2013中考数学试题汇编 反比例函数 (综合、提高篇)
- 格式:doc
- 大小:534.42 KB
- 文档页数:13
反比例函数1、(2013年潍坊市)设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 答案:A .考点:反比例函数的性质与一次函数的位置.点评:由反比例函数y 随x 增大而增大,可知k <0,而一次函数在k <0,b <0时,经过二三四象限,从而可得答案.2、(2013年临沂)如图,等边三角形OAB 的一边OA 在x 轴上,双曲线xy 3=在第一象限内的图像经过OB 边的中点C ,则点B 的坐标是(A )( 1, 3). (B )(3, 1 ). (C )( 2 ,32). (D )(32 ,2 ).答案:C解析:设B 点的横坐标为a ,等边三角形OAB 中,可求出B 点的纵坐标为3a ,所以,C 点坐标为(3,2a a ),代入xy 3=得:a =2,故B 点坐标为( 2 ,32) 3、(2013年江西省)如图,直线y =x +a -2与双曲线y=x4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ). A .0 B .1 C .2D .5【答案】 C . 【考点解剖】 本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】 反比例函数图象既是轴对称图形又是中心对称图形,只有当A 、B 、O 三点共线时,才会有线段AB 的长度最小OA OB AB +=,(当直线AB 的表达式中的比例系数不为1时,也有同样的结论).【解答过程】 把原点(0,0)代入2y x a =+-中,得2a =.选C..【方法规律】 要求a 的值,必须知道x 、y 的值(即一点的坐标)由图形的对称性可直观判断出直线AB 过原点(0,0)时,线段AB 才最小,把原点的坐标代入解析式中即可求出a 的值.【关键词】 反比例函数 一次函数 双曲线 线段最小4、(2013年南京)在同一直线坐标系中,若正比例函数y =k 1x 的图像与反比例函数y =k 2x的图像没有公共点,则(A) k 1+k 2<0 (B) k 1+k 2>0 (C) k 1k 2<0 (D) k 1k 2>0 答案:C解析:当k 1>0,k2<0时,正比函数经过一、三象限,反比函数在二、四象限,没有交点;当k 1<0,k2>0时,正比函数经过二、四象限,反比函数在一、三象限,没有交点;所以,选C 。
反比例函数2013全国中考题汇编(2013兰州)当x>0时,函数的图象在()A.第四象限B.第三象限C.第二象限D.第一象限考点:反比例函数的性质.分析:先根据反比例函数的性质判断出反比例函数的图象所在的象限,再求出x>0时,函数的图象所在的象限即可.解答:解:∵反比例函数中,k=﹣5<0,∴此函数的图象位于二、四象限,∵x>0,∴当x>0时函数的图象位于第四象限.故选A点评:本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k<0时,双曲线的两支分别位于第二、第四象限.(2013兰州)已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且y1>y2,则m的取值范围是()A.m<0B.m>0C.m>﹣D.m<﹣考点:反比例函数图象上点的坐标特征.专题:计算题.分析:将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=,求出y1与y2的表达式,再根据y1>y2则列不等式即可解答.解答:解:将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=得,y1=﹣2m﹣3,y2=,∵y1>y2,∴﹣2m﹣3>,解得m<﹣,故选D.点评:本题考查了反比例函数图象上点的坐标特征,要知道,反比例函数图象上的点符合函数解析式.(2013兰州)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)先根据点A的坐标求出反比例函数的解析式为y1=,再求出B的坐标是(﹣2,﹣2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围x <﹣2或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.解答:解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,∴x<﹣2或0<x<1.(3)由图形及题意可得:AC=8,BD=3,∴△ABC的面积S△ABC=AC×BD=×8×3=12.点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式.以及三角形面积的求法,这里体现了数形结合的思想.(2013•乌鲁木齐)如图,反比例函数y=(x>0)的图象与矩形OABC 的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为.考点:反比例函数系数k的几何意义.分析:连接OB.首先根据反比例函数的比例系数k的几何意义,得出S△AOE=S△COF=1.5,然后由三角形任意一边的中线将三角形的面积二等分及矩形的对角线将矩形的面积二等分,得出F是BC的中点,则S△BEF=S△OCF=0.75,最后由S△OEF=S矩形AOCB﹣S△AOE﹣S△COF ﹣S△BEF,得出结果.解答:解:连接OB.∵E、F是反比例函数y=(x>0)的图象上的点,EA⊥x轴于A,FC⊥y 轴于C,∴S△AOE=S△COF=×3=.∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=3,∴S△BOF=S△BOC﹣S△COF=3﹣=,∴F是BC的中点.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.故答案是:.点评:本题主要考查反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.得出点F为BC的中点是解决本题的关键.(2013•江西)如图,直线y=x+a-2与双曲线y=交于A,B两点,则当线段AB的长度取最小值时,a的值为().A.0B.1C.2D.5【答案】C.【考点解剖】本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】反比例函数图象既是轴对称图形又是中心对称图形,只有当A、B、O三点共线时,才会有线段AB的长度最小,(当直线AB 的表达式中的比例系数不为1时,也有同样的结论).【解答过程】把原点(0,0)代入中,得.选C..【方法规律】要求a的值,必须知道x、y的值(即一点的坐标)由图形的对称性可直观判断出直线AB过原点(0,0)时,线段AB才最小,把原点的坐标代入解析式中即可求出a的值.【关键词】反比例函数一次函数双曲线线段最小(2013•江西)如图,在平面直角坐标系中,反比例函数(x>0)的图象和矩形ABCD的第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.【答案】(1)B(2,4),C(6,4),D(6,6).(2)如图,矩形ABCD向下平移后得到矩形,设平移距离为a,则A′(2,6-a),C′(6,4-a)∵点A′,点C′在y=的图象上,∴2(6-a)=6(4-a),解得a=3,∴点A′(2,3),∴反比例函数的解析式为y=.【考点解剖】本题以矩形为背景考查用待定系数法求反比例函数的解析式.【解题思路】先根据矩形的对边平行且相等的性质得到B、C、D三点的坐标,再从矩形的平移过程发现只有A、C两点能同时在双曲线上(这是种合情推理,不必证明),把A、C两点坐标代入y=中,得到关于a、k的方程组从而求得k的值.【解答过程】略.【方法规律】把线段的长转化为点的坐标,在求k的值的时候,由于k 的值等于点的横坐标与纵坐标之积,所以直接可得方程2(6-a)=6(4-a),求出a后再由坐标求k,实际上也可把A、C两点坐标代入y=中,得到关于a、k的方程组从而直接求得k的值.(2013,河北)反比例函数y=mx的图象如图3所示,以下结论:①常数m<-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是A.①②B.②③C.③④D.①④(2013•安徽)函数y=(1-k)/x与y=2x的图象没有交点,则的取值范围为(D)A.k0D.k>1(2013•上海)已知平面直角坐标系(如图6),直线经过第一、二、三象限,与y轴交于点,点(2,)在这条直线上,联结,△的面积等于1.(1)求的值;(2)如果反比例函数(是常量,)的图像经过点,求这个反比例函数的解析式.(2013•毕节地区)一次函数y=kx+b(k≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是()A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<0考点:反比例函数与一次函数的交点问题.分析:本题需先判断出一次函数y=kx+b与反比例函数的图象在哪个象限内,再判断出k、b的大小即可.解答:解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0又∵反比例函数的图象经过二、四象限,∴k<0.综上所述,k<0,b<0.故选C.点评:本题主要考查了反比例函数和一次函数的交点问题,在解题时要注意图象在哪个象限内,是解题的关键.(2013•邵阳)下列四个点中,在反比例函数的图象上的是()A.(3,﹣2)B.(3,2)C.(2,3)D.(﹣2,﹣3)考点:反比例函数图象上点的坐标特征.分析:根据反比例函数中k=xy的特点进行解答即可.解答:解:A、∵3×(﹣2)=﹣6,∴此点在反比例函数的图象上,故本选项正确;B、∵3×2=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误;C、∵2×3=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误;D、∵(﹣2)×(﹣3)=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数y=中,k=xy为定值是解答此题的关键.(2013•柳州)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是()A.3B.4C.D.考点:反比例函数系数k的几何意义;等边三角形的性质分析:如图,根据反比例函数系数k的几何意义求得点P的坐标,则易求PD=4.然后通过等边三角形的性质易求线段AD=,所以S△POA=OA•PD=××4=.解答:解:如图,∵点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,∴16=a2,且a>0,解得,a=4,∴PD=4.∵△PAB是等边三角形,∴AD=.∴OA=4﹣AD=,∴S△POA=OA•PD=××4=.故选D.点评:本题考查了反比例函数系数k的几何意义,等边三角形的性质.等边三角形具有等腰三角形“三合一”的性质.(2013•铜仁)已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为()(2013•临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线在第一象限内的图象经过OB边的中点C,则点B的坐标是()A.(1,)B.(,1)C.(2,)D.(,2)考点:反比例函数综合题.分析:过点B作BD⊥x轴,垂足为D,设点B的坐标为(a,b)(a>0),再求出b和a的关系和C点的坐标,由点C在双曲线上,求出a的值,进而求出B点坐标.解答:解:过点B作BD⊥x轴,垂足为D,设点B的坐标为(a,b)(a >0),∵三角形OAB是等边三角形,∴∠BOA=60°,在Rt△BOA中,tan60°==,∴b=a,∵点C是OB的中点,∴点C坐标为(,),∵点C在双曲线上,∴a2=,∴a=2,∴点B的坐标是(2,2),故选C.点评:本题主要考查反比例函数的综合题,解答本题的关键是求出点B 的坐标,此题难度不大.(2013•茂名)如图,反比例函数的图象与一次函数的图象相交于两点A(,3)和B(,).(1)求一次函数的表达式;(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量的取值范围.(2013•红河)如图,正比例函数的图象与反比例函数()的图象相交于A、B两点,点A的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当时,自变量的取值范围.解:(1)设A点的坐标为(m,2),代入得:,所以点A的坐标为(2,2).∴.∴反比例函数的解析式为:.…………………………3分(2)当时,.解得.∴点B的坐标为(2,2).或者由反比例函数、正比例函数图象的对称性得点B的坐标为(2,2).由图象可知,当时,自变量的取值范围是:或.。
