冶金热力学基础
- 格式:ppt
- 大小:8.30 MB
- 文档页数:30
冶金工程班《冶金物理化学》大型作业姓名:一、填空题1.金属冶炼中的火法冶金的特点是“一高三多”,三多是指在冶金过程中体系一般为()共存;冶金反应涉及的液相一般为()。
2.冶金热力学的理论基础是建立在传统的热力学三大定律:()定律、反应进行的()定律和绝对零度不能达到定律。
3.活度的获得方法有()、()计算法和()等计算方法获得。
4.冶金熔渣成分复杂,来源主要有()、()、冶炼过程中形成的中间产物和人为加入的造渣物质。
5.动力学具有确定指定过程的()和明确反应机理或明确指定过程的限制性环节。
6.常见的复杂反应有()、()和连串反应。
7.冶金过程中,形成以氧化物为主要成分的熔体,成为冶金炉渣。
冶金炉渣分为()、()、富集渣和合成渣。
8.按金属冶炼工艺,习惯是分为()冶金和()冶金。
9.冶金过程中一般通过选择()、()及添加第三种物质的方法,来预期的目的。
10.常选用的活度标准态有选择()、()和以假想质量1%为标准态三种。
11.动力学一般分为()动力学和()动力学。
12.热力学具有确定指定过程的()和确定指定过程的最大进行限度两大功能。
13.化学反应可分为()反应和()反应。
14.“气泡冶金”动力学指出,如在电炉氧化时,碳氧沸腾产生大量(),对排除钢中()起重要作用。
15.活度的获得方法有()、()计算法 函数等计算方法获得。
二、判断题1.想溶液的特征是:在形成理想溶液时,由于同类粒子之间的相互作用力相同,所以混合后体积不发生变化,混合焓=0。
()2.正规溶液的组分的偏摩尔焓与纯组分的摩尔焓之差(即偏摩尔混合热)等于气体常数与绝对温度之和。
()3. 对二元规则溶液,其活度系数与摩尔分数的关系是不变的。
( )4. 在Fe-O 体系中,570℃对应点只与Fe-O 体系本身有关,与还原剂无关。
( )5. 在570℃温度时,H 2与CO 的还原能力相同。
( )6. 对于大多数钢种来说,磷含量高会引起钢材的“热脆”。
冶金熔体和溶液的计算热力学1.引言1.1 概述热力学是研究能量转化和传递的一门科学,它为我们理解和解释自然界中各种现象提供了重要的理论基础。
在冶金过程中,熔体和溶液是广泛存在的物质形态,其热力学性质对于工艺设计和优化至关重要。
熔体是指在高温条件下,物质变为液体状态的物质,而溶液则是指在液体中溶解的其他物质的混合物。
研究熔体和溶液的热力学性质,可以帮助我们理解冶金过程中物质与能量之间的相互作用,探索材料的性能和特性,从而实现冶金工艺的优化和控制。
1.2 目的本文旨在探讨熔体和溶液的热力学特性,以期为冶金工艺的研究和应用提供参考和指导。
具体目的包括以下几个方面:我们将介绍热力学的基本概念和原理,包括热力学系统、状态函数、热力学方程等。
通过深入理解热力学的基本知识,我们可以建立起对熔体和溶液热力学性质的全面认识。
我们将详细讨论熔体的热力学性质。
熔体的特点包括其高温状态、内部结构和相变行为等,这些特性对于冶金工艺的研究具有重要的影响。
我们将探讨熔体的热容、熵、热传导等重要性质,以及在不同温度和压力下的热力学行为。
通过研究熔体的热力学性质,我们可以了解材料在高温条件下的特性,为冶金工艺的设计和操作提供依据。
我们将研究溶液的热力学性质。
溶液是冶金过程中常见的物质形态,其热力学性质对于材料的分离、提纯以及合金化等工艺具有重要的影响。
我们将讨论溶液的热力学行为,包括溶解度、溶液的基本性质和热力学模型等方面。
通过研究溶液的热力学性质,我们可以探索不同物质之间的相互作用,优化溶液的配比和制备方法,为冶金工艺的发展和进步提供支持。
综上所述,通过对熔体和溶液的热力学性质进行研究和分析,我们可以更好地理解材料的特性和行为,为冶金工艺的改进和创新提供理论依据和实践指导。
本文的研究结果将对各类冶金工程师、科研人员和学者具有重要的参考价值,也将为冶金行业的发展和应用做出贡献。
2.正文2.1 冶金熔体的热力学特性冶金熔体是在高温条件下形成的一种流动状态的金属或金属间化合物的混合物。
