当前位置:文档之家› (完整版)五年级下册数学扩展专题练习几何.燕尾模型(a级).学生版全国通用(无答案)

(完整版)五年级下册数学扩展专题练习几何.燕尾模型(a级).学生版全国通用(无答案)

(完整版)五年级下册数学扩展专题练习几何.燕尾模型(a级).学生版全国通用(无答案)
(完整版)五年级下册数学扩展专题练习几何.燕尾模型(a级).学生版全国通用(无答案)

共边定理(燕尾定理)

有一条公共边的三角形叫做共边三角形。

共边定理:设直线与交于点,则

S PM PAB

S QM QAB

?=

?

特殊情况:当∥时,易知△与△的高相等,从而△△

知识框架

燕尾模型

【例 1】 如图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .

O F E

D

C

B

A

【巩固】如图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .

O F E

D

C

B

A

【例 2】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE

交于点F .则四边形DFEC 的面积等于 .

F

E

D C

B

A

【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.

例题精讲

B

【例 3】 如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且

:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .

F

E

D C

B

A

A

B

C D

E

F F

E

D

C

B

A

【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占

ABC △ 面积的几分之几?

O

E D

C

B

A

【例 4】 如图所示,在ABC △中,12CP CB =,1

3

CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为

6,则ABX △的面积等于 .

X

Q

P

A

B

C X

Q

P

A

B C

4

4

11

X

Q

P

C

B

A

【巩固】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,

7,则阴影四边形的面积是多少?

【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部

分的面积各是多少?

A

B

C

D

E F

【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形

DFEC 的面积等于222cm ,则三角形ABC 的面积 .

A

B

C

D

E F

【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴

影部分)的面积为多少?

【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .

F

E D

C

B

A

【巩固】在ABC ?中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?

A

B

C

D

E O

【例 6】 如图,三角形的面积是,是的中点,点在上,且,与交于点,则四边形的面积等于 。

A

F

B

E

D

C

【巩固】 如图,ABC ?中,点E 在AB 上,点F 在AC 上,BF 与CE 相交于点P ,如果

4BEP CFP AEPF S S S ??===四边形,则BPC S ?= .

P

F E

C

B

A

【例 7】 如图,三角形田地中有两条小路和,交叉处为,张大伯常走这两条小路,他知道=,且=。则

两块田地和的面积比是。

F E D

C

B

A

【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多

少平方厘米

?

x y

y x A

B

C

D E F

G

E D C

B

A

【例 8】 右图的大三角形被分成个小三角形,其中个的面积已经标在图中,那么,阴影三角形的面积

是 .

【巩固】如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角

形ABE 的面积为,三角形AGE 的面积为,三角形GHI 的面积为.

I H

G

F

E

D

C B

【例 9】 如图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角

形ABC 的面积.

I

H G F

E

D

C

B

A

【巩固】如图,ABC ?中2BD DA =,2CE EB =,2AF FC =,那么ABC ?的面积是阴影三角形面积的

倍.

E

【例 10】 如图在ABC △中,

1

2

DC EA FB DB EC FA ===,求

GHI ABC △的面积△的面积的值.

I

H

G F

E

D

C

B

【巩固】如图在ABC △中,

1

3

DC EA FB DB EC FA ===,求

GHI ABC △的面积△的面积的值. I

H

G F

E

D

C

B

A

【例 11】 三角形的面积为平方厘米,为中点,为中点,为中点,求阴影部分的面积.

F C

B

A

【巩固】如图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF

与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?

N M

G

B

C

D E

F

【巩固】如图,ABC ?中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ?的面积为,那

么四边形CDMF 的面积是.

F

A

B

C

D

E

M

N

【例 12】 如图,等腰直角三角形的斜边在等腰直角三角形的斜边上,连接、、,于是整个图形被分成五块

小三角形.图中已标出其中三块的面积,那么△的面积是.

【巩固】如图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形

GHI 的面积.

I

H G F

E

D

C

B

A

【随练1】 如图,:2:3=BD DC ,:5:3=AE CE ,则:=AF BF

G

F E

D

C

B

A

【随练2】 在?ABC 中,:2:1=BD DC , :1:3=AE EC ,求:=OB OE ?