2013年中考数学分类专题之反比例函数综合题一.选择题12.(2013重庆市)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON 面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,).其中正确结论的个数是()A.1 B.2 C.3 D.4考点:反比例函数综合题.分析:根据反比例函数的比例系数的几何意义得到S△ONC=S△OAM=k,即OC•NC=OA•AM,而OC=OA,则NC=AM,在根据“SAS”可判断△OCN≌△OAM;根据全等的性质得到ON=OM,由于k的值不能确定,则∠MON的值不能确定,所以确定△ONM为等边三角形,则ON≠MN;根据S△OND=S△OAM=k和S△OND+S=S△OAM+S△OMN,即可得到S四边形DAMN=S△OMN;作NE⊥OM于E点,则△ONE为等腰直角三四边形DAMN角形,设NE=x,则OM=ON=x,EM=x﹣x=(﹣1)x,在Rt△NEM中,利用勾股定理可求出x2=2+,所以ON2=(x)2=4+2,易得△BMN为等腰直角三角形,得到BN=MN=,设正方形ABCO的边长为a,在Rt△OCN中,利用勾股定理可求出a的值为+1,从而得到C点坐标为(0,+1).解答:解:∵点M、N都在y=的图象上,∴S△ONC=S△OAM=k,即OC•NC=OA•AM,∵四边形ABCO为正方形,∴OC=OA,∠ONC=∠OAM=90°,∴NC=AM,∴△OCN≌△OAM,所以①正确;∴ON=OM,∵k的值不能确定,∴∠MON的值不能确定,∴△ONM只能为等腰三角形,不能确定为等边三角形,∴ON≠MN,所以②错误;∵S△OND=S△OAM=k,而S△OND+S四边形DAMN=S△OAM+S△OMN,∴四边形DAMN与△MON面积相等,所以③正确;作NE⊥OM于E点,如图,∵∠MON=45°,∴△ONE为等腰直角三角形,∴NE=OE,设NE=x,则ON=x,∴OM=x,∴EM=x﹣x=(﹣1)x,在Rt△NEM中,MN=2,∵MN2=NE2+EM2,即22=x2+[(﹣1)x]2,∴x2=2+,∴ON2=(x)2=4+2,∵CN=AM,CB=AB,∴BN=BM,∴△BMN为等腰直角三角形,∴BN=MN=,设正方形ABCO的边长为a,则OC=a,CN=a﹣,在Rt△OCN中,∵OC2+CN2=ON2,∴a2+(a﹣)2=4+2,解得a1=+1,a2=﹣1(舍去),∴OC=+1,∴C点坐标为(0,+1),所以④正确.故选C.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、比例系数的几何意义和正方形的性质;熟练运用勾股定理和等腰直角三角形的性质进行几何计算.10.(2013乐山)如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为()A.﹣3 B.﹣6 C.﹣D.﹣2考点:反比例函数综合题.分析:过A作AE⊥x轴,过B作BF⊥x轴,由OA与OB垂直,再利用邻补角定义得到一对角互余,再由直角三角形BOF中的两锐角互余,利用同角的余角相等得到一对角相等,又一对直角相等,利用两对对应角相等的三角形相似得到三角形BOF与三角形OEA相似,在直角三角形AOB中,由锐角三角函数定义,根据cos∠BAO的值,设出AB与OA,利用勾股定理表示出OB,求出OB与OA的比值,即为相似比,根据面积之比等于相似比的平方,求出两三角形面积之比,由A在反比例函数y=上,利用反比例函数比例系数的几何意义求出三角形AOE的面积,进而确定出BOF的面积,再利用k的集合意义即可求出k的值.解答:解:过A作AE⊥x轴,过B作BF⊥x轴,∵OA⊥OB,∴∠AOB=90°,∴∠BOF+∠EOA=90°,∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO,∵∠BFO=∠OEA=90°,∴△BFO∽△OEA,在Rt△AOB中,cos∠BAO==,设AB=,则OA=1,根据勾股定理得:BO=,∴OB:OA=:1,∴S△BFO:S△OEA=2:1,∵A在反比例函数y=上,∴S△OEA=1,∴S△BFO=2,则k=﹣4.故选B点评:此题属于反比例函数综合题,涉及的知识有:相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及反比例函数k的几何意义,熟练掌握相似三角形的判定与性质是解本题的关键.12.(2013威海)如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n考点:反比例函数综合题.分析:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),证明△BOE∽△OAF,利用对应边成比例可求出m、n的关系.解答:解:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),∵∠OAB=30°,∴OA=OB,设点B坐标为(a,),点A的坐标为(b,),则OE=﹣a,BE=,OF=b,AF=,∵∠BOE+∠OBE=90°,∠AOF+∠BOE=90°,∴∠OBE=∠AOF,又∵∠BEO=∠OFA=90°,∴△BOE∽△OAF,∴==,即==,解得:m=﹣ab,n=,故可得:m=﹣3n.故选A.点评:本题考查了反比例函数的综合,解答本题的关键是结合解析式设出点A、B的坐标,得出OE、BE、OF、AF的长度表达式,利用相似三角形的性质建立m、n之间的关系式,难度较大.13.(2013临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线在第一象限内的图象经过OB边的中点C,则点B的坐标是()A.(1,)B.(,1)C.(2,)D.(,2)考点:反比例函数综合题.分析:过点B作BD⊥x轴,垂足为D,设点B的坐标为(a,b)(a>0),再求出b和a的关系和C点的坐标,由点C在双曲线上,求出a的值,进而求出B点坐标.解答:解:过点B作BD⊥x轴,垂足为D,设点B的坐标为(a,b)(a>0),∵三角形OAB是等边三角形,∴∠BOA=60°,在Rt△BOA中,tan60°==,∴b=a,∵点C是OB的中点,∴点C坐标为(,),∵点C在双曲线上,∴a2=,∴a=2,∴点B的坐标是(2,2),故选C.点评:本题主要考查反比例函数的综合题,解答本题的关键是求出点B的坐标,此题难度不大.17.(2013镇江)如图,A、B、C是反比例函数图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条考点:反比例函数综合题.分析:如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.解答:解:如解答图所示,满足条件的直线有4条,故选A.点评:本题考查了点到直线的距离、平行线的性质、全等三角形等知识点,考查了分类讨论的数学思想.解题时注意全面考虑,避免漏解.8.(2013苏州)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.32考点:反比例函数综合题.分析:过C点作CD⊥x轴,垂足为D,根据点C坐标求出OD、CD、BC的值,进而求出B点的坐标,即可求出k的值.解答:解:过C点作CD⊥x轴,垂足为D,∵点C的坐标为(3,4),∴OD=3,CD=4,∴OC===5,∴OC=BC=5,∴点B坐标为(8,4),∵反比例函数y=(x>0)的图象经过顶点B,∴k=32,故选D.点评:本题主要考查反比例函数的综合题的知识点,解答本题的关键是求出点B的坐标,此题难度不大,是一道不错的习题.10.(2013荆州)如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4考点:反比例函数综合题;正方形的性质;全等三角形的判定与性质.分析:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.解答:解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选B.点评:本题考查了正方形的性质,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得C、D的坐标是关键.18.(2013龙东)如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠ACO=60°,则k的值是()A.4 B.﹣4C.2D.﹣2考点:反比例函数综合题.分析:根据三角形外角性质得∠OAC=∠AOB﹣∠ACB=30°,易得OA=OC=4,然后再Rt△AOB中利用含30度的直角三角形三边的关系得到OB=OC=2,AB=OB=2,则可确定C点坐标为(﹣2,2),最后把C点坐标代入反比例函数解析式y=中即可得到k的值.解答:解:∵∠ACB=30°,∠ACO=60°,∴∠OAC=∠AOB﹣∠ACB=30°,∴∠OAC=∠ACO,∴OA=OC=4,在△AOB中,∠ABC=90°,∠AOB=60°,OA=4,∴∠OAB=30°,∴OB=OC=2,∴AB=OB=2,∴C点坐标为(﹣2,2),把C(﹣2,2)代入y=得k=﹣2×2=﹣4.故选B.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征;熟练运用含30度的直角三角形三边的关系进行几何计算.12.(2013南宁)如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3 B.6 C.D.考点:反比例函数综合题;函数的平移.专题:探究型.分析:先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy 为定值求出x解答:解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点B在直线y=x+4上,∴B(x,x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选D.点评:本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.11.(2013贵港)如图,点A(a,1)、B(﹣1,b)都在双曲线y=﹣上,点P、Q分别是x 轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是()A.y=x B.y=x+1 C.y=x+2 D.y=x+3考点:反比例函数综合题;综合题.分析:先把A点坐标和B点坐标代入反比例函数进行中可确定点A的坐标为(﹣3,1)、B点坐标为(﹣1,3),再作A点关于x轴的对称点C,B点关于y轴的对称点D,根据对称的性质得到C点坐标为(﹣3,﹣1),D点坐标为(1,3),CD分别交x轴、y轴于P点、Q点,根据两点之间线段最短得此时四边形PABQ 的周长最小,然后利用待定系数法确定PQ的解析式.解答:解:分别把点A(a,1)、B(﹣1,b)代入双曲线y=﹣得a=﹣3,b=3,则点A的坐标为(﹣3,1)、B点坐标为(﹣1,3),作A点关于x轴的对称点C,B点关于y轴的对称点D,所以C点坐标为(﹣3,﹣1),D点坐标为(1,3),连结CD分别交x轴、y轴于P点、Q点,此时四边形PABQ的周长最小,设直线CD的解析式为y=kx+b,把C(﹣3,﹣1),D(1,3)分别代入,解得,所以直线CD的解析式为y=x+2.故选C.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式;熟练运用两点之间线段最短解决有关几何图形周长最短的问题.二.填空题18.(2013宁波)如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为.考点:反比例函数综合题.