沪科版九年级二次函数专项训练试题
- 格式:doc
- 大小:415.50 KB
- 文档页数:2
21.2 二次函数的图象和性质同步测试一、选择题1.函数y=2x(x-3)中,二次项系数是()A. 2B. 2x2C. -6D. -6x【答案】A2.二次函数的顶点坐标是()A. (1,-2)B. (1,2)C. (0,-2)D. (0,2)【答案】D3.已知抛物线y=x2+bx+c的顶点坐标为(1,﹣3),则抛物线对应的函数解析式为()A. y=x2﹣2x+2B. y=x2﹣2x﹣2C. y=﹣x2﹣2x+1D. y=x2﹣2x+1【答案】B4.若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A. 0 5B. 0 1C. ﹣4 5D. ﹣4 1【答案】D5. 如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A. 1B. 2C. 3D. 4【答案】C6.已知A(-1,y1)、B(2,y2)、C(-3,y3)在函数y=-5(x+1)2+3的图像上,则y1、y2、y3的大小关系是()A. y1< y2< y3B. y1< y3 < y2C. y2 < y3 < y1D. y3< y2 < y1【答案】C7.如图,关于抛物线y=(x-1)2-2,下列说法错误的是()A. 顶点坐标为(1,-2)B. 对称轴是直线x=lC. 开口方向向上D. 当x>1时,Y随X的增大而减小【答案】D8.已知二次函数y=ax2+bx+c的图象如图所示,令M=|4a-2b+c|+|a+b+c|-|2a+b|+|2a-b|,则()A. M>0B. M<0C. M=0D. M的符号不能确定【答案】B9.关于抛物线y=x2﹣(a+1)x+a﹣2,下列说法错误的是()A. 开口向上B. 当a=2时,经过坐标原点OC. a>0时,对称轴在y轴左侧D. 不论a为何值,都经过定点(1,﹣2)【答案】C10.在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是()A. y=3(x﹣3)2+3B. y=3(x﹣3)2﹣3C. y=3(x+3)2+3D. y=3(x+3)2﹣3【答案】D11. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0;②b2﹣4ac>0;③3a+c<0;④16a+4b+c>0.其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C12.如图,将抛物线y=-x2平移后经过原点O和点A(6,0),平移后的抛物线的顶点为点B,对称轴与抛物线y=-x2相交于点C,则图中直线BC与两条抛物线围成的阴影部分的面积为( )A. B. 12 C. D. 15【答案】C二、填空题13.y=﹣2x2+8x﹣7的开口方向是________,对称轴是________.【答案】向下;直线x=214.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=________.【答案】315. 二次函数y=x2﹣2x+3图象的顶点坐标为________ .【答案】(1,2)16.若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=________.【答案】(x﹣1)2+217.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是________.【答案】18.已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为________【答案】19.已知点A(-2,m)、B(2,n)都在抛物线上,则m与n的大小关系是m ________n.(填“>”、“<”或“=”)【答案】<20. 如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是________ .【答案】,(答案不唯一).三、解答题21.已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).求二次函数的解析式;【答案】解:∵二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0),∴,解得.∴二次函数的解析式为.22.在平面直角坐标系xOy中,抛物线y=mx2-8mx+16m-1(m>0)与x轴的交点分别为A(x1,0),B (x2,0).(1)求证:抛物线总与x轴有两个不同的交点;(2)若AB=2,求此抛物线的解析式.(3)已知x轴上两点C(2,0),D(5,0),若抛物线y=mx2-8mx+16m-1(m>0)与线段CD有交点,请写出m的取值范围.【答案】(1)证明:△=64m2-4m•(16m-1)=4m,∵m>0,∴△>0,∴抛物线总与x轴有两个不同的交点(2)解:根据题意,x1、x2为方程mx2-8mx+16m-1=0的两根,∴x1+x2=- =8,x1•x2= ,∵|x1-x2|=2,∴(x1+x2)2-4x1•x2=4,∴82-4• =4,∴m=1,∴抛物线的解析式为y=x2-8x+15(3)解:抛物线的对称轴为直线x=- =4,∵抛物线开口向上,∴当x=2,y≥0时,抛物线与线段CD有交点,∴4m-16m+16m-1≥0,∴m≥23.如图,抛物线y=x2+bx+c(b、c为常数)与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,其对称轴与x轴相交于点D,作直线BC.(1)求抛物线的解析式.(2)设点P为抛物线对称轴上的一个动点.①如图①,若点P为抛物线的顶点,求△PBC的面积.②是否存在点P使△PBC的面积为6?若存在,求出点P坐标;若不存在,请说明理由.【答案】(1)解:∵抛物线y=x2+bx+c(b、c为常数)与x轴相交于点A(﹣1,0)、B(3,0),∴,解得,∴抛物线解析式为y=x2﹣2x﹣3(2)解:①∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴P(1,4),且C(0,﹣3),设直线BC解析式为y=kx+m,则有,解得,∴直线BC解析式为y=x﹣3,设对称轴交BC于点E,如图1,则E(1,﹣2),∴PE=﹣2﹣(﹣4)=2,∴S△PBC= PE•OB= ×3×2=3;②设P(1,t),由①可知E(1,﹣2),∴PE=|t+2|,∴S△PBC= OB•PE= |t+2|,∴|t+2|=6,解得t=2或t=﹣6,∴P点坐标为(1,2)或(1,﹣6),即存在满足条件的点P,其坐标为(1,2)或(1,﹣6)24.如图,抛物线y= x2﹣2x﹣6 与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D 为顶点,点E在抛物线上,且横坐标为4 ,AE与y轴交F.(1)求抛物线的顶点D和F的坐标;(2)点M,N是抛物线对称轴上两点,且M(2 ,a),N(2 ,a+ ),是否存在a使F,C,M,N四点所围成的四边形周长最小,若存在,求出这个周长最小值,并求出a的值;(3)连接BC交对称轴于点P,点Q是线段BD上的一个动点,自点D以2 个单位每秒的速度向终点B运动,连接PQ,将△DPQ沿PQ翻折,点D的对应点为D′,设Q点的运动时间为t(0≤t≤ )秒,求使得△D′PQ与△PQB重叠部分的面积为△DPQ面积的时对应的t值.【答案】(1)解:∵y= x2﹣2x﹣6 = (x﹣2 )2﹣8 ,∴顶点D坐标(2 ,﹣8 ),由题意E(4 ,﹣8 ),A(﹣2 ,0),B(6 ,0),设直线AE解析式为y=kx+b,则有,解得,∴直线AE解析式为y=﹣x﹣2 ,∴点F坐标(0,﹣2 )(2)解:如图1中,作点F关于对称轴的对称点F′,连接FF′交对称轴于G,在CF上取一点C′,使得CC′= ,连接C′F′与对称轴交于点N,此时四边形CMNF周长最小.∵四边形CMNF的周长=CF+NM+CM+FN=5 +CM+NF,CM+NF=C′N+NF=C′N+NF′=C′F′(两点之间线段最短),∴此时四边形CMNF的周长最小.∵C′F=3∴GN= C′F= ,∴﹣(a+ )=2 + ,∴a=﹣,∵C′F′= =5 ,∴四边形CMNF的周长最小值=5 +5 =10(3)解:如图2中,作PF⊥BD于F,QH⊥对称轴于H.由题意可知BD= =4 ,DQ=2 t,∵S△PQG= S△DPQ= S△PD′Q,∴PG= PD′= PD=2 = BF,情形①PG∥FB时,∵PF=PD,∴BG=GD,∴PG= BF=2 ,在Rt△QHD中,sin∠HDQ= ,DQ=2 t,∴HQ=2 t,HD=4 t,∵∠QPD′=∠QPD=45°,∴PH=HQ=2 t,∴PH+HD=PD,∴6 t=4 ,∴t= .情形②如图3中,PG′=PG=2 ,作PM⊥BD于M,QK⊥PD于K,QJ⊥PD′于J.由sin∠PDG=sin∠GPM= = ,∴MG′=MG= ,∴G′D=BD﹣GG′= ,∵= = ,∵∠QPD=∠QPG′,QK⊥PD,QJ⊥PG′,∴QK=QJ,∴= =2,∴QD= × = ,∴t= = ,综上所述t= 或秒时,△D′PQ与△PQB重叠部分的面积为△DPQ面积的。
