilityofgastriccancer,what’Snmre,KAllwascorrelatedwithprognosisofpatientswithgas-triccancels.CombinedappficationofthetwomarkersKAllandnm23——H1couldbethemolecularmarkerstopredicttheprognosisandfartherdirecttheclinicaltherapyofgastriccancer.Keywords:KAllgene;nm23gene;Gastriccarcinoma;proteinexpression・7・英文缩略语・8・刖嗣胃癌是我国死亡率最高的恶性肿瘤之一,侵袭转移是肿瘤的最重要恶性特征,是胃癌治疗失败导致死亡的主要原因。