A B C

D

E O

【作业1】 如图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .

家庭作业

课堂检测

O F E

D

C

B

A

【作业2】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多

少?

35

30

4084

O F

E

D C

B

A

【作业3】 如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14

CF BC =,AF

与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ?与CGF ?的面积之和为 .

E

【作业4】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四

边形AGCD 的面积是平方厘米.

G

F

E D C

B

A

【作业5】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF

的面积是平方厘米.

H

G

E

D

A

学生对本次课的评价

○特别满意 ○满意 ○一般

家长意见及建议

家长签字: 教学反馈

八年级上册数学 【几何模型三角形轴对称】试卷测试与练习(word解析版)

八年级上册数学【几何模型三角形轴对称】试卷测试与练习(word解析版) 一、八年级数学全等三角形解答题压轴题(难) 1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明. (1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程; (2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明). 【答案】(1)过程见解析;(2)MN= NC﹣BM. 【解析】 【分析】 (1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到 MN=BM+NC. (2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论. 【详解】 解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.

∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°, ∴∠DBC=∠DCB=30° ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°, 在△MBD与△ECD中, ∵BD CD MBD ECD BM CE , ∴△MBD≌△ECD(SAS), ∴MD=DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°, 在△DMN与△DEN中, ∵MD DE MDN EDN DN DN , ∴△DMN≌△DEN(SAS), ∴MN=NE=CE+NC=BM+NC. (2)如图②中,结论:MN=NC﹣BM.

八年级上册数学几何部分

八年级上册数学几何部分——三角形全章复习 知识点一:1.三角形的定义:由不在同一条_____上的三条线段___________组成的图形叫做三角形. 2.三角形的分类(1)按边分类: ????????不等边三角形三角形 底边和腰不相等的等腰三角形__________ ______________(2)按角分类: 3.三角形三边间的关系定理:三角形任意两边之和________第三边.任意两边之差_____第三边。 即已知三角形两边的长,可以确定第三边的取值范围:设三角形的两边的长为a 、b ,则第三边的长c 的取值范围是_______________________. 基础知识训练练习1.下列长度的各组线段中,能组成三角形的是( ) A .3cm ,12cm ,8cm B .6cm ,8cm ,15cm C .2.5cm ,3cm ,5cm D .6.3cm ,6.3cm ,12.6cm 【变式1】四条线段的长分别是2cm 、4cm 、6cm 、7cm 以其中三条线段为边可构成__个三角形. 【变式2】已知三角形的两边长分别4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cm B .6cm C .5cm D .4cm 练习2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是___________. 【变式1】如果三角形的两边长分别为2和6,则周长L 的取值范围是( ) A .6

人教版八年级数学上册 【几何模型三角形轴对称】试卷专题练习(解析版)

人教版八年级数学上册【几何模型三角形轴对称】试卷专题练习(解析版) 一、八年级数学轴对称解答题压轴题(难) 1.如图,在ABC △中,已知AD是BC边上的中线,E是AD上一点,且BE AC =,延长BE交AC于点F,求证:AF EF =. 【答案】证明见解析 【解析】 【分析】 延长 AD到点G,使得AD DG =,连接BG,结合D是BC的中点,易证△ADC和 △GDB全等,利用全等三角形性质以及等量代换,得到△AEF中的两个角相等,再根据等角对等边证得AE=EF. 【详解】 如图,延长AD到点G,延长AD到点G,使得AD DG =,连接BG. ∵AD是BC边上的中线, ∴DC DB =. 在ADC和GDB △中, AD DG ADC GDB DC DB = ? ? ∠=∠ ? ?= ? (对顶角相等), ∴ADC≌GDB △(SAS). ∴CAD G ∠=∠,BG AC =. 又BE AC =, ∴BE BG =.