小专题(一)二次函数图象与性质综合二次函数的图象与性质是安徽中考必考内容之一,主要考查二次函数的图象、抛物线的顶点坐标、增减性(大小比较)、最值、利用二次函数图象确定字母系数的取值范围以及二次函数与方程与不等式等问题,具有一定综合性,试题以选择题、填空题和解答题等不同的形式出现,有一定的难度.类型1与其他函数结合考查函数的图象1.(威海中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示.若正比例函数y=(b+c)x与反比例函数y=在同一坐标系中的大致图象是(C)2.(凉山中考)已知抛物线y=x2+2x-m-2与x轴没有交点,则函数y=的大致图象是(C)3.(广州中考)a≠0,函数y=与y=-ax2+a同一直角坐标系中的大致图象可能是(D)类型2根据二次函数的图象确定字母系数之间的关系4.(广安中考)如图所示,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3.正确的结论有(B)A.1个B.2个C.3个D.4个5.(荆门中考)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是(D)A.a<0,b<0,c>0B.-=1C.a+b+c<0D.关于x的方程ax2+bx+c=-1有两个不相等的实数根6.(烟台中考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1.下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是(C)A.①④B.②④C.①②③D.①②③④7.(贺州中考)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2-4ac=0;④8a+c<0;⑤a∶b∶c=-1∶2∶3;其中正确的结论有①④⑤.类型3二次函数的图象与性质综合8.(舟山中考)下列关于函数y=x2-6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3-n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n-4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是(C)A.①B.②C.③D.④9.(盐城中考)如图,将函数y=(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是(D)A.y=(x-2)2-2B.y=(x-2)2+7C.y=(x-2)2-5D.y=(x-2)2+410.(宜宾中考)如图,抛物线y1=(x+1)2+1与y2=a(x-4)2-3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B,C两点,且D,E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2,其中正确结论的个数是(B)A.1个B.2个C.3个D.4个11.(武汉中考)已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或-3<a<-2.12.(天水中考)如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(-1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b.其中正确的结论是②⑤.(只填写序号)类型4利用二次函数的图象与性质比较大小13.(德州中考)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是(A)A.y=-3x+2B.y=2x+1C.y=2x2+1D.y=-14.(连云港中考)已知抛物线y=ax2(a>0)过A(-2,y1),B(1,y2)两点,则下列表达式一定正确的是(C)A.y1>0>y2B.y2>0>y1C.y1>y2>0D.y2>y1>015.(包头中考)已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是(D)A.y1>y2B.y1≥y2C.y1<y2D.y1≤y216.(咸宁中考)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<-1或x>4.。
九年级数学练习卷(1)班级姓名得分1、二次函数与坐标轴的交点个数是()A.0B.1C.2D.32、二次函数的图象可能是()3、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S=gt2(g=9.8),则 s 与 t 的函数图像大致是()A B C D4、.已知抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c-3=0的根的情况是()A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根5.函数y=ax2+bx+c的图象如图所示, 那么关于x 的方程ax2+bx+c-3=0的根的情况是()A.有两个不相等的实数根B.有两个异号实数根C.有两个相等实数根D.无实数根6.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x= t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()221y ax x a=++-12xyO xyO xyO xyOA B C DstOstOstOstO3xOy7、抛物线 y =x 2-4x +c 的顶点在 x 轴,则 c 的值是__________ 8、已知抛物线与轴的一个交点为,则代数m 2-m+2013的值为__________9、二次函数y =x 2+bx +c 的图象经过A (-1,0)、B (3,0)两点,其顶点坐标是__________。
10、二次函数y =ax 2的图象如图所示,则不等式ax >a 的解集是__________。
11、若二次函数y =x 2-2x -8的图象交x 轴于A 、B 两点(A 点在B 点的左边),交y 轴于点C ,(1)写出A 、B 、C 三点的坐标;(2)试求△ABC 的面积。
12、在直角坐标平面内,二次函数图象的顶点为,且过点.(1)求该二次函数的解析式;(2)将该二次函数图象沿x 轴向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.21y x x =--x (0)m ,(14)A -,(30)B ,x13、如图,抛物线y =-x 2+5x +n 经过点A (1,0),与y 轴的交点为B .(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△P AB 是以AB 为腰的等腰三角形,试求点P 的坐标.。
