冶金热力学-3解析
- 格式:ppt
- 大小:3.49 MB
- 文档页数:56
第一章冶金热力学基础1.冶金反应的焓变和吉布斯自由能变计算2.化学反应等温方程式3.溶解组元的活度及活度系数4.有溶液参加反应化学反应等温方程式分析5.熔铁及其合金的结构6.铁液中组分活度的相互作用系数关系式7.铁液中元素的溶解及存在形式8.熔铁及其合金的物理性质绪论冶金过程,尤其是钢铁冶金过程是高温、多相、多组元的复杂物理化学反应体系,一般而言:温度:>1000℃,炼钢温度在1600℃,甚至1700℃;多相:包括气—液—固三相气相:大气、燃气、反应气体、金属及其化合物的蒸气;液相:金属液、渣液;固相:金属矿石、固体燃料、耐火材料;多组元:金属液、炉渣、燃料都不是纯物质,而是多组元物质。
冶金过程物理变化:熔化、溶解、吸附、脱气、分金属夹杂上浮、金属的凝固等;冶金过程化学反应:燃料燃烧反应、生成—离解反应、氧化—还原反应、脱硫反应、脱磷反应、脱氧反应、脱碳反应等。
对这样的复杂体系,冶金物理化学能做什么?运用物理化学基本原理及实验方法,冶金物理化学研究和分析冶金过程的基本规律,为探索高效、优质、绿色的冶金工艺过程提供理论依据。
冶金物理化学大致分为:冶金热力学——主要研究冶金过程(反应)进行的方向和限度,以及在复杂体系中实现意愿反应的热力学条件。
是以体系的状态(平衡态)为基础,以状态函数描述过程的可能性为基本分析方法,不涉及“时间”这个参数。
冶金动力学——主要研究冶金过程(反应)的机理和速率,以及确定过程的限制性环节和强化过程的措施。
工业过程是要在有限时间内完成反应产物的获得,光有“可能性”还不够,要有“实现性”,这就必然涉及过程(反应)的机理和速率。
冶金熔体——高温金属熔体和熔渣结构、性质及模型描述。
冶金电化学——高温电解反应、金属液熔渣多相反应的机理和描述。
应该说,正是冶金物理化学的发展,才使得冶金由“技艺”成为“工程”和含有“科学”分量。
相对而言,冶金热力学发展得较为成熟,但研究高温下多相复杂冶金反应很困难,许多热力学数据还不完整。