∴BED G ∠=∠. ∵BED AEF ∠=∠ ∴AEF CAD ∠=∠,即AEF FAE ∠=∠ ∴AF EF =. 【点睛】 本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键. 2.(1)如图①,D 是等边△ABC 的边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边,在BC 上方作等边△DCF ,连接AF ,你能发现AF 与BD 之间的数量关系吗?并证明你发现的结论; (2)如图②,当动点D 运动至等边△ABC 边BA 的延长线时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?若成立,请证明; (3)Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与B 不重合),连接DC ,以DC 为边在BC 上方和下方分别作等边△DCF 和等边△DCF ′,连接AF ,BF ′,探究AF ,BF ′与AB 有何数量关系?并证明你的探究的结论; Ⅱ.如图④,当动点D 在等边△ABC 的边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论. 【答案】(1)AF =BD ,理由见解析;(2)AF 与BD 在(1)中的结论成立,理由见解析;(3)Ⅰ. AF +BF ′=AB ,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由见解析. 【解析】 【分析】 (1)由等边三角形的性质得BC =AC ,∠BCA =60°,DC =CF ,∠DCF =60°,从而得∠BCD =∠ACF ,根据SAS 证明△BCD ≌△ACF ,进而即可得到结论; (2)根据SAS 证明△BCD ≌△ACF ,进而即可得到结论; (3)Ⅰ.易证△BCD ≌△ACF (SAS ),△BCF ′≌△ACD (SAS ),进而即可得到结论;Ⅱ.证明△BCF ′≌△ACD ,结合AF =BD ,即可得到结论. 【详解】 (1)结论:AF =BD ,理由如下: 如图1中,∵△ABC 是等边三角形, ∴BC =AC ,∠BCA =60°, 同理知,DC =CF ,∠DCF =60°, ∴∠BCA -∠DCA =∠DCF -∠DCA ,即:∠BCD =∠ACF ,

八年级上学期数学压轴几何题复习

2013八年级上学期数学几何复习 【图形的剪拼】 1.如图,有边长为1、3的两个连接的正方形纸片,用两刀裁剪成三块,然后拼成 一个正方形,如何拼? 2.如图,有一张长为5 ,宽为3的矩形纸片ABCD,要通过适当的剪拼,得到 一个与之面积相等的正方形 (1)正方形的边长为____________.(结果保留根号) (2)现要求只能用两条裁剪线,请你设计出一种裁剪的方法,在图中画出裁 剪线,并简要说明剪拼过程_____________. (天津市中考题)【三角形】 1.在△ABC中,∠ACB=90°,直线MN经过点C且AD⊥MN于D,BE⊥MN于E (1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE (2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE (3)当直线MN绕点C旋转到图③的位置时,试问DE、AD、BE具有怎样的等量关系并证明。 2.如图,在平面直角坐标系中,点A的坐标为(2,0),以OA为边在第四象限做 等边△AOB,点C为x轴正半轴一动点(OC > 2),连接BC,以BC为边在第 四象限内作等边△CBD,直线DA交y轴于点E. (1)试问△OBC与△ABD全等吗?并证明你的结论; (2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点 E的坐标;若有变化,请说明理由.

3.如图,△ABC中AB=AC,∠ABC=36°,D、C为BC上的点,且 ∠BAD=∠DAE=∠EAC,则图中的等腰三角形有()个。 A. 2 B. 4 C. 6 D. 8 4.如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点. (1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD; (2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式; (3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式 (4)当x的值为多少事,S△DEF能最大化? 图一图二 5.M为△ABC中BC中点,AN平分∠BAC,BN⊥AN,已知AB=10, BC=15,MN=3 (1)求证:BN=DN (2)求△ABC周长 6.在△ABC中,∠ACB=90°,AC=BC,DA=DB,CD为直角边作等腰直角 三角形CDE,∠DCE=90° (1)求证:△ACD≌△BCE (2)若AC=3cm,则BE = ________ cm . 7.已知:△ABC为等边三角形,ED=EC,探究AE与DB的大小关系

八年级数学【几何模型三角形轴对称】试卷专题练习(解析版)

八年级数学【几何模型三角形轴对称】试卷专题练习(解析版) 一、八年级数学轴对称解答题压轴题(难) 1.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1). (1)请运用所学数学知识构造图形求出AB的长; (2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标; (3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图). 【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P. 【解析】 【分析】 (1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB; (2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可; (3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案. 【详解】 解:(1)如图,连结AB,作B关于y轴的对称点D, 由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5 (2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2. ②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4. ③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).