沪科版九上数学二次函数和反比例函数专项训练1.二次函数2(1)2y x=-+的最小值是()A.2-B.2C.1-D.12.如图,抛物线)0(2>++=acbxaxy的对称轴是直线1=x,且经过点P(3,0),则cba+-的值为A. 0B. -1C. 1D. 23.二次函数22(1)3y x=-+的图象的顶点坐标是()A.(13),B.(13)-,C.(13)-,D.(13)--,4.函数2y ax b y ax bx c=+=++和在同一直角坐标系内的图象大致是()5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大A. 7B. 6C. 5D. 46.下列命题:①若0a b c++=,则240b ac-≥;②若b a c>+,则一元二次方程20ax bx c++=有两个不相等的实数根;③若23b a c=+,则一元二次方程20ax bx c++=有两个不相等的实数根;④若240b ac->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是().A.只有①②③B.只有①③④C.只有①④D.只有②③④.7.如图所示是二次函数2122y x=-+的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为与其最.接近的值是()A.4 B.163C.2πD.88.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 29.如图,正方形ABOC的边长为2,反比例函数kyx=过点A,则k的值是()Oxyy–1 33O xP1A .2B .2-C .4D .4-10.一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0.其中正确的结论是( ) A .①② B .①③ C .②③ D .①②③11.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是 m . 12.初三数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时, x … 2-1- 0 1 2 … y…162- 4-122- 2-122- …根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y =13. 已知函数22y x x c =-++的部分图象如图所示,则c=______,当x______时,y 随x 的增大而减小. 14.如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++=.15.如图,在平面直角坐标系中,函数ky x =(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标为 .16.已知一次函数y =ax +b 的图像与反比例函数4y x=的图像交于A (2,2),B (-1,m ),求一次函数的解析式.yOxC A (1,2) B (m ,n )(第10ox1317.已知二次函数y=x 2-2x-1。
二次函数综合能力测试(说明:本试题共100分,90分钟完成)一、填空题:(每空2分,共24分)1.当m 时,函数m x m x m m y +-+--=)2()32(22是二次函数;2.正方形边长是3,若边长增加x ,则面积增加y ,则y 与x 之间的函数关系式为 3.函数)0(2≠+=a c ax y 的对称轴是 ;顶点是 ;4.要函数2mx y -=开口向上,则 m ;5.抛物线y=-x 2上有两点(x 1,y 1), (x 2,y 2)若x 1<x 2<0,则y 1______y 2 (比较大小) . 6.抛物线2)2(31-=x y 的图象可由抛物线231x y =向 平移 个单位得到。
7.抛物线1)1(22-++-=a ax x a y 经过原点,则a = ;8.抛物线2ax y =与直线x y -=交于(1,m ),则抛物线的解析式为_________ 9.如图:在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为ycm 2,金色纸边的宽为xcm ,则y与x的关系式是___________________. 10.如图,在平面直角坐标系中,二次函数2(0)y ax c a =+≠的图象过正方形ABOC 的三个顶点A B C ,,,则ac 的值是 .二.选择题:(每题3分,共36分)11.对于)0(2≠=a ax y 的图象下列叙述正确的是 ( )A a 的值越大,开口越大B a 的值越小,开口越小C a 的绝对值越小,开口越大D a 的绝对值越小,开口越小CAOBy x第10题图12.抛物线22n mx x y --=)0(≠mn 的图象与x 轴交点为 ( ) A . 二个交点 B . 一个交点 C . 无交点 D . 不能确定13. 根据如图的程序计算出函数值,若输入的x 的值为32,则输出的结果为( ). A 72 B 94 C 12 D 9214.57x x 41y 2--=与y 轴的交点坐标为( ). A -5 B (0,-5) C (-5,0) D (0,-20) 15. 若函数xa y =的图象经过点(1,-2),那么抛物线3)1(2++-+=a x a ax y 的性 质说得全对的是( )A. 开口向下,对称轴在y 轴右侧,图象与y 轴正半轴相交B. 开口向下,对称轴在y 轴左侧,图象与y 轴正半轴相交C. 开口向上,对称轴在y 轴左侧,图象与y 轴负半轴相交D. 开口向下,对称轴在y 轴右侧,图象与y 轴负半轴相交16.已知二次函数y =-2 x 2+9x+34,当自变量x 取两个不同的值x 1、x 2时,函数值相等,则当自变量x 取x 1+x 2 时的函数值与 ( ) A .x =1 时的函数值相等 B . x =0时的函数值相等 C .x =41时的函数值相等 D . x =-49时的函数值相等 17.已知二次函数2y ax bx c =++且0a <,0a b c -+>,则一定有( ) (A )240b ac ->. (B )240b ac -=. (C )240b ac -<. (D )240b ac -≤. 18.下列函数关系中,是二次函数的是( )A 弹簧的长度y 与所挂物体质量x 之间的关系B 当距离一定时,火车行驶的时间t 与速度v 之间的关系C 等边三角形的周长c 与边长a 之间的关系D 圆心角为120°的扇形面积s 与半径r 之间的关系(D)19.竖直上抛物体的高度h 和时间t 符合关系式h =v 0t -21gt 2,其中重力加速g 以10米/秒2计算.爆竹点燃后以初速度v 0=20米/秒上升,问经过多少时间爆竹离地15米( ) A.1秒 B.2秒 C.3秒 D. 1或3秒.20.已知如下表, a 、b 、c 满足表格中的条件,那么抛物线y =ax 2+bx +c 的解析式为( ) A y =x 2-3x +4 B y =x 2-4x +4 C y =x 2-3x +5 D y =x 2-4x +521.已知抛物线y =x 2-(m-2)x +9的顶点在坐标轴上,则m 的值为( ) A m=-4 B m=2 C m=-8 D m=2, m=-4或m=8 22.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE=BF=CG=DH, 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )三.解答题:23.已知抛物线y=x2-4x+c的顶点P在直线y=-4x-1上,(1)求c的值(2))求抛物线与x轴两交点M、N的坐标并求△PMN的面积。
初中数学沪科版九年级上册第二十一章21.4二次函数的应用练习题一、选择题1.如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A. 25min~50min,王阿姨步行的路程为800mB. 线段CD的函数解析式为s=32t+400(25≤t≤50)C. 5min~20min,王阿姨步行速度由慢到快D. 曲线段AB的函数解析式为s=−3(t−20)2+1200(5≤t≤20)2.二次函数y=x2−8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于1的点P共有()2A. 1个B. 2个C. 3个D. 4个3.某畅销书的售价为每本30元,每星期可卖出200本,书城准备开展“读数节活动”,决定降价促销,经调研,如果调整书籍的售价,每降价2元,每星期可多卖出40本,设每件商品降价x元后,每星期售出此畅销书的总销售额为y元,则y与x之间的函数关系式为()A. y=(30−x)(200+40x)B. y=(30−x)(200+20x)C. y=(30−x)(200−40x)D. y=(30−x)(200−20x)4.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为()A. y=(x−40)(500−10x)B. y=(x−40)(10x−500)C. y=(x−40)[500−10(x−50)]D. y=(x−40)[500−10(50−x)]5.