分析:由相似三角形的对应角相等推知△BDE的等腰直角三角形;根据反比例函数图象上点的坐标特征可设E(a,),D(b,),由双曲线的对称性可以求得ab=3;最后,将其代入直线AD的解析式即可求得a的值.解答:解:如图,∵∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E,∴∠BAC=∠ABC=45°,且可设E(a,),D(b,),∴C(a,0),B(a,2),A(2﹣a,0),∴易求直线AB的解析式是:y=x+2﹣a.又∵△BDE∽△BCA,∴∠BDE=∠BCA=90°,∴直线y=x与直线DE垂直,∴点D、E关于直线y=x对称,则=,即ab=3.又∵点D在直线AB上,∴=b+2﹣a,即2a2﹣2a﹣3=0,解得,a=,∴点E的坐标是(,).故答案是:(,).点评:本题综合考查了相似三角形的性质、反比例函数图象上点的坐标特征、一次函数图象上的点的坐标特征、待定系数法求一次函数的解析式.解题时,注意双曲线的对称性的应用.16.(2013丽水)如图,点P是反比例函数y=(k<0)图象上的点,PA垂直x轴于点A(﹣1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=.(1)k的值是;(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是.考点:反比例函数综合题;分类讨论.分析:(1)设P(﹣1,t).根据题意知,A(﹣1,0),B(0,2),C(1,0),由此易求直线BC的解析式y=﹣2x+2.把点P的坐标代入直线BC的解析式可以求得点P的坐标,由反比例函数图象上点的坐标特征即可求得k的值;(2)如图,延长线段BC交抛物线于点M,由图可知,当x<a时,∠MBA<∠ABC;过点C作直线AB 的对称点C′,连接BC′并延长BC′交抛物线于点M′,当x<a时,∠MBA<∠ABC.解答:解:(1)如图,PA垂直x轴于点A(﹣1,0),∴OA=1,可设P(﹣1,t).又∵AB=,∴OB===2,∴B(0,2).又∵点C的坐标为(1,0),∴直线BC的解析式是:y=﹣2x+2.∵点P在直线BC上,∴t=2+2=4∴点P的坐标是(﹣1,4),∴k=﹣4.故填:﹣4;(2)①如图1,延长线段BC交双曲线于点M.由(1)知,直线BC的解析式是y=﹣2x+2,反比例函数的解析式是y=﹣.则,解得,或(不合题意,舍去).根据图示知,当0<a<2时,∠MBA<∠ABC;②如图,过点C作直线AB的对称点C′,连接BC′并延长BC′交抛物线于点M′.∵A(﹣1,0),B(0,2),∴直线AB的解析式为:y=2x+2.∵C(1,0),∴C′(﹣,),则易求直线BC′的解析式为:y=x+2,∴,解得:x=或x=,则根据图示知,当<a<时,∠MBA<∠ABC.综合①②知,当0<a<2或<a<时,∠MBA<∠ABC.故答案是:0<a<2或<a<.点评:本题综合考查了待定系数法求一次函数的解析式,反比例函数图象上点的坐标特征以及分式方程组的解法.解答(2)题时,一定要分类讨论,以防漏解.另外,解题的过程中,利用了“数形结合”的数学思想.18.(2013重庆市)如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B、C均在第一象限,OA=2,∠AOC=60°.点D在边AB上,将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,且∠C′DB′=60°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为.考点:反比例函数综合题;翻折变换(折叠问题);菱形的性质;等边三角形的判定与性质.分析:连接AC,求出△BAC是等边三角形,推出AC=AB,求出△DC′B′是等边三角形,推出C′D=B′D,得出CB=BD=B′C′,推出A和D重合,连接BB′交x轴于E,求出AB′=AB=2,∠B′AE=60°,求出B′的坐标是(3,﹣),设经过点B′反比例函数的解析式是y=,代入求出即可.解答:解:连接AC,∵四边形OABC是菱形,∴CB=AB,∠CBA=∠AOC=60°,∴△BAC是等边三角形,∴AC=AB,∵将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,∴BD=B′D,CD=C′D,∠DB′C′=∠ABC=60°,∵∠B′DC′=60°,∴∠DC′B′=60°,∴△DC′B′是等边三角形,∴C′D=B′D,∴CB=BD=B′C′,即A和D重合,连接BB′交x轴于E,则AB′=AB=2,∠B′AE=180°﹣(180°﹣60°)=60°,在Rt△AB′E中,∠B′AE=60°,AB′=2,∴AE=1,B′E=,OE=2+1=3,即B′的坐标是(3,﹣),设经过点B′反比例函数的解析式是y=,代入得:k=﹣3,即y=﹣,故答案为:y=﹣.点评:本题考查了折叠性质,菱形性质,等边三角形的性质和判定的应用,主要考查学生的计算能力,题目比较好,有一定的难度.12.(2013北京市)如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n的横坐标为a n,若a1=2,则a2= ,a2013= ;若要将上述操作无限次地进行下去,则a1不可能取的值是.考点:反比例函数综合题;规律型.分析:求出a2,a3,a4,a5的值,可发现规律,继而得出a2013的值,根据题意可得A1不能在x轴上,也不能在y轴上,从而可得出a1不可能取的值.解答:解:当a1=2时,B1的纵坐标为,B1的纵坐标和A2的纵坐标相同,则A2的横坐标为a2=﹣,A2的横坐标和B2的横坐标相同,则B2的纵坐标为b2=﹣,B2的纵坐标和A3的纵坐标相同,则A3的横坐标为a3=﹣,A3的横坐标和B3的横坐标相同,则B3的纵坐标为b3=﹣3,B3的纵坐标和A4的纵坐标相同,则A4的横坐标为a4=2,A4的横坐标和B4的横坐标相同,则B4的纵坐标为b4=,即当a1=2时,a2=﹣,a3=﹣,a4=2,a5=﹣,b1=,b2=﹣,b3=﹣3,b4=,a5=﹣,∵=671,∴a2013=a3=﹣;点A1不能在y轴上(此时找不到B1),即x≠0,点A1不能在x轴上(此时A2,在y轴上,找不到B2),即y=﹣x﹣1≠0,解得:x≠﹣1;综上可得a1不可取0、﹣1.故答案为:﹣、﹣;0、﹣1.点评:本题考查了反比例函数的综合,涉及了点的规律变化,解答此类题目一定要先计算出前面几个点的坐标,由特殊到一般进行规律的总结,难度较大.16.(2013泸州)如图,点P1(x1,y1),点P2(x2,y2),…,点P n(x n,y n)在函数(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n都是等腰直角三角形,斜边OA1、A1A2、A2A3,…,A n﹣1A n都在x轴上(n是大于或等于2的正整数),则点P3的坐标是;点P n的坐标是(用含n的式子表示).考点:反比例函数综合题;规律型;等腰直角三角形.专题:综合题.分析:过点P1作P1E⊥x轴于点E,过点P2作P2F⊥x轴于点F,过点P3作P3G⊥x轴于点G,根据△P1OA1,△P2A1A2,△P3A2A3都是等腰直角三角形,可求出P1,P2,P3的坐标,从而总结出一般规律得出点P n的坐标.解答:解:过点P1作P1E⊥x轴于点E,过点P2作P2F⊥x轴于点F,过点P3作P3G⊥x轴于点G,∵△P1OA1是等腰直角三角形,∴P1E=OE=A1E=OA1,设点P1的坐标为(a,a),(a>0),将点P1(a,a)代入y=,可得a=1,故点P1的坐标为(1,1),则OA1=2a,设点P2的坐标为(b+2,b),将点P1(b+2,b)代入y=,可得b=﹣1,故点P2的坐标为(+1,﹣1),则A1F=A2F=2﹣2,OA2=OA1+A1A2=2,设点P3的坐标为(c+2,c),将点P1(c+2,c)代入y=,可得c=﹣,故故点P3的坐标为(+,﹣),综上可得:P1的坐标为(1,1),P2的坐标为(+1,﹣1),P3的坐标为(+,﹣),总结规律可得:P n坐标为:(+,﹣).故答案为:(+,﹣)、(+,﹣).点评:本题考查了反比例函数的综合,涉及了点的坐标的规律变化,解答本题的关键是根据等腰三角形的性质结合反比例函数解析式求出P1,P2,P3的坐标,从而总结出一般规律,难度较大.17.(2013常州)在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,连接OA、OB,若OA⊥OB,OB=OA,则k= .考点:反比例函数综合题;相似三角形的判定与性质.分析:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的坐标为(a,),点B的坐标为(b,),判断出△OBF∽△AOE,利用对应边成比例可求出k的值.解答:解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的坐标为(a,),点B的坐标为(b,),∵∠AOE+∠BOF=90°,∠OBF+∠BOF=90°,∴∠AOE=∠OBF,又∵∠BFO=∠OEA=90°,∴△OBF∽△AOE,∴==,即==,则=﹣b①,a=②,①×②可得:﹣2k=1,解得:k=﹣.故答案为:﹣.点评:本题考查了反比例函数的综合题,涉及了相似三角形的判定与性质,反比例函数图象上点的坐标的特点,解答本题要求同学们能将点的坐标转化为线段的长度.20.(2013南昌)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.考点:反比例函数综合题.分析:(1)根据矩形性质得出AB=CD=2,AD=BC=4,即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.解答:解:(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).∴AB=CD=2,AD=BC=4,∴B(2,4),C(6,4),D(6,6);(2)A、C落在反比例函数的图象上,设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),∵A、C落在反比例函数的图象上,∴k=2(6﹣x)=6(4﹣x),x=3,即矩形平移后A的坐标是(2,3),代入反比例函数的解析式得:k=2×3=6,即A、C落在反比例函数的图象上,矩形的平移距离是3,反比例函数的解析式是y=.点评:本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.15.(2013武汉)如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于.考点:反比例函数综合题.分析:设点C坐标为(a,),根据AC与BD的中点坐标相同,可得出点D的坐标,将点D的坐标代入函数解析式可得出k关于a的表达式,再由BC=2AB=2,可求出a的值,继而得出k的值.解答:解:设点C坐标为(a,),(a<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(a﹣1,+0)=(x+0,y+2),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2 ①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(a﹣0)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.点评:本题考查了反比例函数的综合题,涉及了平行四边形的性质、中点的坐标及解方程的知识,解答本题有两个点需要注意:①设出点C坐标,表示出点D坐标,代入反比例函数解析式;②根据BC=2AB=2,得出方程,难度较大,注意仔细运算.三.解答题25.(2013义乌)如图1所示,已知y=(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q连接AQ,取AQ的中点为C.(1)如图2,连接BP,求△PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;(3)当点Q在线段BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.考点:反比例函数综合题;动点型;分类讨论.