合金热力学应用热力学和统计物理研究合金的相图、相变及有关性能等问题的学科。
合金热力学又叫固体热力学或材料热力学,即将研究的对象推广到固体或材料。
合金热力学又叫冶金热力学,则将它推广到广泛的冶金现象。
合金热力学又叫合金能量学,强调它用能量的观点,处理有关合金的问题。
合金热力学的理论基础经典热力学经典热力学是现象理论。
它所依据的是从无数经验归纳出的三个定律,然后从此演绎出许多描述物质平衡性质的关系式。
热力学第一定律是力学中机械能转换和守恒定律的延伸。
若环境对体系作功W,体系又从环境吸热Q,则体系的内能增加ΔU为:ΔU=W+Q (1)或 d U=δW+δQ (1a)由于U是状态函数,才能写为全微分;而W及Q随过程而有所不同,不能写为全微分。
热力学第二定律指出了过程方向,它的一种表达方式便是熵增原理:d S(总)=(d S(体)+d S(环))≥0 (2)式中d S(体)、d S(环)及d S(总)分别表示体系、环境和总熵的全微分;(2)式中“=”表示平衡关系;“>”表示过程方向。
熵的概念是在19世纪研究热机效率时提出的:从状态 1到状态 2的热量变化是随途径而异的,而可逆过程的则与途径无关。
人们定义熵S的全微分为:d S呏δQ r/T (3)δQ r是可逆过程的热量变化,T是绝对温度,由于S是状态函数,故可写为全微分。
热力学第三定律是为了计算熵的绝对值的。
凝聚系的熵在恒温过程中改变值ΔS随绝对温度降低而趋于零。
即:(4)从(3)式得到:(5)从(4)式可以证明S0是一个绝对常数,一般选择S0=0。
热力学第一及第二定律分别引入体系的状态函数U及S,为了分析问题的方便,定义了焓H、自由能F 及自由焓GH呏U+p V (6)F呏U-TS (7)G呏H-TS (8)式中p及V分别是体系的压强和体积。
合并第一及第二定律,可以获得关闭体系(与环境没有物质交换)的平衡条件(=)及过程方向(<)为:(d U)v,S≤0 (9)(d H)p,S≤0 (10)(d F)v,T≤0 (11)(d G)p,T≤0 (12)由于p、V、T、S、U、H、F、G都是状态函数,借助于微分方程,可以导出许多表述物质平衡现象的关系式。
第一章 冶金热力学基础1.基本概念:状态函数,标准态,标准生成自由能及生成焓,活度、活度系数和活度相互作用系数,分解压和分解温度,表面活性物质和表面非活性物质,电极电势和电池电动势,超电势和超电压。
2.△H 、△S 和△G 之间有何关系,它们的求算方法有什么共同点和不同点?3.化合物生成反应的ΔG °-T 关系有何用途?试根据PbO 、NiO 、SiO2、CO 的标准生成自由能与温度的关系分析这些氧化物还原的难易。
4.化学反应等温式方程联系了化学反应的哪些状态?如何应用等温方程的热力学原理来分析化学反应的方向、限度及各种 因素对平衡的影响?5.试谈谈你对活度标准态的认识。
活度标准态选择的不同,会影响到哪些热力学函数的取值?哪些不会受到影响?6.如何判断金属离子在水溶液中析出趋势的大小?7.试根据Kelvin 公式推导不同尺寸金属液滴(半径分别为r1、r2)的蒸汽压之间的关系。
8.已知AlF 3和NaF 的标准生成焓变为ΔH °298K,AlF3(S)=-1489.50kJ ·mol -1, ΔH °298K,NaF(S)=-573.60kJ ·mol -1,又知反应AlF 3(S)+3NaF (S)=Na 3AlF 6(S)的标准焓变为ΔH °298K=-95.06kJ ·mol -1,求Na 3AlF 6(S)的标准生成焓为多少?(-3305.36 kJ ·mol -1)9.已知炼钢温度下:(1)Ti (S)+O 2=TiO 2(S) ΔH 1=-943.5kJ ·mol -1(2)[Ti]+O 2=TiO 2(S) ΔH 2=-922.1kJ ·mol -1 (3)Ti (S)=Ti(l) ΔH 3=-18.8kJ ·mol -1求炼钢温度下,液态钛溶于铁液反应Ti(l)=[Ti]的溶解焓。