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为()A. y=2a(x−1)B. y=2a(1−x)C. y=a(1−x2)D. y=a(1−x)26.为解决药价虚高给老百姓带来的求医难问题,国家决定对药品价格分两次降价,若设平均每次降价的百分率为x,该药品的原价是18元/盒,降价后的价格为y元/盒,则y与x之间的函数关系式是()A. y=36(1−x)B. y=36(1+x)C. y=18(1−x)2D. y=18(1+x2)7.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是()A. y=x2B. y=4−x2C. y=x2−4D. y=4−2x8.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()A. y=−x2+6x(3<x<6)B. y=−x2+6x(0<x<6)C. y=−x2+12x(6<x<12)D. y=−x2+12x(0<x<12)9.长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A. y=x2B. y=(12−x)2C. y=(12−x)xD. y=2(12−x)10.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(x2+6x(0≤x≤4),米)关于水珠和喷头的水平距离x(米)的函数解析式是y=−32那么水珠的高度达到最大时,水珠与喷头的水平距离是()A. 1米B. 2米C. 5米D. 6米二、填空题11.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=________.12.据权威部门发布的消息,2021年第一季度安徽省城镇居民人均可支配收入约为0.75万元,若第三季度安徽省城镇居民人均可支配收人为y万元,平均每个季度城镇居民人均可支配收入增长的百分率为x,则y与x之间的函数表达式是____.13.如图,用一段长为40m的篱笆围成一个一边靠墙的矩形菜园ABCD,墙长为18m,设AD的长为x m,菜园ABCD的面积为y m2,则y关于自变量x的函数关系式是___________________________.14.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件,商品进价为每件40元,若设涨价x(x>0)元,总利润为y元,则y与x的函数关系式为______.15.某工厂今年一月份生产防疫护目镜的产量是20万件,计划之后两个月增加产量,如果月平均增长率为x,那么第一季度防疫护目镜的产量万件与x之间的关系应表示为______.三、解答题16.已知抛物线y=−x2+bx+c的对称轴为直线x=1,其图象与x轴相交于A,B两点,与y轴相交于点C(0,3).(1)求b,c的值;(2)直线1与x轴相交于点P.①如图1,若l//y轴,且与线段AC及抛物线分别相交于点E,F,点C关于直线x=1的对称点为点D,求四边形CEDF面积的最大值;②如图2,若直线1与线段BC相交于点Q,当△PCQ∽△CAP时,求直线1的表达式.17.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx−5与x轴交于A(−1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)如图2,CE//x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.18.在平面直角坐标系中,函数y=x2−2ax−1(a为常数)的图象与y轴交于点A.(1)求点A的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y随x的增大而增大时x的取值范围.(3)当x≤0时,若函数y=x2−2ax−1(a为常数)的图象的最低点到直线y=2a的距离为2,求a的值.(4)设a<0,Rt△EFG三个顶点的坐标分别为E(−1,−1)、F(−1,a−1)、G(0,a−1).当函数y=x2−2ax−1(a为常数)的图象与△EFG的直角边有交点时,交点记为点P.过点P作y轴的垂线,与此函数图象的另一个交点为P′(P′与P不重合),过点A 作y轴的垂线,与此函数图象的另一个交点为A′.若AA′=2PP′,直接写出a的值.答案和解析1.【答案】C【解析】【分析】本题考查了二次函数的应用,一次函数的应用,正确的识别图象、数形结合是解题的关键.根据函数图象中的信息,利用数形结合求相关线段的解析式解答即可.【解答】解:A.25min ~50min ,王阿姨步行的路程为2000−1200=800m ,故A 正确;B .设线段CD 的函数解析式为s =kt +b ,把(25,1200),(50,2000)代入得,{1200=25k +b 2000=50k +b, 解得:{k =32b =400, ∴线段CD 的函数解析式为s =32t +400(25≤t ≤50),故B 正确;C .在A 点的速度为5255=105m/min ,在B 点的速度为1200−52520−5=67515=45m/min ,速度从快变慢,故C 错误;D .当t =5,20时,由图象可得s =525,1200m ,将t =5,20分别代入s =−3(t −20)2+1200(5≤t ≤20)得s =525,s =1200,故D 正确.故选C .2.【答案】D【解析】【分析】本题结合图象的性质考查二次函数的综合应用,难度中等.要注意函数求出的各个解是否符合实际.由题可求出MN 的长,即△MNP 的底边已知,要求面积为12,那么根据面积即可求出高,只要把相应的y 值代入即可解答.【解答】解:y =x 2−8x +15的图象与x 轴交点(3,0)和(5,0),|MN|=2,设p 点(x,y),y =x 2−8x +15,面积=12=12|MN|⋅|y|,可得y 1=12,或者y 2=−12,当y =12时,x =8±√62; 当y =−12时,x =8±√22, 所以共有四个点.故选:D .3.【答案】B【解析】【分析】本题考查由实际问题列二次函数关系式,解答本题的关键是明确题意,列出相应的函数关系式.根据降价x 元,则售价为(30−x)元,销售量为(200+20x)本,由题意可得等量关系:总销售额为y =销量×售价,根据等量关系列出函数解析式即可.【解答】解:设每本降价x 元,则售价为(30−x)元,销售量为(200+20x)本,根据题意得,y =(30−x)(200+20x),故选B .4.【答案】C【解析】【分析】此题主要考查了根据实际问题抽象出二次函数关系式,正确表示出销量是解题关键.直接利用每千克利润×销量=总利润,进而得出关系式.【解答】解:设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为:y =(x −40)[500−10(x −50)].故选:C .5.【答案】D【解析】解:由题意得第二次降价后的价格是a(1−x)2.则函数解析式是y=a(1−x)2.故选D.原价为a,第一次降价后的价格是a×(1−x),第二次降价是在第一次降价后的价格的基础上降价的,为a×(1−x)×(1−x)=a(1−x)2.本题需注意第二次降价是在第一次降价后的价格的基础上降价的.6.【答案】C【解析】【分析】此题主要考查了根据实际问题抽象出二次函数关系式,本题需注意第二次降价是在第一次降价后的价格的基础上降价的.原价为18,第一次降价后的价格是18(1−x),第二次降价是在第一次降价后的价格的基础上降价的为:18(1−x)×(1−x)=18(1−x)2,则函数关系式即可求得.【解答】解:原价为18,第一次降价后的价格是18(1−x);第二次降价是在第一次降价后的价格的基础上降价的为:18(1−x)×(1−x)=18(1−x)2.则函数解析式是:y=18(1−x)2.故选C.7.【答案】B【解析】解:设剩下部分的面积为y,则:y=−x2+4(0<x<2),故选:B.根据剩下部分的面积=大正方形的面积−小正方形的面积得出y与x的函数关系式即可.此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积−小正方形的面积得出是解题关键.8.【答案】B【解析】【分析】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般.