分析:(1)根据同底等高的两个三角形的面积相等即可求出△PAB的面积;(2)首先求出∠BQC=60°,∠BAQ=30°,然后证明△ABQ≌△ANQ,进而求出∠BAO=30°,由S四边形BQNC=2求出OA=3,于是P点坐标求出;(3)分两类进行讨论,当点Q在线段BD上,根据题干条件求出AQ的长,进而求出四边形的周长,当点Q在线段BD的延长线上,依然根据题干条件求出AQ的长,再进一步求出四边形的周长.解答:解:(1)S△PAB=S△PAO=xy=×6=3;(2)如图1,∵四边形BQNC是菱形,∴BQ=BC=NQ,∠BQC=∠NQC,∵AB⊥BQ,C是AQ的中点,∴BC=CQ=AQ,∴∠BQC=60°,∠BAQ=30°,在△ABQ和△ANQ中,,∴△ABQ≌△ANQ,∴∠BAQ=∠NAQ﹣30°,∴∠BAO=30°,∵S四边形BQNC=2,∴BQ=2,∴AB=BQ=2,∴OA=AB=3,又∵P点在反比例函数y=的图象上,∴P点坐标为(3,2);(3)∵OB=1,OA=3,∴AB=,∵△AOB∽△DBA,∴=,∴BD=3,①如图2,当点Q在线段BD上,∵AB⊥BD,C为AQ的中点,∴BC=AQ,∵四边形BNQC是平行四边形,∴QN=BC,CN=BQ,CN∥BD,∴==,∴BQ=CN=BD=,∴AQ=2,∴C四边形BQNC=2+2;②如图3,当点Q在线段BD的延长线上,∵AB⊥BD,C为AQ的中点,∴BC=CQ=AQ,∴平行四边形BNQC是菱形,BN=CQ,BN∥CQ,∴==,∴BQ=3BD=9,∴AQ===2,∴C四边形BNQC=2AQ=4.点评:本题主要考查反比例函数综合题的知识,此题涉及的知识有全等三角形的判定与性质、相似三角形的性质以及菱形等知识,综合性较强,有一定的难度.24.(2013湖州)如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y=(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO.是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.考点:反比例函数综合题;存在型;动点型;分类讨论.分析:(1)先过点A作AH⊥OB,根据sin∠AOB=,OA=10,求出AH和OH的值,从而得出A点坐标,再把它代入反比例函数中,求出k的值,即可求出反比例函数的解析式;(2)先设OA=a(a>0),过点F作FM⊥x轴于M,根据sin∠AOB=,得出AH=a,OH=a,求出S△AOH的值,根据S△AOF=12,求出平行四边形AOBC的面积,根据F为BC的中点,求出S△OBF=6,根据BF=a,∠FBM=∠AOB,得出S△BMF=BM•FM,S△FOM=6+a2,再根据点A,F都在y=的图象上,S△AOH=k,求出a,最后根据S平行四边形AOBC=OB•AH,得出OB=AC=3,即可求出点C的坐标;(3)分别根据当∠APO=90°时,在OA的两侧各有一点P,得出P1,P2;当∠PAO=90°时,求出P3;当∠POA=90°时,求出P4即可.解答:解:(1)过点A作AH⊥OB于H,∵sin∠AOB=,OA=10,∴AH=8,OH=6,∴A点坐标为(6,8),根据题意得:8=,可得:k=48,∴反比例函数解析式:y=(x>0);(2)设OA=a(a>0),过点F作FM⊥x轴于M,∵sin∠AOB=,∴AH=a,OH=a,∴S△AOH=•a a=a2,∵S△AOF=12,∴S平行四边形AOBC=24,∵F为BC的中点,∴S△OBF=6,∵BF=a,∠FBM=∠AOB,∴FM=a,BM=a,∴S△BMF=BM•FM=a•a=a2,∴S△FOM=S△OBF+S△BMF=6+a2,∵点A,F都在y=的图象上,∴S△AOH=k,∴a2=6+a2,∴a=,∴OA=,∴AH=,OH=2,∵S平行四边形AOBC=OB•AH=24,∴OB=AC=3,∴C(5,);(3)存在三种情况:当∠APO=90°时,在OA的两侧各有一点P,分别为:P1(,),P2(﹣,),当∠PAO=90°时,P3(,),当∠POA=90°时,P4(﹣,).点评:此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,要注意运用数形结合的思想,要注意(3)有三种情况,不要漏解.25.(2013龙岩)如图,将边长为4的等边三角形AOB放置于平面直角坐标系xoy中,F是AB边上的动点(不与端点A、B重合),过点F的反比例函数y=(k>0,x>)与OA边交于点E,过点F作FC⊥x轴于点C,连结EF、OF.(1)若S△OCF=,求反比例函数的解析式;(2)在(1)的条件下,试判断以点E为圆心,EA长为半径的圆与y轴的位置关系,并说明理由;(3)AB边上是否存在点F,使得EF⊥AE?若存在,请求出BF:FA的值;若不存在,请说明理由.考点:反比例函数综合题;探究型;存在型.分析:(1)设F(x,y),得到OC=x与CF=y,表示出三角形OCF的面积,求出xy的值,即为k的值,进而确定出反比例解析式;(2)过E作EH垂直于x轴,EG垂直于y轴,设OH为m,利用等边三角形的性质及锐角三角函数定义表示出EH与OE,进而表示出E的坐标,代入反比例解析式中求出m的值,确定出EG,OE,EH的长,根据EA与EG的大小关系即可对于圆E与y轴的位置关系作出判断;(3)过E作EH垂直于x轴,设FB=x,利用等边三角形的性质及锐角三角函数定义表示出FC与BC,进而表示出AF与OC,表示出AE与OE的长,得出OE与EH的长,表示出E与F坐标,根据E与F都在反比例图象上,得到横纵坐标乘积相等列出方程,求出方程的解得到x的值,即可求出BF与FA的比值.解答:解:(1)设F(x,y),(x>0,y>0),则OC=x,CF=y,∴S△OCF=xy=,∴xy=2,∴k=2,∴反比例函数解析式为y=(x>0);(2)该圆与y轴相离,理由为:过点E作EH⊥x轴,垂足为H,过点E作EG⊥y轴,垂足为G,在△AOB中,OA=AB=4,∠AOB=∠ABO=∠A=60°,设OH=m,则tan∠AOB==,∴EH=m,OE=2m,∴E坐标为(m,m),∵E在反比例y=图象上,∴m=,∴m1=,m2=﹣(舍去),∴OE=2,EA=4﹣2,EG=,∵4﹣2<,∴EA<EG,∴以E为圆心,EA垂为半径的圆与y轴相离;(3)存在.假设存在点F,使AE⊥FE,过E点作EH⊥OB于点H,设BF=x.∵△AOB是等边三角形,∴AB=OA=OB=4,∠AOB=∠ABO=∠A=60°,∴BC=FB•cos∠FBC=x,FC=FB•sin∠FBC=x,∴AF=4﹣x,OC=OB﹣BC=4﹣x,∵AE⊥FE,∴AE=AF•cosA=2﹣x,∴OE=OA﹣AE=x+2,∴OH=OE•cos∠AOB=x+1,EH=OE•sin∠AOB=x+,∴E(x+1,x+),F(4﹣x,x),∵E、F都在双曲线y=的图象上,∴(x+1)(x+)=(4﹣x)•x,解得:x1=4,x2=,当BF=4时,AF=0,不存在,舍去;当BF=时,AF=,BF:AF=1:4.点评:此题属于反比例函数综合题,涉及的知识有:反比例函数的图象与性质,坐标与图形性质,等边三角形的性质,锐角三角函数定义,熟练掌握反比例函数的图象与性质是解本题的关键.19.(2013江西省)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.考点:反比例函数综合题.分析:(1)根据矩形性质得出AB=CD=2,AD=BC=4,即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.解答:解:(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).∴AB=CD=2,AD=BC=4,∴B(2,4),C(6,4),D(6,6);(2)A、C落在反比例函数的图象上,设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),。
试卷第1页,总13页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2013年反比例函数各省中考题评卷人 得分一、选择题(题型注释)1.已知直线y=ax (a≠0)与双曲线()ky=k 0x≠的一个交点坐标为(2,6),则它们的另一个交点坐标是【 】A . (﹣2,6)B . (﹣6,﹣2)C . (﹣2,﹣6)D . (6,2)2.如图,反比例函数11k y x=的图象与正比例函数22y k x =的图象交于点(2,1),则使y 1>y 2的x 的取值范围是【 】A .0<x <2B .x >2C .x >2或-2<x <0D .x <-2或0<x <2 3.如图,点A 在反比例函数()3y=x 0x >的图象上,点B 在反比例函数()ky=x 0x>的图象上,AB ⊥x 轴于点M ,且AM :MB=1:2,则k 的值为【 】A . 3B .-6C .2D .6 4.函数y 1=x 和21y x=的图象如图所示,则y 1>y 2的x 取值范围是试卷第2页,总13页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .x <﹣1或x >1B .x <﹣1或0<x <1C .﹣1<x <0或x >1D .﹣1<x <0或0<x <1 5.如图,点B 在反比例函数2y x=(x >0)的图象上,横坐标为1,过点B 分别向x 轴,y 轴作垂线,垂足分别为A ,C ,则矩形OABC 的面积为A .1B .2C . 3D . 4 6.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y kx=(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .327.已知点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数6y x=的图象上,则y 1、y 2、y 3的大小关系是A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 2<y 1 8.函数ay x=(a≠0)与()y a x 1=-(a≠0)在同一坐标系中的大致图象是 A . B . C .试卷第3页,总13页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………D .9.(11·西宁)反比例函数y =的图象如图5所示,则k 的值可能是A .-1B .C .1D .210.如图,矩形AOBC 的面积为4,反比例函数ky x=的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是A .4y x =B .2y x =C .1y x =D .1y 2x= 11.反比例函数my x=的图象如图所示,以下结论:① 常数m <-1;② 在每个象限内,y 随x 的增大而增大; ③ 若A (-1,h ),B (2,k )在图象上,则h <k ;④ 若P (x ,y )在图象上,则P′(-x ,-y )也在图象上. 其中正确的是A .①②B .②③C .③④D .①④试卷第4页,总13页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………12.如图,直线y x a 2=+-与双曲线y=4x交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为A .0B .1C .2D .513.如图,已知□ABCD 中,AB=4,AD=2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE=x ,DE 的延长线交CB 的延长线于点F ,设CF=y ,则下列图象能正确反映y 与x 的函数关系的是( )14.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 。