冶金原理名词解释(总8页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除Mingcijieshi第一章 冶金溶液热力学基础—重点内容本章重要内容可概括为三大点:有溶液参与反应的θG Δ、G Δ、溶液中组分B 活度一、名词解释生铁 钢 工业纯铁 熟铁 提取冶金 理想溶液 稀溶液 正规溶液 偏摩尔量X B 化学势μB 活度 活度系数 无限稀活度系数r B 0 一级活度相互作用系数e i j 一级活度相互作用系数εi j标准溶解吉布斯自由能θB S G ∆ 溶液的超额函数生铁:钢:工业纯铁:熟铁:提取冶金:理想溶液:稀溶液:正规溶液是指混合焓不等于0,混合熵等于理想溶液混合熵的溶液称为正规溶液。
偏摩尔量X B 是指指在恒温、恒压、其它组分摩尔量保持不变条件下,溶液的广度性质X (G 、S 、H 、U 、V )对组分B 摩尔量的偏导值。
)(,,)/(B k n p T B B k n X X ≠∂∂=。
化学势μB 是指在恒温、恒压、其它组分摩尔量保持不变条件下,溶液的吉布斯能对组分B 摩尔量的偏导值。
)(,,)/(B k n p T B B B k n G G ≠∂∂==μ。
(P27) 活度是指实际溶液按拉乌尔定律或亨利定律修正的浓度。
活度系数是指实际溶液按拉乌尔定律或亨利定律修正的浓度时引入的系数。
无限稀活度系数r B 0是指稀溶液中溶质组分以纯物质为标准态下的活度系数。
无限稀活度系数r B 0大小意义*0BHB P K =γ是组元B在服从亨利定律浓度段内以纯物质i为标准态的活度系数是纯物质为标准态的活度与以假想纯物质为标准态的活度相互转换的转换系数是计算元素标准溶解吉布斯能的计算参数)100ln(0)(BA B B m S M M RT G ⋅=∆γθ 一级活度相互作用系数e i j 是指以假想1%溶液为标准态,稀溶液中溶质组分i 的活度系数的lg f i 对溶质组分j 的ωj (%)偏导值,即:0)/lg ((%)→∂∂=A j i j i f e ωω。
第一章 热力学基础一、名词解释:(溶液的)活度,溶液的标准态,j i e (活度的相互作用系数),(元素的)标准溶解吉布斯自由能,理想溶液,化合物的标准摩尔生成吉布斯自由能。
二、其它1、在热力学计算中常涉及到实际溶液中某组分的蒸汽压问题。
当以纯物质为标准态时,组分的蒸汽压可表示为______;当以质量1%溶液为标准态时,组分的蒸汽压可表示为______;前两种标准态组分的活度之比为____。
2、反应MnO(s)+C(s)=Mn(s)+CO(g),G θ∆=268650-158.4T 1J mol -⋅,在标准状态下能进行的最低温度为______K 。
该反应为(填“吸或放”)______热反应。
当T=991K ,总压为101325Pa 时,该反应______(填“能或否”)向正方向进行;在991K 时,若要该反应达到化学平衡的状态,其气相总压应为______Pa ;若气相的CO 分压为Pa 5102⨯,则开始还原温度为______。
反应MnO(s)+C(s)=Mn(s)+CO(g),14.158268650-⋅-=∆mol TJ G θ,在标准状态下能进行的最低温度为______。
3、理想溶液是具有______________________________性质的溶液;理想溶液形成时,体积变化为____,焓变化为__________。
实际溶液与理想溶液的偏差可用______________参数来衡量。
4.判断冶金生产中的化学反应能否向预想的方向进行,在等温、等压下用____热力学函数的变化值;若该反应在绝热过程中进行,则应该用____函数的变化值来判断反应进行的方向。
5.冶金生产中计算合金熔体中杂质元素的活度常选的标准态是________________________。
对高炉铁液中[C],当选纯物质为标准态时,其活度为____,这是因为_______________。
6.物质溶解的标准吉布斯自由能是指______________________________;纯物质为标准态时,标准溶解吉布斯自由能为__。