已知一边长为xcm,则另一边长为(6−x)cm,根据矩形的面积公式即可解答.【解答】解:已知一边长为xcm,则另一边长为(6−x).则y=x(6−x)化简可得y=−x2+6x,(0<x<6),故选:B.9.【答案】C【解析】【分析】本题考查列二次函数关系式,得到长方形的另一边长是解决本题的关键点.先得到长方形的另一边长,那么面积=一边长×另一边长.【解答】解:∵长方形的周长为24cm,其中一边为x(其中x>0),∴长方形的另一边长为12−x,∴y=(12−x)⋅x.故选C.10.【答案】B【解析】【分析】本题考查了二次函数的应用,解决本题的关键是掌握二次函数的顶点式.根据二次函数的顶点式即可求解.【解答】解:方法一:根据题意,得y=−32x2+6x(0≤x≤4),=−32(x−2)2+6所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.方法二:因为对称轴x=−62×(−32)=2,所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.故选:B.11.【答案】a(1+x)2【解析】【分析】本题考查根据实际问题列二次函数关系式,关键是由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.【解答】解:∵一月份新产品的研发资金为a元,二月份起,每月新产品的研发资金与上月相比增长率都是x,∴二月份新产品的研发资金为a(1+x)元,∴三月份新产品的研发资金为a(1+x)(1+x)=a(1+x)2元,即y=a(1+x)2.12.【答案】y=0.75(1+x)2【解析】【分析】此题主要考查了根据实际问题列二次函数关系式,属于中考常考题型.第一季度安徽省城镇居民人均可支配收入约为0.75万元,第二季度安徽省城镇居民人均可支配收入是0.75(1+x)元,第三季度安徽省城镇居民人均可支配收人为0.75(1+x)2元,则函数解析式即可求得.【解答】解:平均每个季度城镇居民人均可支配收入增长的百分率为x,根据题意可得:y与x之间的函数关系为:y=0.75(1+x)2.故答案为y=0.75(1+x)2.13.【答案】y=−2x2+40x(11≤x<20)【解析】【分析】本题考查了根据实际问题列二次函数关系式、矩形的面积公式的运用,利用篱笆的总长用含x的代数式表示出平行于墙的边长是解题的关键.先用含x的代数式表示出平行于墙的边长,再由矩形的面积公式就可以得出结论;【解答】解:根据题意,AD边的长为x米,则AB边的长为(40−2x)米,∴y=x(40−2x),即y与x之间的函数关系式为y=−2x2+40x;0<40−2x≤18,11≤x<20,故答案为y=−2x2+40x(11≤x<20).14.【答案】y=10x2−500x+6000【解析】解:设涨价x(x>0)元,总利润为y元,则y与x的函数关系式为:y=(60−40−x)(300−10x)=10x2−500x+6000.故答案为:y=10x2−500x+6000.直接利用销量×每件利润=总利润,进而得出函数关系式.此题主要考查了根据实际问题列二次函数关系式,正确表示出销量和每件利润是解题关键.15.【答案】y=20+20(x+1)+20(x+1)2【解析】解:y与x之间的关系应表示为:y=20+20(x+1)+20(x+1)2.故答案为:y=20+20(x+1)+20(x+1)2.根据平均增长问题,可得答案.本题考查了根据实际问题列二次函数关系式,利用增长问题获得函数解析式是解题关键. 16.【答案】解:(1)由题意得:{b2=1c =3, ∴b =2,c =3,(2)①如图1,∵点C 关于直线x =1的对称点为点D ,∴CD//OA ,∴3=−x 2+2x +3,解得:x 1=0,x 2=2,∴D(2,3),∵抛物线的解析式为y =−x 2+2x +3,∴令y =0,解得x 1=−1,x 2=3,∴B(−1,0),A(3,0), 设直线AC 的解析式为y =kx +b ,∴{3k +b =0b =3,解得:{k =−1b =3, ∴直线AC 的解析式为y =−x +3,设F(a,−a 2+2a +3),E(a,−a +3),∴EF =−a 2+2a +3+a −3=−a 2+3a ,四边形CEDF 的面积=S △EFC +S △EFD =12EF ⋅CD =12×(−a 2+3a)×2=−a 2+3a =−(a −32)2+94, ∴当a =32时,四边形CEDF 的面积有最大值,最大值为94.②当△PCQ∽△CAP 时,∴∠PCA =∠CPQ ,∠PAC =∠PCQ ,∴PQ//AC ,∵C(0,3),A(3,0),∴OA =OC ,∴∠OCA=∠OAC=∠PCQ=45°,∴∠BCO=∠PCA,如图2,过点P作PM⊥AC交AC于点M,∴tan∠PCA=tan∠BCO=OBOC =13,设PM=b,则CM=3b,AM=b,∵AC=√OC2+OA2=3√2,∴b+3b=3√2,∴b=34√2,∴PA=34√2×√2=32,∴OP=OA−PA=3−32=32,∴P(32,0),设直线l的解析式为y=−x+n,∴−32+n=0,∴n=32.∴直线l的解析式为y=−x+32.【解析】(1)根据抛物线的对称轴及抛物线与y轴的交点坐标可求出b、c的值;(2)由题意先求出D点坐标为(2,3),求出直线AC的解析式,设F(a,−a2+2a+3),E(a,−a+3),则EF=−a2+3a,四边形CEDF的面积可表示为12EF⋅CD,利用二次函数的性质可求出面积的最大值;(3)当△PCQ∽△CAP时,可得∠PCA=∠CPQ,∠PAC=∠PCQ=∠OCA=45°,则PQ//AC,∠BCO=∠PCA,过点P作PM⊥AC交AC于点M,可求出PM、PA、OP的长,用待定系数法可求出函数解析式.本题考查了二次函数的综合题:熟练掌握二次函数的性质和轴对称的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,会利用相似三角形的性质解题;要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.17.【答案】解:(1)∵点A(−1,0),B(5,0)在抛物线y =ax 2+bx −5上,∴{a −b −5=025a +5b −5=0,解得{a =1b =−4,∴抛物线的表达式为y =x 2−4x −5,(2)设H(t,t 2−4t −5),∵CE//x 轴,∴点E 的纵坐标为−5,∵E 在抛物线上,∴x 2−4x −5=−5,∴x =0(舍)或x =4,∴E(4,−5),∴CE =4,∵B(5,0),C(0,−5),∴直线BC 的解析式为y =x −5,∴F(t,t −5),∴HF =t −5−(t 2−4t −5)=−(t −52)2+254,∵CE//x 轴,HF//y 轴,∴CE ⊥HF ,∴S 四边形CHEF =12CE ⋅HF =−2(t −52)2+252,∴H(52,−354);(3)如图2,∵K 为抛物线的顶点,∴K(2,−9),∴K 关于y 轴的对称点K′(−2,−9),∵M(4,m)在抛物线上,∴M(4,−5),∴点M关于x轴的对称点M′(4,5),∴直线K′M′的解析式为y=73x−133,∴P(137,0),Q(0,−133).【解析】(1)根据待定系数法直接确定出抛物线解析式;(2)先求出直线BC的解析式,进而求出四边形CHEF的面积的函数关系式,即可求出;(3)利用对称性找出点P,Q的位置,进而求出P,Q的坐标.此题是二次函数综合题,主要考查了待定系数法,四边形的面积的计算方法,对称性,解的关键是利用对称性找出点P,Q的位置,是一道中等难度的题目.18.