xA 1yOA 2B 2B 1P 1P 2P 3xyO AB C2013年中考专题--综合能力提高题及标准答案(21-40)21.如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反比例函数y =2x(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =2x(x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为______________.22.已知n 、k 均为正整数,且满足815<nn +k<713,则n 的最小值为_________.23.如图,在平面直角坐标系中,点A 在第二象限,点B 在x 轴的负半轴上,△AOB 的外接圆与y 轴交于点C (0,2),∠AOB =45°,∠BAO =60°,则点A 的坐标为______________.24.如图,图①中的圆与正方形各边都相切,设这个圆的周长为C 1;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长之和为C 2;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆的周长之和为C 3;…,依此规律,当正方形边长为2时,则C 1+C 2+C 3+…+C 99+C 100=____________. 25.如图,在平行四边形ABCD 中,AB =3,BC =4,∠B =60°,E 是BC 的中点,EF ⊥AB 于点F ,则△DEF 的面积为__________.图② 图③ 图①A DC B EF26.如图,将一块直角三角板OAB 放在平面直角坐标系中,点B 坐标为(2,0),∠AOB =60°,点A 在第一象限,双曲线y =kx经过点A .点P 在x 轴上,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标为___________; (2)设P (t ,0),当O ′B ′与双曲线有交点时,t 的取值范围是______________.27.已知抛物线y =x2-(m -1)x -m -1与x 轴交于A 、B 两点,顶点为为C ,则△ABC 的面积的最小值为__________.28.如图,E 、F 、G 、H 分别为四边形ABCD 的边AB ,BC ,CD ,DA 的中点,并且图中四个小三角形的面积的和为1,即S 1+S 2+S 3+S 4=1,则图中阴影部分的面积为___________.29.在平面直角坐标系中,A 、B 两点的坐标分别为(-1,1)、(2,2),直线y =kx -1与线段AB 的延长线相交(交点不包括B ),则实数k 的取值范围是______________.30.如图,正方形ABCD 的面积为12,点E 在正方形ABCD 内,△ABE 是等边三角形,点P 在对角线AC 上,则PD +PE 的最小值为___________.31.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,分别以AE 、BE 为直径作两个大小不同的⊙O 1和⊙O 2,若CD =16,则图中阴影部分的面积为___________(结果保留π).A BD CE FG HS 1S 2S 3 S 4A B D CE PO 1 O 2 O A BCDE x yO AB P O ′l B ′32.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM =MN ,则点M 的坐标为______________.33.如图,已知一次函数y =-x +8与反比例函数y =kx的图象在第一象限内交于A 、B 两点,且△AOB 的面积为24,则k =_________.34.已知x =3154)(+-3154)(-,则x3+12x 的算术平方根是__________.35.有三个含30°角的直角三角形,它们的大小互不相同,但均有一条长为a 的边,那么,这三个三角形按照从小到大的顺序,它们的面积比为______________.36.已知点P 是抛物线y =-x2+3x 在y 轴右侧..部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于B 、A 两点.若△P AB 与△AOB 相似,则点P 的坐标为_____________________________.x yO A B C MN OABxyO A Bx yA BC D O xy37.如图,直线y =-x +22 交x 轴、y 轴于点B 、A ,点C 的坐标为(42,0),P 是直线AB 上一点,且∠OPC =45º,则点P 的坐标为________________.38.如图,在△ABC 中,AB =AC =5,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF =1 2 ∠A ,sin ∠CBF =55,则BF 的长为_________.39.如图,Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .将△ABC 绕点D 按顺时针旋转角α(0<α<180°)后,点B 恰好落在初始Rt △ABC 的边上,那么α=____________°.40.如图,直线y =kx -2(k >0)与双曲线y =kx在第一象限内交于点A ,与x 轴、y 轴分别交于点B 、C .AD ⊥x 轴于点D ,且△ABD 与△OBC 的面积相等,则k 的值等于_________.O B A C x y AEB OC DFAB C D(标准答案)21.(3+1,3-1)解:设A 1(x 1,0),B 1(0,y 1),则P 1(y 1,x 1+y 1),P 2(x 1+y 1,x 1) 又P 1,P 2在反比例函数y =2x(x >0)的图象上,∴y 1(x 1+y 1 )=( x 1+y 1)x 1∵x 1+y 1≠0,∴x 1=y 1,∴2x 12=2,∴x 1=y 1=1(负值舍去) ∴P 2(2,1) 设P 3(x 3,2x 3 ),则x 3-2=2 x 3,∴x 3=3+1 ∴P 3(3+1,3-1)22.15 解:由已知得 137<n +kn<158,即 137<1+kn<158∴67<kn<78∵n 、k 均为正整数,∴n >8 取n =9,则547<k<638,没有这样的整数k值 依次取n =10,n =11,n =12,n =13,n =14时 分别607<k<708,667<k<778,727<k<848,787<k<918,847<k<988,k 都取不到整数 当n =15时,907<k<1058,k 取13即可满足∴n 的最小值为1523.(-6+2 2 ,6+22)xyOAB C DE解:连接BC ,则BC 为外接圆的直径在Rt △BOC 中,∠BCO =∠BAO =60°,∴OB =3OC = 6 过B 作BD ⊥OA 于D在Rt △BOD 中,∠BOD =45°,∴OD =BD =22OB =3 在Rt △ABD 中,∠BAD =60°,∴AD =33BD =1 ∴OA =OD +AD =3+1过A 作AE ⊥OB 于E ,则OE =AE =22 OA =6+2 2∴点A 的坐标为(-6+2 2 ,6+22)24.10100π解:由题意得:C 1=2π×1=2π×1 C 2=2π=4×2π×12=2π×2C 3=2π=9×2π×13=2π×3…C 100=2π×100∴C 1+C 2+C 3+…+C 99+C 100=2π(1+2+3+…+99+100)=10100π25.2 3解:延长DC 、FE 相交于点G ,则△CEG ≌△BEF∴∠G =∠BFE =90°,EG =EF ,CG =BF ,∴S △DEF=12S △DGF在Rt △BEF 中,BE =2,∠B =60°,∴EF =3,BF =1 ∴FG =2EF =23,DG =DC +CG =3+1=4 ∴S △DEF=12S △DGF=1 2 ×1 2 ×DG ×FG =14×4×23=2 326.(1)(4,0);(2)4≤t ≤25 或-25≤t ≤-4解:(1)连接B ′P ,由题意知O ′、B ′、P 三点在同一直线上,且O ′P =OP 当点O ′ 与点A 重合时∵∠AOB =60°,直线l 垂直于直线OA ,线段OB 经轴对称变换后的像是O ′B ′ ∴△AOP 是等边三角形 ∵B (2,0),∴OP =OA =4 ∴点P 的坐标为(4,0)A DCBEF GxyOA B PO ′lB ′xyOA B PO ′l B ′C(2)易得点A的坐标为(2,23),代入双曲线的解析式,得k=4 3∴y=43 x过O′作O′C⊥OP于C,则OC=12t,O′C=32t∴O′(12t,32t),∴B′(t+22,3t-232)当点O′在双曲线上时,则12t²32t=43,∴t=±4当点B′在双曲线上时,则t+22²3t-232=43,∴t=±2 5当O′B′与双曲线在第一象限的分支有交点时,4≤t≤2 5当O′B′与双曲线在第三象限的分支有交点时,-25≤t≤-4∴t的取值范围是4≤t≤25或-25≤t≤-427.1解:设A、B的横坐标分别为x1、x2,则x1+x2=m-1,x1x2=-m-1∴AB=|x1-x2|=(x1+x2)2-4x1x22=(m-1)2-4(-m-1)=m2+2m+5抛物线的顶点C的坐标为(m-12,-m2+2m+54)∴S△ABC=12m2+2m+5²|-m2+2m+54|=18(m2+2m+5)3∵m2+2m+5=(m+1)2+4≥4,当且仅当m=-1时等号成立∴S△ABC≥1843=1,即△ABC的面积的最小值为128.1解:连接AC、BD∵E是四边形ABCD的边AB的中点,∴S△AEC=S△BEC=12S△ABC∵G是四边形ABCD的边CD的中点,∴S△AGC=S△AGD=12S△ACD∴S四边形AECG=12S四边形ABCD同理S四边形BFDH=12S四边形ABCD,∴S四边形AECG=S四边形BFDH∴S四边形AECG=S△ABE+S△DFC ∴S阴影=S1+S2+S3+S4=129.13<k<32解:易知直线y=kx-1过定点C(0,-1)ABDC EFGHS1S2S3S4易求得直线AB的解析式为y=13x+43,直线BC的解析式为y=32x-1将直线y=kx-1绕点C旋转当直线y=kx-1与直线AB平行时,k=13;当直线y=kx-1过点B时,k=32所以实数k的取值范围是13<k<3230.2 3解:连接BP,由正方形的轴对称性知,PD=PB由“两点之间,线段最短”知,当点P在线段BE上时,PB+PE最小也即PD+PE最小,此时PD+PE=BE∵△ABE是等边三角形,∴BE=AB又∵正方形ABCD的面积为12,∴AB=2 3∴PD+PE的最小值为2 331.32π解:设⊙O、⊙O1和⊙O2的半径分别为r、r1和r2∵AB=2r=2(r1+r2),∴r=r1+r2∴r2-(r12+r22)=(r1+r2)2-(r12+r22)=2r1r2∴S阴影=S⊙O-(S⊙O1+S⊙O2)=π[r2-(r12+r22)]=2πr1r2由相交弦定理,得AE²BE=CE²DE=12CD²12CD=14CD2=14×162=64即2r1²2r2=64,∴2r1r2=32 ∴S阴影=32π32.(54,34)解:过点N作ND∥AB交BC于D,作NE⊥BC于E ∵OM=MN,∴OB=BD=1,∴DC=1∴DE=12,NE=32,∴N(52,32)∴M(54,34)33.7解:设一次函数y=-x+8的图象与y轴交于点C 易得C(0,8),∴OC=8联立y=-x+8与y=kx,消去y并整理得x2-8x+k=0ABDCEPOABCxyxyOAB CMND E∴x1+x2=8,x1x2=k∵S△AOB=S△BOC-S△AOC=12OC(x2-x1)=4(x2-x1)=24∴x2-x1=6,∴(x2-x1)2=36,即(x1+x2)2-4x1x2=36∴64-4k=36,∴k=734.2 2解:设3154)(+=a,3154)(-=b,则a3-b3=4(5+1)-4(5-1)=8ab=3154)(+²3154)(-=3416⨯=4∴x3+12x=a3-b3-3ab(a-b)+12(a-b)=8-12(a-b)+12(a-b)=8∴x3+12x的算术平方根是2235.3:4:12如图,Rt△ABC、Rt△ABD、Rt△ABE中,有一条相等的边AB=a,∠BAC=∠BAD=∠E =30°则AD=233a,BE=2a∴这三个三角形的斜边按照从小到大的比是1:233:2∴面积比为3:4:1236.