(3)不存在这样的点P. 作AB的垂直平分线l3,则l3上的点满足PA=PB, 作B关于x轴的对称点B′,连结AB′, 由图可以看出两线交于第一象限. ∴不存在这样的点P. 【点睛】 本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题. 2.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.

初中数学几何经典模型

初中数学几何模型 中点模型 【模型1】倍长 1、倍长中线;2、倍长类中线;3、中点遇平行延长相交 E D A B C F D A B C E 【模型2】遇多个中点,构造中位线 1、直接连接中点;2、连对角线取中点再相连 【例1】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE. (1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长; (2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的关系,写出你的猜想;并给予证明; (3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗写出你的猜想,并给予证明. 图3 图2 图1 G F D C G F D C G F D C A B E E B A E B A 【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF 于H.求证:∠BGE=∠CHE. H G E F A B D C

E A B C O D E A B C O D B O A C 角平分线模型 【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形 【例4】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为. H G F E A D B C 手拉手模型 【条件】OA OB OC OD AOB COD ==∠=∠ ,, 【结论】OAC OBD ?;AEB OAB COD ∠=∠=∠(即都是旋转角);OE AED ∠ 平分; - 【例5】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为. 【例6】如图,ABC中,90 BAC? ∠=,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE,AG⊥BE 于F,交BC于点G,求DFG ∠ G F D C B A E

八年级上册数学几何难题突破

18.等腰三角形一腰上的高与另一腰的夹角为20°,则该等腰三角形 的底角的度为 . 19.如图,已知∠AOB=60°,点P 在边OA 上,OP=12,点M ,N 在边OB 上,PM=PN ,若MN=2,则OM= . 20.如图,在等边△ABC 中,D 为AB 上一点,连接CD ,在CD 上取一 点E,∠BEC=120°,连接BE,若CD= 314,BE=2,△ACD 的面积为33 14 , 则△BCE 的面积为 . 24.已知:如图,△ABC 中,AD 平分∠BAC,BD⊥AD,垂足为D , 过D 作DE∥AC,交AB 于E , (1) 求证:AE=ED (2) 若AB=5,求线段DE 的长. E D C B A (第19题图) (第20题图) P N M O

25.已知:如图, △ABC 中,AB=AC, ∠BAC=90°,AD ⊥BC,AE 平分∠BAD 交BC 于点E, (1) 求证:AB=CE (2) 点M 在AB 上,BM=2DE ,连接MC 交AD 于点N ,若DN=1,求AB 的长 27.已知:在平面直角坐标系中,点O 为坐标原点, △ABC 的顶点A(-2,0),点B 、C 分别在 x 轴正半轴上和y 轴正半轴上,∠ACB=90°,∠BAC=60°, (1)求点B 的坐标 (2)动点E 从点B 出发以每秒1个单位的速度沿BC 向终点C 运动,设点E 的运动时间为t 秒,△ABE 的面积为S ,求S 与t 的关系式 (3)在(2)的条件下,点E 出发的同时,动点F 从点C 出发以每秒1个单位的速度,沿 CO 向终点O 运动,点F 停止时,点E 也随之停止。连接EF ,以EF 为边在EF 的上方作等边△EFH ,连接CH ,当点C (0,23),CH=3时,求t 的值 E D C B A N M E D C B A y x O B A C y x O B A C

八年级上册数学 【几何模型三角形轴对称】试卷专题练习(word版

八年级上册数学【几何模型三角形轴对称】试卷专题练习(word版 一、八年级数学全等三角形解答题压轴题(难) 1.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE. (1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由); (2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由; (3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由. 【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析 【解析】 【分析】 (1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF; (2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此 CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了; (3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出 EM=PN=1 2 AD,EC=MF= 1 2 AB,我们只要再证得两对应边的夹角相等即可得出全等的结

初二数学(上册)几何题(提高)