2010年度冶金物理化学期末辅导郭汉杰北京科技大学说明把各个知识点划分成三个等级;1)最重要的等级――“重点掌握”2)第二等级――“掌握”3)第三等级――“了解”1. 冶金热力学基础冶金热力学基础(4点):●体系的自由能[☉纯物质i 的自由能、☉溶液中i 的自由能、☉气相中i 的自由能、☉固相中i 的自由能]; ●等温方程式; ●等压方程式; ●化学反应的标准自由能计算{2点:☉微、积分法(对结果进行最小二乘处理,使其变为二项式)、☉用已知的自由能(标准生成、溶解、自由能函数)}1) 重点掌握体系中组元i 的自由能表述方法;(包括理想气体、液体、固体)体系中组元i 的自由能(J/mol )ln i i i G G RT a ∅=+注:实际上应该是组元i 的化学位i i i a RT ln +=∅μμ (J/mol)理想气体的吉布斯自由能封闭的多元理想气体组成的气相体系中,任一组元i 的吉布斯自由能为ln i i i G G RT P ∅=+i i P P P∅'=i P '-i 组分气体的实际压强,Pa ;P ∅-标准压强,Pa ,也即Pa 51001325.1⨯。
应该注意的是,高温冶金过程中的气体由于压强比较低,都可以近似看作理想气体。
液相体系中组元i 的吉布斯自由能在多元液相体系中,任一组元i 的吉布斯自由能为 ln i i i G G RT a ∅=+其中,i a ----组元的活度,其标准态的一般确定原则是:若i 在铁液中,选1%溶液为标准态,其中的浓度为质量百分数,[%i]; 若i 在熔渣中,选纯物质为标准态,其中的浓度为摩尔分数,i X ;若i 是铁溶液中的组元铁,在其他组元浓度很小时,组元铁的活度定义为1。
固相体系中组元i 的吉布斯自由能在多元固相体系中,其中任一组元i 的吉布斯自由能为 ln i i i G G RT a ∅=+i a 确定原则是:若体系是固溶体,则i 在固溶体中的活度选纯物质为标准态,其浓度为摩尔分数,i X ; 若体系是共晶体,则i 在共晶体中的活度定义为1; 若体系是纯固体i ,则其活度定义为1。
冶金过程中的热力学计算和实验研究冶金行业是指针对金属和非金属矿物资源进行提炼、冶炼、合金化等加工过程中的行业。
在冶金加工过程中,热力学计算和实验研究是至关重要的环节,能够为工程师和研究人员提供预测和控制生产过程的理论和实践依据,促进技术发展和产品质量提升。
1. 热力学计算在冶金中的应用冶金加工过程中,各种金属、合金及非金属物质的化学反应均与热力学有关。
热力学计算是应用热力学原理和方法,对冶金过程中所涉及的物质相平衡、化学反应等过程进行研究,以该过程的热力学数据为基础,计算出反应的热力学、热学和动力学参数,从而对反应进行预测和调控的一种技术。
例如,在冶金冶炼过程中,通过热力学计算可以确定反应平衡常数、反应速率常数、反应热、反应焓、反应熵等热力学参数,为反应的优化设计和控制提供了重要的信息。
2. 实验研究在冶金中的重要性在冶金加工过程中,实验研究是验证和应用热力学计算结果的重要手段。
通过实验研究,可以建立基于实验数据的反应参数模型,验证理论计算的准确性,提高技术运用的可靠性和精度。
例如,在金属材料的淬火过程中,通过实验测量样品的冷却曲线,可以确定材料的冷却速度和硬度,根据热力学计算的结果,优化淬火工艺参数,提高材料的强度和耐磨性。
3. 热处理工艺的研究热处理工艺是指用热能使材料发生相变或微观结构变化,以调控材料性能的一种工艺。
在冶金加工中,热处理工艺的研究是重要的研究方向之一。
例如,高温钢材的热处理工艺研究,通过热力学计算和实验研究,可以确定热处理参数,优化热处理工艺,提高钢材的抗氧化性和耐热性。
4. 冶金材料的构造与性能关系研究冶金材料的构造与性能关系研究是冶金加工的核心和重点研究方向之一。
通过研究材料的晶体结构、微观形貌和化学成分等特征,进一步深入理解材料的物理和化学性质,开发出可控性能的材料。
例如,在金属材料合金化研究中,通过热力学计算和实验研究,定制合金元素的含量和比例,获得具有优异机械和物理性能的金属合金材料。