(2,2),(12,54),(135,2625),(114,1116),(1,2),(52,54)解:设直线AB的解析式为y=-2x+b,则A(0,b),B(b2,0),∴OA=b,OB=b2以AB为直角边的△P AB与△AOB相似,有以下几种情形:①当∠P AB=90°,P AAB=AOOB=2时,作PH⊥y轴于H,则△PHA∽△AOB∴PHAO=HAOB=P AAB=2,∴PH=2AO=2b,HA=2OB=b∴P(2b,2b),代入抛物线的解析式,得b1=0(舍去),b2=1 ∴P1(2,2)②当∠P AB=90°,P AAB=OBAO=12时,则∠ABP=∠OAB∴PB∥y轴A BCDEOHB xyP1AO B xyAP2∵AB =OA 2+OB 2=5b2 ,∴P A =5b 4 ,∴PB =5b 4∴P (b 2,5b4),代入抛物线的解析式,得b 1=0(舍去),b 2=1∴P 2(1 2,5 4)③当∠PBA =90°,PBAB=AOBO=2时,作PH ⊥x 轴于H ,则△BHP ∽△AOB ∴BHAO=PHBO=PBAB=2,∴BH =2AO =2b ,PH =2BO =b ∴P (5b2,b ),代入抛物线的解析式,得b 1=0(舍去),b 2=2625∴P 3(13 5,26 25)④当∠PBA =90°, BPAB=OBAO=12时,作PH ⊥x 轴于H ,则△BHP ∽△AOB ∴BHAO=PHBO=BPAB=1 2,∴BH =1 2AO =b 2 ,PH = 1 2 BO =b4∴P (b ,b4),代入抛物线的解析式,得b 1=0(舍去),b 2=114∴P 4(11 4,1116)⑤当∠APB =90°,∠P AB =∠OBA ,∠ABP =∠OAB 时 则P A ∥OB ,PB ∥AO ,∴四边形OAPB 是矩形∴P (b2,b ),代入抛物线的解析式,得b 1=0(舍去),b 2=2∴P 5(1,2)⑥当∠APB =∠AOB =90°,∠P AB =∠OAB 时 则△APB ≌△AOB ,∴AP =AO连接OP ,作PH ⊥x 轴于H ,则OP ⊥AB ∴△OHP ∽△AOB ,∴PHOH=BOAO=12∴设P (x ,1 2x ),代入抛物线的解析式,得x 1=0(舍去),x 2=52∴P 6(5 2,54)OABxyP 4HO BxyA HP 3 O B xyAP 5OB xyAP 6H37.(2-6,2+6)或(32+6,-2-6)解:由题意得A (0,22),B (22,0)设过O 、P 、C 三点的圆的圆心为O ′,连接O ′O 、O ′B 、O ′C ,则O ′ 在OC 的垂直平分线上 ∵∠OPC =45º,∴∠OO ′C =90º又O ′O =O ′C ,∴△O ′OC 是等腰直角三角形,∴∠O ′OC =45º∵B (22,0),C (42,0),∴点B 是线段OC 的中点,∴O ′B ⊥OC∴△O ′OB 是等腰直角三角形,∴OB =O ′B =22,O ′O =4设P (x ,-x +22),当点P 在x 轴上方时,则O ′(22,22)∵O ′P =O ′O ,∴(x -2 2)2+( -x +2 2-2 2 )2=42整理得x2-22x -4=0,解得x 1=2-6,x 2=2+6(不合题意,舍去)∴P (2-6,2+6)当点P 在x 轴下方时,则O ′(22,-22)∵O ′P =O ′O ,∴(x -2 2)2+( -x +2 2+2 2 )2=42整理得x2-62x +12=0,解得x 1=32+6,x 2=32-6(不合题意,舍去)∴P (32+6,-2-6)综上,点P 的坐标为(2-6,2+6)或(32+6,-2-6)38.203解:连接AE ,过C 作CG ⊥AB 于点G∵AB 是圆O 的直径,∴∠AEB =90︒,∴∠BAE +∠ABE =90︒ ∵AB =AC ,∴BC =2BE ,∠BAE =12∠BAC∵∠CBF =12∠BAC ,∴∠BAE =∠CBF∴∠CBF +∠ABE =90︒,∴∠ABF =90︒ ∵sin ∠CBF =55,∴sin ∠BAE =5 5∴BE =AB ²sin ∠BAE =5,∴BC =2BE =2 5 在Rt △ABE 中,由勾股定理得AE =AB 2-BE 2=2 5∴sin ∠ABE =25 5,cos ∠ABE =5 5∴GC =BC ²sin ∠ABE =4,GB =BC ²cos ∠ABE =2,∴AG =3 ∵GC ∥BF ,∴△AGC ∽△ABF ∴ GCBF=AGAB,∴BF =GC ²ABAG=203OB AC xyO ′P PAE BO CDF G39.80或120解:当点B落在Rt△ABC的AB边上的B′处,则B′D=BD∴α=∠BDB′=180°-∠DB′B-∠B=180°-2∠B=180°-2×50°=80°当点B落在Rt△ABC的AC边上的B″处,则B″D=BD在Rt△B″CD中,∵B″D=BD=2CD,∴∠CDB″=60°∴α=∠BDB″=180°-∠CDB″=120°40. 2解:由题意得B(2k,0),C(0,-2)∵AD⊥x轴,∴△ABD∽△CBO又△ABD与△CBO的面积相等,∴△ABD≌△CBO∴OD=2OB=4k,AD=OC=2,∴A(4k,2)∵双曲线y=kx经过点A,∴4k×2=k,即k2=8∵k>0,∴k=2 2A B CDB′B″。
2013中考反比例函数一、选择题1、(2013年南宁).如图6,直线y=21x 与双曲线y=x k (k>0,x>0)交于点A ,将直线y=21x 向上平移4个单位长度后,与y 轴交于点C ,与双曲线y=xk(k>0,x>0)交于点B ,若OA=3BC ,则k 的值为:(A ) 3 (B )6 (C )49 (D )29图62、(2013泸州)、已知双曲线()0ky k x=<经过直角三角形△OAB 斜边OA 的中点D ,且与直角边AB 相交于点C ,若点A 的坐标为(—6,4),则△AOC 的面积为 A 、12 B 、9 C 、6 D 、43、(2013•三明)如图,已知直线y=mx 与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是( )4、正比例函数y =kx 和反比例函数21k y x+=-(k 是常数,且k ≠0)在同一平面直角坐标系中的图象可能是5、(2013沈阳)、在同一平面直角坐标系中,函数1y x =-与函数1y x=的图象可能是( )6.(3分)(2013•内江)如图,反比例函数(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( )线为边在第一象限作正方形ABCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线上则a 的值是B A .1 B .2 C .3 D .4二、填空题1、(2013桂林).函数y x =的图象与函数4y x=的图象在第一象限内交于点B , 点C 是函数4y x=在第一象限图象上的一个动点,当△OBC 的 面积为3时,点C 的横坐标是 .2、(2013宜宾).如图,直线43y x =与双曲线ky x=(0x >)交于点A .将直线43y x =向右平移92个单位后,与双曲线ky x=(0x >)交于点B ,与x 轴交于点C ,若2AOBC=,则k =. 3.如图,反比例函数xky =的图象经过点P ,则k = .4、(2013•三明)如图,已知一次函数y=kx+b 的图象经过点P (3,2),与反比例函数y=(x >0)的图象交于点Q (m ,n ).当一次函数y 的值随x 值的增大而增大时,m 的取值范围是 .5、(2013自贡).如图,在函数8(0)y x x=>的图象上有点1P 、2P 、3P ……、n P 、1n P +,点1P 的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点1P 、2P 、3P ……、n P 、1n P +分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为1S 、2S 、3S ……、n S ,则1S =________,n S =________.(用含n 的代数式表示) 6、(2013武汉).如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0), (0,2),C ,D 两点在反比例函数)0(<=x xky 的图象上,则k 的值等于 .7、(2013黄石).下图中正比例函数与反比例函数的图象相交于A B 、两点,分别以A B 、两点为圆心,画与x 轴相切的两个圆,若点A 的坐标为(2,1),则图中两个阴影部分面积的和是 .8、(2013营口).已知双曲线x y 3=和xky =的部分图象如图所示,点C 是y 轴正半轴上一点,过点C 作AB ∥x 轴分别交两个图象于点B A 、.若CB =CA 2,则k = .三、解答题1、(2013•攀枝花)如图,直线y=k 1x+b (k 1≠0)与双曲线y=(k 2≠0)相交于A (1,2)、B (m ,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<0<x 2<x 3,请直接写出y 1,y 2,y 3的大小关系式; (3)观察图象,请直接写出不等式k 1x+b <的解集.2.(10分)(2013•巴中)如图,在平面直角坐标系xOy 中,一次函数y=kx+b (k ≠0)的图象与反比例函数y=的图象交于一、三象限内的A 、B 两点,直线AB 与x 轴交于点C ,点B 的坐标为(﹣6,n ),线段OA=5,E 为x 轴正半轴上一点,且tan ∠AOE= (1)求反比例函数的解析式; (2)求△AOB 的面积.3、(2013大连)如图,在平面直角坐标系xoy 中,一次函数y=ax+b 的图象与反比例函数xk y =的图象相交于点A (m ,1)、B (-1,n ),与x 轴相交于点C (2,0),且 。
一.解答题(共20 小题)1.( 2012?资阳)已知:一次函数y=3x ﹣ 2 的图象与某反比率函数的图象的一个公共点的横坐标为1.(1)求该反比率函数的分析式;(2)将一次函数 y=3x ﹣ 2 的图象向上平移 4 个单位,求平移后的图象与反比率函数图象的交点坐标;(3)请直接写出一个同时知足以下条件的函数分析式:①函数的图象能由一次函数y=3x ﹣ 2 的图象绕点( 0,﹣ 2)旋转必定角度获得;②函数的图象与反比率函数的图象没有公共点.2.( 2012?重庆)已知:如图,在平面直角坐标系中,一次函数y=ax+b ( a≠0)的图象与反比率函数的图象交于一、三象限内的 A 、 B 两点,与x 轴交于 C 点,点 A 的坐标为( 2, m),点 B的坐标为(n,﹣ 2), tan∠BOC= .( 1)求该反比率函数和一次函数的分析式;( 2)在 x 轴上有一点E(O 点除外),使得△BCE 与△BCO 的面积相等,求出点 E 的坐标.3.( 2012?肇庆)已知反比率函数图象的两个分支分别位于第一、第三象限.( 1)求 k 的取值范围;( 2)若一次函数 y=2x+k 的图象与该反比率函数的图象有一个交点的纵坐标是4.①求当 x= ﹣6 时反比率函数 y 的值;②当时,求此时一次函数y 的取值范围.4.( 2012?云南)如图,在平面直角坐标系中,O 为原点,一次函数与反比率函数的图象订交于A( 2,1)、B(﹣ 1,﹣ 2)两点,与 x 轴交于点 C.( 1)分别求反比率函数和一次函数的分析式(关系式);( 2)连结 OA ,求△AOC 的面积.5.( 2012?玉林)如图,在平面直角坐标系xOy 中,梯形 AOBC 的边 OB 在 x 轴的正半轴上, AC ∥OB,BC ⊥OB ,过点 A 的双曲线 y= 的一支在第一象限交梯形对角线OC 于点 D,交边 BC 于点 E.( 1)填空:双曲线的另一支在第_________ 象限, k 的取值范围是_________ ;( 2)若点 C 的左标为(2, 2),当点 E 在什么地点时,暗影部分的面积S 最小?( 3)若= , S△OAC=2 ,求双曲线的分析式.6.( 2012?义乌市)如图,矩形 OABC 点 E( 4,n)在边 AB 上,反比率函数的极点 A 、C 分别在 x、y 轴的正半轴上,点 D 为对角线 OB 的中点,( k≠0)在第一象限内的图象经过点D、 E,且 tan∠BOA=.( 1)求边 AB 的长;( 2)求反比率函数的分析式和n 的值;( 3)若反比率函数的图象与矩形的边BC 交于点 F,将矩形折叠,使点O 与点 F 重合,折痕分别与x、y 轴正半轴交于点H、 G,求线段OG 的长.7.( 2012?烟台)如图,在平面直角坐标系中, A , B 两点的纵坐标分别为7 和 1,直线 AB 与 y 轴所夹锐角为 60°.(1)求线段 AB 的长;(2)求经过 A ,B 两点的反比率函数的分析式.8.( 2012?厦门)已知点 A ( 1, c)和点 B( 3, d)是直线 y=k 1x+b 与双曲线( k2> 0)的交点.( 1)过点 A 作 AM ⊥x 轴,垂足为 M ,连结 BM .若 AM=BM ,求点 B 的坐标.( 2)若点 P 在线段 AB 上,过点 P 作 PE⊥x 轴,垂足为 E,并交双曲线( k2> 0)于点 N.当取最大值时,有 PN= ,求此时双曲线的分析式.9.(2012?咸宁)如图,一次函数y1=kx+b 的图象与反比率函数的图象交于A( 1,6), B(a, 2)两点.