1、已知如图,△ABC 中,AB=AC ,∠A=120°,DE 垂直平分仙于D ,交BC 于E 点.求证:CE=2BE . 2、如图,在直角坐标系xOy 中,直线y=kx+b 交x 轴正半轴于A(-1,0),交y 轴正半轴于B,C 是x 轴负半轴上一点,且CA= 4 3CO,△ABC 的面积为6。 (1)求C 点的坐标。 (2)求直线AB 的解析式。 ( 3、已知如图,射线CB ∥OA ,∠C=∠OAB=100 ,E 、F 在CB 上,且满足∠FOB=∠AOB ,OE 平分∠COF. (1)求∠EOB 的度数; (2)若平行移动AB ,那么∠OBC ∶∠OFC 的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值; 4.如图Ⅰ—8,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .求证:(1)AE =CD ;(2)若AC =12 cm ,求 A B C O x y F O E C B A

BD 的长. 5、如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于点F ,交AC 的平行线 BG 于点G ,DE ⊥GF 交AB 于点E ,连接EG 。 (1)求证:BG=CF ;(2)请你判断BE+CF 与EF 的大小关系,并证明。 6.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且B E A C ⊥于E ,与CD 相交于点F H ,是BC 边的 中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:12 CE BF =; (3)CE 与BG 的大小关系如何?试证明你的结论 A F C D B G E

八年级数学上册【几何模型三角形轴对称】试卷(Word版 含解析)

八年级数学上册【几何模型三角形轴对称】试卷(Word 版 含解析) 一、八年级数学 轴对称解答题压轴题(难) 1.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点. (1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ?,若2OA =,4OB =,试求C 点的坐标; (2)如图2,若点A 的坐标为() 23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以 B 为顶点,BA 为腰作等腰Rt ABD ?.试问:当B 点沿y 轴负半轴向下运动且其他条件都不 变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由; (3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ?,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明. 【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=1 2 (EM-ON),证明见详解. 【解析】 【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ?,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标; (2)作DP ⊥OB 于点P ,可以证明AOB BPD ?,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3- (3)作BH ⊥EB 于点B ,由条件可以得出 ∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ?,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=1 2 (EM-ON). 【详解】 (1)如图(1)作CQ ⊥OA 于Q,

初中数学几何经典模型范文

初中数学几何经典模型 范文 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

如图,正方形ABCD DE=2CE,过点C作CF 如图,ABC中,∠如图,在边长为6 ,连接EG,

中,AB=AD,

H G F C B D A E H G F B C A D E 点E 旋转,旋转过程中,线段DE 与线段A B 相交于点P ,射线EF 与线段AB 相交于点G ,与射线CA 相交于点Q .若AQ =12,BP =3,则PG =. 【例12】如图,在菱形ABCD 中,AB =BD ,点E 、F 分别在AB 、AD 上,且AE =DF .连接 BF 与DE 交于点G ,连接CG 与BD 交于点H ,若CG =1,则BCDG S =四边形. 一线三等角模型【条件】EDF B C DE DF ∠=∠=∠=,且【结论】BDE CFD ? 【例13】如图,正方形ABCD 中,点E 、F 、G 分别为AB 、BC 、CD 边上的点,EB =3,GC =4,连接EF 、FG 、GE 恰好构成一个等边三角形,则正方形的边长为 . 最短路径模型【两点之间线段最短】 1、将军饮马 2、费马点【垂线段最短】 【两边之差小于第三边】 【例16】如图,矩形ABCD 是一个长为1000米,宽为600米的货场,A 、D 是入 口.现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,设铺设公路l .求l 的最小值. AP 、DP 以及PH 之长度和为【例17】如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于G ,连接 BE 交AG 于点H ,若正方形的边 长为2,则线段DH 长度的最小值是. 中,4,42AB AD ==,E 是线【例18】如图所示,在矩形ABCD 段AB 的中点,F 是线段BC 上的动点,BEF ?沿直线EF 翻折到'B EF ?,连接'DB ,'DB 最短为 . 《三垂直模型》 课后练习题 【练习1】 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,∠MBN =12 ∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系请直接写出你的猜想; 问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在 DA ,CD 的延长线上,若∠MBN =12 ∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系写出你的猜想,并给予证明. 【练习2】已知:如图1,正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .

人教版八年级上册数学 【几何模型三角形轴对称】试卷测试卷(解析版)

人教版八年级上册数学【几何模型三角形轴对称】试卷测试卷(解析版) 一、八年级数学轴对称解答题压轴题(难) 1.如图1,△ABC 中,AB=AC,∠BAC=90o,D、E 分别在 BC、AC 边上,连接 AD、BE 相 交于点 F,且∠CAD=1 2 ∠ABE. (1)求证:BF=AC; (2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数; (3)如图3,在⑵的条件下,若 AE=3,求 BF 的长. 【答案】(1)答案见详解;(2)45°,(3)4. 【解析】 【分析】 (1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论; (2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得: ∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解; (3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解. 【详解】 (1)设∠CAD=x, ∵∠CAD=1 2 ∠ABE,∠BAC=90o, ∴∠ABE=2x,∠BAF=90°-x, ∵∠ABE+∠BAF+∠AFB=180°, ∴∠AFB=180°-2x-(90°-x)= 90°-x, ∴∠BAF =∠AFB, ∴BF=AB; ∵AB=AC, ∴BF=AC; (2)由(1)可知:∠CAD=x,∠ABE=2x,∠BAC=90o,∴∠AEB=90°-2x, ∵EF=EC, ∴∠EFC=∠ECF, ∵∠EFC+∠ECF=∠AEB=90°-2x,

(完整版)八年级数学几何经典题【含答案】

F 八年级数学几何经典题【含答案】 1、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长 线交MN 于E 、F . 求证:∠DEN =∠F . 2、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG , 点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 3、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF . . 4、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF . B

5、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF . 6、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE =CF .求证:∠DPA =∠DPC . 7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD ,DE 与AB 交于F 。 求证:EF=FD 。 8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 和DF 相交于G ,连接AG ,求证:AG=AD 。 9、已知在三角形ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC,延长BE 交AC 与F,求证AF=EF D F E P C B A F P D E C B A

八年级上册几何数学题

1.如左图:AB=CD,AD=CB,E,F是BD上两点,BE=DF,若∠AEB=100°,∠DBC=30°,则∠BCF=_________。 2.如右图:AB=AC,∠BAC=90°,延长BA到E,连结CE,BF⊥CE于F交AC于D,若AE=2,BE=7,则DC=___________。 3.已知:如图:B在AC上,∠BDC=∠BEA,DN=CN=EM=AM。 求证:BA=BC

4.已知:如图:AB=AC,AD=AE,∠BAC=∠DAE=90°。M是BE中点, 求证:AM⊥DC。 5.已知如图,E.F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分. A O F B E

6.如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明. 7.已知:如图17,△ABC是等边三角形,延长BC至D,延长BA到E,使AE=BD,连结CE、DE 求证:CE=DE (提示:过D作AC的平行线或者过E作AC的平行线或者过E作CD的垂线) C D

8. 如图,△ABC中,∠ACB=2∠B,∠1=∠2。 求证:AB=AC+CD 9. 如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于E,证明:BD=2CE。

10. 已知:如图,∠1=∠2,P为BN上一点,且PD⊥BC于D,AB+BC=2BD。 求证:∠BAP+∠BCP=180° 11.如图8所示,已知 ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连结CE、DE。

八年级数学上册 【几何模型三角形轴对称】试卷专题练习(word版

八年级数学上册【几何模型三角形轴对称】试卷专题练习(word版 一、八年级数学轴对称解答题压轴题(难) 1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H. (1)求证:△DCE为等腰三角形; (2)若∠CDE=22.5°,DC=2,求GH的长; (3)探究线段CE,GH的数量关系并用等式表示,并说明理由. 【答案】(1)证明见解析;(22 ;(3)CE=2GH,理由见解析. 【解析】【分析】 (1)根据题意可得∠CBD=1 2 ∠ABC= 1 2 ∠ACB,,由BD=DE,可得∠DBC=∠E= 1 2∠ACB,根据三角形的外角性质可得∠CDE= 1 2 ∠ACB=∠E,可证△DCE为等腰三角 形; (2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,2+1,即可求GH的值; (3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣ (HE﹣CE)=1 2 BC﹣ 1 2 BE+CE= 1 2 CE,即CE=2GH 【详解】 证明:(1)∵AB=AC,∴∠ABC=∠ACB, ∵BD平分∠ABC, ∴∠CBD=1 2 ∠ABC= 1 2 ∠ACB, ∵BD=DE, ∴∠DBC=∠E=1 2 ∠ACB, ∵∠ACB=∠E+∠CDE,