【答案】解:(1)当x=0时,y=x2−2ax−1=−1,∴点A的坐标为:(0,−1);(2)将点(1,2)代入y=x2−2ax−1,得:2=1−2a−1,解得:a=−1,∴函数的表达式为:y=x2+2x−1,∵y=x2+2x−1=(x+1)2−2,∴抛物线的开口向上,对称轴为x=−1,如图1所示:∴当x>−1时,y随x的增大而增大;(3)抛物线y=x2−2ax−1=(x−a)2−a2−1的对称轴为:x=a,顶点坐标为:(a,−a2−1),当a>0时,对称轴在y轴右侧,如图2所示:∵x≤0,∴最低点就是A(0,−1),∵图象的最低点到直线y=2a的距离为2,∴2a−(−1)=2,解得:a=12;当a<0,对称轴在y轴左侧,顶点(a,−a2−1)就是最低点,如图3所示:∴2a −(−a 2−1)=2,整理得:(a +1)2=2,解得:a 1=−1−√2,a 2=−1+√2(不合题意舍去);综上所述,a 的值为12或−1−√2;(4)∵a <0,Rt △EFG 三个顶点的坐标分别为E(−1,−1)、F(−1,a −1)、G(0,a −1), ∴直角边为EF 与FG ,∵抛物线y =x 2−2ax −1=(x −a)2−a 2−1的对称轴为:x =a ,A(0,−1), ∴AA′=−2a ,当点P 在EF 边上时,如图4所示:则x p =−1,∵EA =OA =1,∴点P 在对称轴x =a 的左侧,∴PP′=2(a +1),∵AA′=2PP′,∴−2a =2×2(a +1),解得:a =−23;当点P 在FG 边上时,如图5所示:则y p =a −1,∴x 2−2ax −1=a −1,解得:x 1=a +√a 2+a ,x 2=a −√a 2+a ,∴PP′=a +√a 2+a −(a −√a 2+a)=2√a 2+a ,∵AA′=2PP′,∴−2a =4√a 2+a ,解得:a 1=−43,a 2=0(不合题意舍去);综上所述,a 的值为−23或−43.【解析】(1)当x =0时,代入y =x 2−2ax −1,即可得出结果;(2)将点(1,2)代入y =x 2−2ax −1,得a =−1,则函数的表达式为y =x 2+2x −1,由y =x 2+2x −1=(x +1)2−2,得出抛物线的开口向上,对称轴为x =−1,则当x >−1时,y 随x 的增大而增大;(3)抛物线y =x 2−2ax −1=(x −a)2−a 2−1的对称轴为x =a ,顶点坐标为(a,−a 2−1),当a >0时,对称轴在y 轴右侧,最低点就是A(0,−1),则2a −(−1)=2,即可得出结果;当a <0,对称轴在y 轴左侧,顶点(a,−a 2−1)就是最低点,则2a −(−a 2−1)=2,即可得出结果;(4)易证直角边为EF 与FG ,由抛物线的对称轴为x =a ,A(0,−1),则AA′=−2a ,当点P 在EF 边上时,PP′=2(a +1),则−2a =2×2(a +1),即可得出结果;当点P 在FG 边上时,求出PP′=2√a 2+a ,则−2a =4√a 2+a ,即可得出结果.本题是二次函数综合题,主要考查了二次函数图象与性质、待定系数法求解析式、直角三角形的性质、解一元二次方程、分类讨论等知识;熟练掌握二次函数图象与性质是解题的关键.1、最困难的事就是认识自己。
沪科版九年级数学上册《21.2二次函数的图像和性质》同步练习题(带答案)一、选择题(在每小题列出的选项中,选出符合题目的一项)1.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为( )A. −2B. 2C. ±2D. 02.对于二次函数y=−(x−1)2的图象的特征,下列描述正确的是( )A. 开口向上B. 经过原点C. 对称轴是y轴D. 顶点在x轴上3.当1≤x≤3时,二次函数y=x2−2ax+3的最小值为−1,则a的值为( )A. 2B. ±2C. 2或52D. 2或1364.已知点A(−2,y1)。
B(−1,y2),C(5,y3)都在二次函数y=−x2+2x+k的图象上,则( )A. y1<y2<y3B. y3<y2<y1C. y3<y1<y2D. y2<y1<y35.若对于任意非零实数a,抛物线y=ax2+ax−2a总不经过点P(m−3,m2−16),则符合条件的点P( )A. 有且只有1个B. 有且只有2个C. 至少有3个D. 有无穷多个6.用配方法将二次函数y=x2−8x−9化为y=a(x−ℎ)2+k的形式为( )A. y=(x−4)2+7B. y=(x+4)2+7C. y=(x−4)2−25D. y=(x+4)2−257.将抛物线y=x2−6x+5绕坐标原点旋转180°后,得到的抛物线的解析式为( )A. y=−x2−6x−5B. y=−x2+6x+5C. y=x2+6x+5D. y=x2+6x−58.二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )A. B.C. D.9.二次函数y=3(x−2)2−5与y轴交点坐标为( )A. (0,2)B. (0,−5)C. (0,7)D. (0,3)10.要得到函数y=−(x−2)2+3的图象,可以将函数y=−(x−3)2的图象( )A. 向右平移1个单位,再向上平移3个单位B. 向右平移1个单位,再向下平移3个单位C. 向左平移1个单位,再向上平移3个单位D. 向左平移1个单位,再向下平移3个单位11.已知抛物线y1:y=−2(x−4)2+2和抛物线y2:y=2x2+8x+18,若无论k取何值,直线y=kx−kp+ q被两条抛物线所截的两条线段都保持相等,则( )A. pq=3B. pq=4C. pq=5D. pq=612.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0②b−a>c③4a+2b+c>0 ④3a>−c⑤a+b>m(am+b)(m≠1的实数).其中正确结论有( )A. ①②③B. ②③⑤C. ②③④D. ③④⑤二、填空题13.将抛物线y=5x2向上平移2个单位,再向右平移3个单位,所得的抛物线的表达式为______.14.已知点A(−2,3),B(0,3)是抛物线y=−x2+bx+c上两点,该抛物线的顶点坐标是.15.函数y=−(x−3)2+1中,当x时,y随x的增大而减小.16.若直线y=ax+b(ab≠0)经过第一、二、三象限,那么抛物线y=ax2+bx顶点在第______象限.17.二次函数y=2x2+bx+3的图象的对称轴是直线x=1,则常数b的值为.18.如图所示为函数y=x2+bx−1的图象,根据图象提供的信息,当−1≤x≤4时,y的取值范围是______ .19.将抛物线y=ax2+b向左平移3个单位长度,再向上平移2个单位长度,得到抛物线的解析式是y=2(x+ 3)2+4,则原抛物线的解析式为______ .20.小聪在画一个二次函数的图象时,列出了下面几组y与x的对应值:x˙˙˙012345˙˙˙y˙˙˙50−3−4−30˙˙˙该二次函数的表达式为.三、解答题(解答应写出文字说明,证明过程或演算步骤)x2−x−321. (1)已知二次函数y=14①求出函数图象顶点坐标、对称轴,并写出图象的开口方向②列表,并在所给网格中建立平面直角坐标系井直接画出此函数的图象(2)抛物线y=ax2+bx+c过(−3,0),(1,0)两点,与y轴的交点为(0,4),求抛物线的解析式.22.把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,−6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.23.二次函数y=ax2+bx+c的部分图象如图所示,其中图象与x轴交于点A(−1,0),与y轴交于点C(0,−5),且经过点D(3,−8).(1)求此二次函数的解析式;(2)将此二次函数的解析式写成y=a(x−ℎ)2+k的形式,并直接写出此二次函数图象的顶点坐标以及它与x 轴的另一个交点B的坐标.答案1.【答案】B2.【答案】D3. 【答案】A4.【答案】C5. 【答案】B6. 【答案】C7. 【答案】A8.【答案】D9.【答案】C10.【答案】C11. 【答案】D12.【答案】B13.【答案】y=5(x−3)2+214. 【答案】(−1,4)15. 【答案】>316. 【答案】三17. 【答案】−418. 【答案】−2≤y≤719. 【答案】y=2x2+220.【答案】y=(x−3)2−4(或y=x2−6x+5)21. 【答案】解:(1)y=14x2−x−3=14(x−2)2−4①∴函数图象顶点坐标(2,−4)、对称轴直线x=2,开口向上②x……01214……y……−3−154−4−154−3……(2)y=ax2+bx+c过(−3,0),(1,0)两点,与y轴的交点为(0,4)用交点式,则表达式为:y=a(x−1)(x+3),把(0,4)代入得:4=−a·3,解得a=−43函数解析式为:y=−43(x−1)(x+3)=−43x2−83x+4.22.【答案】解:(1)y=(x−3)2−3;(2)动点P(a,−6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x−3)2−3∴函数的最小值为−3∵−6<−3∵动点P(a,−6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x−3)2−3∴抛物线的开口向上,对称轴为x=3∴当x<3时,y随x的增大而减小∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3∴y1>y2.23. 【答案】解:(1)根据题意得,{a−b+c=0①c=−5②9a+3b+c=−8③②分别代入①、③得a−b=5④3a+b=−1⑤④+⑤得,4a=4解得a=1把a=1代入④得1−b=5解得b=−4∴方程组的解是{a=1 b=−4 c=−5∴此二次函数的解析式为y=x2−4x−5;(2)y=x2−4x−5=x2−4x+4−4−5=(x−2)2−9二次函数的解析式为y=(x−2)2−9顶点坐标为(2,−9)对称轴为x=2设另一点坐标为B(a,0)则−1+a=2×2解得a=5∴点B的坐标是B(5,0).。