(1)求一次函数与反比率函数的分析式;(2)直接写出 y1≥y2时 x 的取值范围.10.( 2012?天津)已知反比率函数y= ( k 为常数,k≠1).(Ⅰ)其图象与正比率函数y=x 的图象的一个交点为P,若点 P 的纵坐标是2,求 k 的值;(Ⅱ)若在其图象的每一支上,y 随 x 的增大而减小,求k 的取值范围;(Ⅲ)若其图象的向来位于第二象限,在这一支上任取两点 A ( x1,y1)、 B( x2, y2),当较 x1与 x2的大小.y1> y2时,试比11.(2012?泰州)如图,已知一次函数于 B (﹣ 1, 5)、C(, d)两点.点y1=kx+b 图象与 x 轴订交于点P( m, n)是一次函数y1=kx+bA ,与反比率函数的图象上的动点.的图象订交( 1)求 k、 b 的值;( 2)设﹣ 1< m<,过点P 作 x 轴的平行线与函数的图象订交于点 D .试问△PAD 的面积能否存在最大值?若存在,恳求出头积的最大值及此时点P 的坐标;若不存在,请说明原因;( 3)设 m=1﹣ a,假如在两个实数m 与 n 之间(不包含m 和 n)有且只有一个整数,务实数 a 的取值范围.12.( 2012?南昌)如图,等腰梯形ABCD 搁置在平面坐标系中,已知A(﹣ 2,0)、B( 6,0)、D(0, 3),反比率函数的图象经过点C.(1)求点 C 的坐标和反比率函数的分析式;(2)将等腰梯形 ABCD 向上平移 2 个单位后,问点 B 能否落在双曲线上?13.( 2012?乐山)如图,直线y=2x+2 与 y 轴交于 A 点,与反比率函数(x>0)的图象交于点M,过M作 MH ⊥x 轴于点 H,且 tan∠AHO=2 .( 1)求 k 的值;( 2)点 N (a, 1)是反比率函数(x>0)图象上的点,在x 轴上能否存在点P,使得 PM+PN 最小?若存在,求出点P 的坐标;若不存在,请说明原因.C 是双曲线第三象限上的动点,过 C 作CA ⊥x 14.(2012?济南)如图,已知双曲线y=经过点D(6,1),点轴,过 D 作 DB ⊥y 轴,垂足分别为 A , B 连结 AB ,BC(1)求 k 的值;(2)若△BCD 的面积为 12,求直线 CD 的分析式;(3)判断 AB 与 CD 的地点关系,并说明原因.15.( 2011?攀枝花)如图,已知反比率函数(m是常数,m≠0),一次函数y=ax+b( a、b 为常数,a≠0),此中一次函数与x 轴, y 轴的交点分别是 A (﹣ 4, 0),B ( 0, 2).( 1)求一次函数的关系式;( 2)反比率函数图象上有一点P 知足:①PA⊥x 轴;②PO=(O为坐标原点),求反比率函数的关系式;( 3)求点 P 对于原点的对称点Q 的坐标,判断点Q 能否在该反比率函数的图象上.16.( 2010?义乌市)如图,一次函数 y=kx+2 的图象与反比率函数y=的图象交于点P,点 P 在第一象限. PA⊥x 轴于点 A , PB⊥y 轴于点 B .一次函数的图象分别交x 轴、 y 轴于点 C、D ,且 S△PBD=4,=.(1)求点 D 的坐标;(2)求一次函数与反比率函数的分析式;( 3)依据图象写出当x> 0 时,一次函数的值大于反比率函数的值的x 的取值范围.17.( 2010?广州)已知反比率函数y= ( m 为常数)的图象经过点 A (﹣ 1, 6).( 1)求 m 的值;( 2)如图,过点 A 作直线AC 与函数y= 的图象交于点B,与x 轴交于点C,且AB=2BC ,求点 C 的坐标.18.( 2010?北京)已知反比率函数y=的图象经过点 A (﹣,1).(1)试确立此反比率函数的分析式;(2)点 O 是坐标原点,将线段 OA 绕 O 点顺时针旋转 30°获得线段 OB .判断点 B 能否在此反比率函数的图象上,并说明原因;( 3)已知点P( m,m+6)也在此反比率函数的图象上(此中m< 0),过 P 点作 x 轴的垂线,交x 轴于点M .若线段PM 上存在一点Q,使得△OQM 的面积是,设Q 点的纵坐标为n,求n2﹣2 n+9 的值.19.( 2012?河北)如图,四边形y=(x>0)的函数图象经过点ABCDD,点是平行四边形,点 A ( 1, 0), B( 3, 1),C( 3, 3).反比率函数P 是一次函数y=kx+3 ﹣ 3k(k≠0)的图象与该反比率函数图象的一个公共点.( 1)求反比率函数的分析式;( 2)经过计算,说明一次函数y=kx+3 ﹣ 3k( k≠0)的图象必定过点C;( 3)对于一次函数y=kx+3 ﹣3k ( k≠0),当 y 随 x 的增大而增大时,确立点写出过程).P 的横坐标的取值范围(不用20.( 2012?宜宾)如图,在平面直角坐标系中,已知四边形( 1)求经过点 C 的反比率函数的分析式;( 2)设 P 是( 1)中所求函数图象上一点,以P、O、A 的坐标.ABCD 为菱形,且极点的三角形的面积与A ( 0, 3)、 B(﹣ 4, 0).△COD 的面积相等.求点P答案与评分标准一.解答题(共20 小题)1.( 2012?资阳)已知:一次函数y=3x ﹣ 2 的图象与某反比率函数的图象的一个公共点的横坐标为1.(1)求该反比率函数的分析式;(2)将一次函数 y=3x ﹣ 2 的图象向上平移 4 个单位,求平移后的图象与反比率函数图象的交点坐标;(3)请直接写出一个同时知足以下条件的函数分析式:①函数的图象能由一次函数y=3x ﹣ 2 的图象绕点( 0,﹣ 2)旋转必定角度获得;②函数的图象与反比率函数的图象没有公共点.考点:反比率函数与一次函数的交点问题;一次函数图象与几何变换。
2013中考全国100份试卷分类汇编反比例函数应用题1、(2013•曲靖)某地资源总量Q 一定,该地人均资源享有量与人口数n的函数关系图象B=;故,的实际意义Q=n∴=∴又∵>2、(2013•绍兴)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()y=得,,解得;()≤﹣时间段内,故×≤×≈≤﹣2=≤3、(2013•玉林)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y (℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?y=中,进一步求解可得答案.y=600=,y=<xy=,得解答该类问题的关键是确4、(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?,y==13.5工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=((1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.考点:反比例函数的应用;分式方程的应用.分析:(1)根据每天运量×天数=总运量即可列出函数关系式;(2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可.解答:解:(1)∵每天运量×天数=总运量∴nt=4000∴n=;(2)设原计划x天完成,根据题意得:解得:x=4经检验:x=4是原方程的根,答:原计划4天完成.点评:本题考查了反比例函数的应用及分式方程的应用,解题的关键是找到题目中的等量关系.7、(2013浙江丽水)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为x m,DC的长为y m。
一、选择题1. ( 2013云南普洱,8,3分)若ab<0,则正比例函数y=ax和反比例函数y=bx在同一坐标系中的大致图象可能是()【答案】B2.(2013云南曲靖,4,3分)某地资源总量Q一定,该地人均资源享有量x与人口数n的函数关系图象是()3.(A B C D【答案】C4.(2013福建省三明市,9,4分)如图,已知直线y=mx与双曲线y=kx的一个交点坐标为(3,4),则它们的另一个交点坐标是( )A.(-3,4) B.(-4,-3) C.(-3,-4) D.(4,3)【答案】C5.(2013湖北随州,9,4分)正比例函数y=kx和反比例函数y=-21kx(k是常数且k≠0)在同一平面直角坐标系中的图象可能是()O n O n O nOA B C D【答案】C6.(2013江苏苏州,8,3分)如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数(0)ky x x=>的图象经过顶点B ,则k 的值为( ) A.12 B.20 C.24 D.32 【答案】:D7. (2013江苏常州,3,2分)下列函数中,图像经过点(1,-1)的反比例函数关系式是 ( )A .x y 1-=B .x y 1= C.x y 2=D.xy 2-=【答案】 A8. (2013广西贵港市,11,3分)如图,点A (,1)a 、B (1,)b -都在双曲线3(0)y x x=-<上,点P 、Q 分别是x 轴、y 轴上的动点,当四边形PABQ 的周长取最小值时,PQ 所在直线的解析式是( )A .y x =B .1y x =+C .2y x =+D .3y x =+【答案】C9.(2013广西柳州,11,3分)如图,P 点(a ,a )是反比例函数xy 16=在第一象限内的图象上的一个点,以点P 为端点作等边△PAB ,使A 、B 落在x 轴上,则△POA 的面积是( )A . 3B . 4C .33412- D .33824-【答案】D10. (2013山东青岛,6,3分) 已知矩形的面积为36cm 2,相邻两条边长分别为xcm 和ycm ,则y 与x 之间的函数图像大致是( ) 【答案】A .11. (2013黑龙江龙东地区,18,3分)如图,Rt △ABC 的顶点A 在双曲线y=xk的图象上,直角边BC 在 x 轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA ,∠AOB=60°,则k 的值是( ) A .43B .-43C .23D .-23【答案】B12. (2013南宁,12,3)如图,直线y=21x 与双曲线y=x k (k>0,x>0)交于点A ,将直线y=21x 向上平移4个单位长度后,与y 轴交于点C ,与双曲线y=x k(k>0,x>0)交于点B ,若OA=3BC ,则k 的值为( )A. 3B.6C.49 D. 29【答案】D13. (2013•株洲,7,3)已知点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数的图象上,则y 1、y 2、y 3的大小关系是( )14. (2013哈尔滨,6,3分)反比例函数y =1-2kx的图象经过点(-2,3),则k 的值为( ).A .6B .-6C .72D .-72【答案】 C .15. (2013•遵义,7,3)P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y =﹣x 图象上的两点,下列判断中,正确的是( )二、填空题1. (2013内蒙古包头,17,3分)设反比例函数xk y 2+=,(x 1,y 1),(x 2,y 2)为其图像上两点,若x 1<0<x 2,y 1>y 2则k 的取值范围是【答案】k <-22. (2013辽宁铁岭,16,3分)如图点P 是正比例函数y=x 与反比例y=kx在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA 的面积为2,则k 的值是 . 【答案】23. (2013贵州贵阳,14,4分)直线y =ax +b (a >0)与双曲线y =x3相交于A (x 1,y 1),B (x 2,y 2)两点,则x 1y 1+x 2y 2的值为___________. 【答案】64. (2013福建厦门,14,4分).已知反比例函数y =m -1x的图象的一支位于第一象限,则常数m 的取值范围是 . 【答案】m >15. (2013福建省三明市,16,4分)如图,已知一次函数y =kx +b 的图象经过点P (3,2),与反比例函数的图象y = 2x(x >0)交于点Q (m ,n ).当一次函数y 的值随x 值的增大而增大时,m 的取值范围是 .【答案】1<x <36.(2013湖北黄石,2,3分)如右图,在平面直角坐标系中,一次函数y=ax +b (a ≠0)的图象与反比例函数y=x k (k ≠0)的图象交于二、四象限的A 、B 两点,与x 轴交于C 点。
2013年全国中考数学试题分类解析汇编 一次(正比例)函数和反比例函数的综合一、选择题1. (2012山西省2分)已知直线y=ax (a≠0)与双曲线()ky=k 0x≠的一个交点坐标为(2,6),则它们的另一个交点坐标是【 】 A . (﹣2,6) B . (﹣6,﹣2)C . (﹣2,﹣6)D . (6,2)【答案】C 。