∴∠CDE=1 2 ∠ACB=∠E, ∴CD=CE, ∴△DCE是等腰三角形 (2) ∵∠CDE=22.5°,CD=CE2, ∴∠DCH=45°,且DH⊥BC, ∴∠HDC=∠DCH=45° ∴DH=CH, ∵DH2+CH2=DC2=2, ∴DH=CH=1, ∵∠ABC=∠DCH=45° ∴△ABC是等腰直角三角形, 又∵点G是BC中点 ∴AG⊥BC,AG=GC=BG, ∵BD=DE,DH⊥BC ∴BH=HE2+1 ∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1 ∴GH= 2 2 (3)CE=2GH 理由如下:∵AB=CA,点G是BC的中点,∴BG=GC, ∵BD=DE,DH⊥BC, ∴BH=HE, ∵GH=GC﹣HC=GC﹣(HE﹣CE)=1 2 BC﹣ 1 2 BE+CE= 1 2 CE, ∴CE=2GH 【点睛】 本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.

初二数学几何图形题(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. G H F E D C B A 几何图形题 常见辅助线的作法有以下几种: 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、以等边三角形为基础 1.已知:如图1,点C 为线段AB 上一点,△ACM ,△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F . (1)求证:AN=BM ; (2)求证:△CEF 为等边三角形; (3)将△ACM 绕点C 按逆时针方向旋转90 O ,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2) 两小题的结论是否仍然成立(不要求证明). 2.如图,△ABC 为等边三角形,AB=6cm ,O 为AB 上的任意一点(与B 点不重合),OD ⊥BC 于D ;DE ⊥AC 于E ;EP ⊥AB 于P 。问:当OB 的长等于多少时,点P 与点O 重合? 二、以等腰直角三角形为基础 3.如图1图2图3,△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD =90o, (1)在图1中,AC 与BD 相等吗,有怎样的位置关系?请说明理由。 (2)若△COD 绕点O 顺时针旋转一定角度后,到达图2的位置,请问AC 与BD 还相等吗,还具有那种位置关系吗?为什么? (3)若△COD 绕点O 顺时针旋转一定角度后,到达图3的位置,请问AC 与BD 还相等吗?还具有上问中的位置关系吗?为什么? 4.如图,两个全等的含30°、60°角的三角板ADE 和三角板ABC 放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E 、A 、C 三点在一条直线上,连接BD ,取BD 中点M ,连接ME 、MC ,试判断△EMC 的形状,并说明理由. 5.已知:在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的左侧作等腰直角△ADE ,解答下列各题:如果AB=AC ,∠BAC=90°. (i )当点D 在线段BC 上时(与点B 不重合),如图甲,线段BD ,CE 之间的关系为______________ (ii )当点D 在线段BC 的延长线上时,如图乙,i )中的结论是否还成立?为什么? 6.如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取 CG=AB ,连结AD 、AG 。 求证:(1)AD=AG , (2)AD 与AG 的位置关系如何? 7.在Rt △ABC 中,AB=AC ,∠BAC=90°,O 为BC 的中点.写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系, 并说明理由. (1)若点M 、N 分别是AB 、AC 上的点,且BM=AN ,试判断△OMN 形状,并证明你的结论. (2)S ?AMN 、s ?OMN 、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.

初中数学经典几何模型

初中数学几何模型 【模型1】倍长 1、 倍长中线; 2、倍长类中线; 3、中点遇平行延长相交 E D A B C F D A B C E ---------------------------------------------------------------------------------------------------------------------- 【模型2】遇多个中点,构造中位线 1、 直接连接中点; 2、连对角线取中点再相连 【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长; (2)如图2,当点F 在AB 的延长线上时,线段GC 、GE 有怎样的数量和位置关系,写出你的猜想;并给予证明; (3)如图3,当点F 在CB 的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明. 图3 图2图1G F D C G F D C G F D C A B E E B A E B A 中点模型

【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF于H.求证:∠BGE=∠CHE. H G E F A B D C 【模型1】构造轴对称 【模型2】角平分线遇平行构造等腰三角形 ---------------------------------------------------------------------------------------------------------------------- 角平分线模型

相关主题
文本预览
相关文档 最新文档