21.1 二次函數1.函數y=mx2+2x+3-m表示二次函數,則m的取值範圍是()A.m>0 B.m<0 C.m≠0 D.m為全體實數x2(x>0),2.某車的刹車距離y(m)與開始刹車時的速度x(m/s)之間滿足二次函數y=120若該車某次的刹車距離為5 m,則開始刹車時的速度為()A.40 m/s B.20 m/s C.10 m/s D.5 m/s3.在邊長為6 cm的正方形中間剪去一個邊長為x cm(0<x<6)的小正方形,剩下的面積為y cm2,則y與x之間的函數關係式是________.4.函數y=ax2+bx+c,當________時,表示一次函數.5.y+2與x2成正比例,當x=-3時,y=1,則y與x之間的函數關係式為________.6.正方形的邊長為1 cm,假設邊長增加x cm時,正方形的面積增加y cm2.(1)請寫出y與x之間的函數關係式;(2)當正方形邊長分別增加1 cm cm,2 cm時,正方形的面積增加多少?7.某化工材料經銷公司購進了一種化工原料,購進價格為每千克30元,物價部門規定其銷售單價不得高於每千克70元,也不得低於30元,市場調查發現:單價定為70元時,日均銷售60千克;單價每降低1元時,日均多售出2千克,在銷售過程中,每天還要支出其他費用500元(天數不足一天時,按整天計算).設單價為x元時,日均獲利為y元.求y 關於x的函數關係式,並注明x的取值範圍.8.某批發市場批發甲、乙兩種水果,根據以往經驗和市場行情,預計夏季某一段時間內,甲種水果的銷售利潤y甲(萬元)與進貨量x(噸)近似滿足函數關係y甲=0.3x;乙種水果的銷售利潤y乙(萬元)與進貨量x(噸)近似滿足函數關係y乙=ax2+bx(其中a≠0,a,b為常數),且進貨量x為1噸時,銷售利潤y乙為1.4萬元;進貨量x為2噸時,銷售利潤y乙為2.6萬元.(1)求y乙(萬元)與x(噸)之間的函數關係式;(2)如果市場準備進甲、乙兩種水果共10噸,設乙種水果的進貨量為t噸,請你寫出這兩種水果所獲得的銷售利潤之和W(萬元)與t(噸)之間的函數關係式.9.(創新應用)觀察下圖中小黑點的擺放規律,並按照這樣的規律繼續擺放.記第n個圖中小黑點的個數為y.解答下列問題:(1)填表:(2)當n=8時,y=(3)根據上表中的數據,試求y與n之間的函數關係式.參考答案1. 答案:C2. 解析:由題意,得5=120x 2,∴x =10.故選C . 答案:C3. 解析:剩餘面積等於原正方形的面積減去剪掉的小正方形的面積. 答案:y =36-x 2(0<x <6)4. 答案:a =0且b ≠05. 解析:由題意,設y +2=k x 2,3=9k ,k =13,∴y =13x 2-2.答案:y =13x 2-26. 解:(1)y =(x +1)2-1,∴y =x 2+2x .(2)當x =1時,y =3; 當xy =(3+);當x =2時,y =8.即正方形的面積分別增加3 cm 2,(3+2,8 cm 2.7. 解:由銷售單價為x 元,則每千克降低(70-x )元,日均銷售量為[60+2(70-x )]千克,每千克獲利為(x -30)元,所以y =(x -30)·[60+2(70-x )]-500=-2x 2+260x -6 500(30≤x ≤70).8. 解:(1)由題意,得a b 1.44a 2b 2.6⎧⎨⎩+=,+=,解得a 0.1b 1.5.⎧⎨⎩=-,=∴y 乙=-0.1x 2+1.5x .(2)W =y 甲+y 乙=0.3(10-t)+(-0.1t 2+1.5t),整理,得W =-0.1t 2+1.2t +3. 9. 解:(1)21 (2)57(3)把最中間的點先去掉,在第n 個圖中,在每條“線段”上有n -1個點.所以總點數為n (n -1)+1.所以y 與n 之間的函數關係式為y =n 2-n +1.。
九年级上册第21章二次函数和反比例函数21.2二次函数的图象和性质21.2.1二次函数y=ax2的图象和性质基础知识和同步测试题基础知识1.函数y=ax2(a≠0)的图象是一条关于____对称的抛物线,它具有如下性质:当a>0时,抛物线的开口向____,顶点是抛物线的最____点,当x>0时,y随x的增大而________;当x <0时,y随x的增大而____;当x=____时,y最小值=____.2.对于函数y=ax2(a≠0)当a<0时,抛物线的开口向____,顶点是抛物线的最____点.当x >0时,y随x的增大而________;当x<0时,y随x的增大而__________;当x=____时,y最大值=____.答案1. y轴上低增大减小0 02. 下高减小增大0 0同步测试题二次函数y=ax2与一次函数y=-ax(a>0)在同一坐标系里,大致图象是( )2.抛物线y=-3x2的开口向____,顶点坐标是_________,顶点是抛物线的最____点,当x =____时,函数有最____值,为____.3.若y=(m+3)xm2-9是开口向上的抛物线,则m=____.4.如图,是函数y1=3x2,y2=(1-k)x2,y3=(k-2)x2的图象,则k的取值范围是________.5. 如图,边长为2的正方形ABCD的中心在原点O,AD∥x轴,以O为顶点,且过A,D两点的抛物线与以O为顶点且过B,C两点的抛物线将正方形分割成几部分,则图中的阴影部分的面积是____.6.已知点A (-1,y 1)、点B (-2,y 2)、点C (-2,y 3)都在函数y =-12x 2的图象上,则( ) A .y 1>y 2>y 3 B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 1>y 37.下列说法错误的是( )A .二次函数y =3x 2中,当x >0时,y 随x 的增大而增大B .二次函数y =-6x 2中,当x =0时,y 有最大值0C .二次函数y =ax 2图象中,开口方向与a 无关D .不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点8. 在函数y =-x 2中,当-3<x <1时,则y 的取值范围是___________9.函数y =(m -3)xm 2-3m -2为二次函数.(1)若其图象开口向上,求函数的关系式;(2)若当x >0时,y 随x 的增大而减小,求函数的关系式.10.给出下列函数:①y =3x ;②y =-3x -1;③y =-5x 2(x <0);④y =23x 2(x <0),其中y 随x 的增大而增大的函数有( )A .4个B .3个C .2个D .1个11.函数y =2x 2,y =-3x 2,y =13x 2的图象的共同点是( ) A .都关于y 轴对称,开口向上B .都关于y 轴对称,开口向下C .都关于原点对称,顶点在原点D .都关于y 轴对称,顶点在原点12.如图所示,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 的各边平行或垂直,若小正方形的边长为x ,且0<x ≤10,阴影部分的面积为y ,则能反映y 与x 之间的函数关系的大致图象是( )13.抛物线y =(m +1)x 2上有点A (-5,2),则它的对称点B 的坐标是___________.14.二次函数y =mxm 2一2有最大值,则m =____,当x ____时,y 随x 的增大而减小.15.如图,⊙O 的半径为3,C 1是函数y =12x 2的图象,C 2是函数y =-12x 2的图象,则阴影部分的面积是____.16.如图,请把图中图象的序号填在它的解析式后面.y =2x 2的图象为____.y =12x 2的图象为____. y =-x 2的图象为____.y =-23x 2的图象为____.17.已知抛物线y =ax 2经过点A (-2,-8).