【考点】反比例函数图象的对称性,关于原点对称的点的坐标特征。
【分析】∵直线y=ax (a≠0)与双曲线()ky=k 0x≠的图象均关于原点对称, ∴它们的另一个交点坐标与(2,6)关于原点对称。
∵关于原点对称的点的坐标是横、纵坐标都互为相反数, ∴它们的另一个交点坐标为:(﹣2,﹣6)。
故选C 。
2. (2012海南省3分)如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是【 】A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1) 【答案】D 。
【考点】正比例函数与反比例函数的对称性,关于原点对称的点的坐标特征。
【分析】根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称;由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1)。
故选D 。
3. (2012广东广州3分)如图,正比例函数y 1=k 1x 和反比例函数22k y =x的图象交于A (﹣1,2)、B (1,﹣2)两点,若y 1<y 2,则x 的取值范围是【 】A.x<﹣1或x>1 B.x<﹣1或0<x<1 C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>1【答案】D。
【考点】反比例函数与一次函数的交点问题。
【分析】根据图象找出直线在双曲线下方的x的取值范围:由图象可得,﹣1<x<0或x>1时,y1<y2。
2013中考全国100份试卷分类汇编反比例函数1、(2013年潍坊市)设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 2、(2013年临沂)如图,等边三角形OAB 的一边OA 在x 轴上,双曲线xy 3=在内的图像经过OB 边的中点C ,则点B 的坐标是(A )( 1, 3). (B )(3, 1 ).(C )( 2 ,32). (D )(32 ,2 ). 3、(2013年江西省)如图,直线y =x +a -2与双曲线y=x4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ). A .0 B .1 C .2 D .54、(2013年南京)在同一直线坐标系中,若正比例函数y =k 1x 的图像与反比例函数y = k 2x的图像没有公共点,则(A) k 1+k 2<0 (B) k 1+k 2>0 (C) k 1k 2<0 (D) k 1k 2>0 5、(2013四川南充,8,3分)如图,函数的图象相交于点A (1,2)和点B ,当时,自变量x的取值范围是( )A. x >1B. -1<x <0C. -1<x <0 或x >1D. x <-1或0<x <16、(2013凉山州)如图,正比例函数y 1与反比例函数y 2相交于点E (﹣1,2),若y 1>y 2>0,则x 的取值范围在数轴上表示正确的是( )A .B .C .D .7、(2013•内江)如图,反比例函数(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( ) A . 1 B . 2 C . 3 D . 412、(2013•宁夏)函数(a ≠0)与y=a (x ﹣1)(a ≠0)在同一坐标系中的大致图象是( ) A .B .C .D .8、(2013•苏州)如图,菱形OABC 的顶点C 的坐标为(3,4).顶点A 在x 轴的正半轴上,反比例函数y=(x >0)的图象经过顶点B ,则k 的值为( )A . 12B .20 C . 24D .32 9、(2013成都市)若关于t 的不等式组t-0214a t ≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数1y=4x a -的图像与反比例函数32y a x+=的图像的公共点的个数位______.10、(2013•孝感)如图,函数y=﹣x 与函数的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD的面积为( ) A . 2 B . 4 C . 6 D . 811、(2013年河北)反比例函数y =mx 的图象如图3所示,以下结论:① 常数m <-1;② 在每个象限内,y 随x 的增大而增大;③ 若A (-1,h ),B (2,k )在图象上,则h <k ;④ 若P (x ,y )在图象上,则P ′(-x ,-y )也在图象上.其中正确的是 A .①② B .②③C .③④D .①④12、(2013•黔东南州)如图,直线y=2x 与双曲线y=在第一象限的交点为A ,过点A 作AB ⊥x 轴于B ,将△ABO 绕点O 旋转90°,得到△A ′B ′O ,则点A ′的坐标为( )A . (1.0)B . (1.0)或(﹣1.0)C . (2.0)或(0,﹣2)D . (﹣2.1)或(2,﹣1)13、(2013•六盘水)下列图形中,阴影部分面积最大的是( ) A .B .C .D .14、(2013•南宁)如图,直线y=与双曲线y=(k >0,x >0)交于点A ,将直线y=向上平移4个单位长度后,与y 轴交于点C ,与双曲线y=(k >0,x >0)交于点B ,若OA=3BC ,则k 的值为( )15、(13年安徽省4分、9)图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是( ) A 、当x=3时,EC <EM B 、当y=9时,EC >EMC 、当x 增大时,E C ·CF 的值增大。
D 、当y 增大时,BE ·DF 的值不变。
A .3 B .6 C .D .16、(2013•自贡)如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=,S n=.(用含n的代数式表示)17、(2013•绍兴)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是.49、(2013山西,16,3分)如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线y=12x-1经过点C交x轴于点E,双曲线kyx=经过点D,则k的值为________.18、(2013•黄冈)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=6.19、(2013•遵义)如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为.20、(2013•张家界)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是.21、(2013年黄石)如右图,在平面直角坐标系中,一次函数(0)y ax b a =+≠的图像与反比例函数(0)ky k x=≠的图像交于二、四象限的A 、B 两点,与x 轴交于C 点。
已知(2,)A m -,(,2)B n -,2tan 5BOC ∠=,则此一次函数的解析式为 .22、(2013•常州)在平面直角坐标系xOy 中,已知第一象限内的点A 在反比例函数的图象上,第二象限内的点B 在反比例函数的图象上,连接OA 、OB ,若OA ⊥OB ,OB=OA ,则k= .18.(2013•宁波)如图,等腰直角三角形ABC 顶点A 在x 轴上,∠BCA=90°,AC=BC=2,反比例函数y=x 3(x >0)的图象分别与AB ,BC 交于点D ,E .连结DE ,当△BDE∽△BCA时,点E 的坐标为 .23、(2013•泸州)如图,点P 1(x 1,y 1),点P 2(x 2,y 2),…,点P n (x n ,y n )在函数(x>0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n ﹣1A n 都是等腰直角三角形,斜边OA 1、A 1A 2、A 2A 3,…,A n ﹣1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是 ;点P n 的坐标是 (用含n 的式子表示).OAy CBx24、(2013•眉山)如图,在函数y 1=(x <0)和y 2=(x >0)的图象上,分别有A 、B 两点,若AB ∥x 轴,交y 轴于点C ,且OA ⊥OB ,S △AOC =,S △BOC =,则线段AB 的长度=.25、(2013年武汉)如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数)0(<=x x ky 的图象上,则k 的值等于.26. (2013浙江丽水)如图,点P 是反比例函数)0(<=k xky 图象上的点,PA 垂直x 轴于点A (-1,0),点C 的坐标为(1,0),PC 交y 轴于点B ,连结AB ,已知AB=5(1)k 的值是__________;(2)若M (a ,b )是该反比例函数图象上的点,且满足∠MBA<∠ABC ,则a 的取值范围是__________27、(2013达州)已知反比例函数13k y x=的图象与一次函数2y k x m =+的图象交于A ()1,a -、B 1,33⎛⎫- ⎪⎝⎭两点,连结AO 。
(1)求反比例函数和一次函数的表达式;(2)设点C 在y 轴上,且与点A 、O 构成等腰三角形,请直接写出点C 的坐标。
28、(2013四川宜宾)如图,直线y =x ﹣1与反比例函数y =kx的图象交于A 、B 两点,与x 轴交于点C ,已知点A 的坐标为(﹣1,m ). (1)求反比例函数的解析式;(2)若点P (n ,1)是反比例函数图象上一点,过点P 作PE ⊥x 轴于点E ,延长EP 交直线AB 于点F ,求△CEF 的面积.yx第15题图DCBAO29、(2013泰安)如图,四边形ABCD 为正方形.点A 的坐标为(0,2),点B 的坐标为(0,﹣3),反比例函数y=kx的图象经过点C ,一次函数y=ax+b 的图象经过点C ,一次函数y=ax+b 的图象经过点A ,(1)求反比例函数与一次函数的解析式;(2)求点P 是反比例函数图象上的一点,△OAP 的面积恰好等于正方形ABCD 的面积,求P 点的坐标.30、(2013•呼和浩特)如图,平面直角坐标系中,直线与x 轴交于点A ,与双曲线在第一象限内交于点B ,BC 丄x 轴于点C ,OC=2AO .求双曲线的解析式.31、(2013河南省)如图,矩形OABC 的顶点,A C 分别在x 轴和y 轴上,点B 的坐标为(2,3)。
双曲线(0)ky x x=>的图像经过BC 的中点D ,且与AB 交于点E ,连接DE 。
(1)求k 的值及点E 的坐标;(2)若点F 是边上一点,且FBC DEB ,求直线FB 的解析式32、(2013菏泽)(1)已知m是方程x2﹣x﹣2=0的一个实数根,求代数式的值.(2)如图,在平面直角坐标系xOy中,一次函数y=﹣x的图象与反比例函数的图象交于A、B两点.①根据图象求k的值;②点P在y轴上,且满足以点A、B、P为顶点的三角形是直角三角形,试写出点P所有可能的坐标.33、(2013•泰州)如图,在平面直角坐标系中直线y=x﹣2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).(1)求反比例函数的关系式;(2)将直线y=x﹣2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.34、(2013•烟台)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C 分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y=kx的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.35、(2013•十堰)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.36、(2013年广州市)如图11,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数kyx(x>0,k≠0)的图像经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。