(1)求抛物线的解析式;(2)当x 为何值时,y 随x 的增大而减小?(3)当x 为何值时,它有最大(小)值,是多少?18.有一条抛物线形状的隧道,隧道的最大高度为6 m ,跨度为8 m ,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)若要在离地面4.5 m 的隧道壁上,安装两盏照明灯,求两灯之间的距离.19. 如图,直线AB 过x 轴上的一点A (2,0),且与抛物线y =ax 2相交于B ,C 两点,点B 的坐标为(1,1).(1)求直线AB 和抛物线y =ax 2的解析式;(2)若抛物线在第一象限内有一点D ,使得S △AOD =S △BOC ,求点D 的坐标.答案1. B2. 下 (0,0) 高 0 大 03. 114. 1<k<325. 26. A7. C8. -9<y ≤09. 解:∵函数y =(m -3)xm 2-3m -2为二次函数,∴m 2-3m -2=2,解得m =-1或m =4 (1)∵函数图象开口向上,∴m -3>0,∴m =4,此时函数关系式为y =x 2 (2)∵当x >0时,y 随x 的增大而减小,∴m -3<0,∴m =-1,此时函数关系式为y =-4x 210. C11. D12. D13. (5,2)14. -2 >015. 92π16 ④③②②17. 解:(1)y =-2x 2(2)x>0 (3)x =0,y 最大值=018. 解:(1)y =-38x 2 (2)设两灯为点P 、点Q ,则它们的纵坐标为-1.5,令-38x 2=-32,解得x 1=-2,x 2=2,∴两灯间的距离PQ =4 m。
二次函数专项练习
姓名: 得分:
一、选择题(40’)
1.将二次函数2y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ).
A .2(1)2y x =-+
B .2(1)2y x =++
C .2(1)2y x =--
D .2(1)2y x =+- 2.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c
y x
++= 在同一坐标系内的图象大致为( ).
3.抛物线2y x bx c =++图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为
223y x x =--,则b 、c 的值为( ).
A .b =2,c =2
B .b =2,c =0
C .b =-2,c =-1
D .b =-3,c =2
4. 抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )
A .22y x x =--
B .211122y x x =-++
C .211
122y x x =--+ D .22y x x =-++
5.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①240b ac ->;②abc >0; ③8a+c >0;④9a+3b+c <0.其中,正确结论的个数是( ).
A .1
B .2
C .3
D .4
第4题 第5题
6.已知点(1x ,1y ),(2x ,2y )(两点不重合)均在抛物线21y x =-上,则下列说法正确的是( ). A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y >
7.在反比例函数a
y x
=
中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =-的图象大致是图中的( ).
8.已知二次函数2y ax bx c =++(其中0a >,0b >,0c <),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧. 以上说法正确的有( ).
A .0个
B .1个
C .2个
D .3个
9.已知二次函数)2(2
-++=m m x mx y 的图象经过原点,则m 的值为 ( )
A . 0或2
B . 0
C . 2
D .无法确定 10.如图,△OAP、△ABQ 均是等腰直角三角形,点P 、Q 在函数4
(0)y x x
=
> 的图像上,直角顶点A 、B 均在x 轴 上,则点B 的坐标为( )
A .(12+,0)
B .(15+,0)
C .(3,0)
D .(15-,O)
二、填空题(32’)
9.已知抛物线2(0)y ax bx c a =++>的对称轴为直线1x =,且经过点1(1,)y -,2(2,)y ,试比较1y 和2y 的大小:1y ________2y (填“>”,“<”或“=”).
10.抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为___ _____. 11.抛物线22(2)6y x =--的顶点为C ,已知y =-kx+3的图象经过点C ,则这个一次函数图象与两坐
标轴所围成的三角形面积为________.
12.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的
解为___ _____.
第10题 第12题 第13题
13.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是________.
14.烟花厂为扬州“4·18”烟花三月经贸旅游节特别设计制作了一种新型礼炮,这种礼炮的升空高度
h(m)与飞行时间t(s)的关系式是25
2012
h t t =-++,若这种礼炮在点火升空到最高点处引爆,则
从点火升空到引爆需要的时间为________.
15.已知抛物线2y ax bx c =++经过点A(-1,4),B(5,4),C(3,-6),则该抛物线上纵坐标为-6的另一个点的坐标是________.
16.若二次函数26y x x c =-+的图象过A(-1,y 1)、B(2,y 2)、C(32+,y 3)三点,则y 1、y 2、y 3大小关系是 .
三、解答题(48’)
17.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体运动(看成一点)
的路线是抛物线23
315
y x x =-++的一部分,如图所示.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成
功?请说明理由.
18. 如图所示,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上、下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上、下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x 米.
(1)用含x 的式子表示横向甬道的面积;
(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽; (3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比
例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?
19.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元. (1)分别求出y 1、y 2与x 之间的函数关系式;
(2)若市政府投资140万元,最多能购买多少个太阳能路灯?
20. 王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用了30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量)y 的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益量y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
(1)求王亮解题的学习收益量y 与用于解题的时间x 之间的函数关系式,并写出自变量x 的取值范围; (2)求王亮回顾反思的学习收益量y 与用于回顾反思的时间x 之间的函数关系式; (3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大? (注:学习收益总量=解题的学习收益量+回顾反思的学习收益量)。