14扫描电子显微镜详解
- 格式:ppt
- 大小:2.71 MB
- 文档页数:94
扫描电子显微镜的结构原理和功能用途扫描电镜简介电子源发射的电子束经过电磁透镜的电子光学通路聚焦,电子源的直径被缩小到纳米尺度的电子束斑,与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在样品表面一定微小区域内,逐点逐行扫描。
电子束与样品相互作用,从样品中发射的具有成像反差的信号,由一个适当的图像探测器逐点收集,并将信号经过前置放大器和视频放大器,用调制解调电路调制显示器上相对应显示像素的亮度,形成我们人类观察习惯的,反映样品二维形貌的图像或者其他可以理解的反差机制图像。
由于图像显示器的像素尺寸远远大于电子束斑尺寸,(0.1mm/1nm=100,000倍)而且显示器的像素尺寸小于等于人类肉眼通常的分辨率,这样显示器上的图像相当于把样品上相应的微小区域进行了放大。
通过调节扫描线圈偏转磁场,可以控制电子束在样品表面扫描区域的大小,理论上扫描区域可以无限小,但可以显示的图像有效放大倍数的限度是扫描电镜分辨率的限度。
模拟图像扫描系统:样品上每个像素模拟信号直接调制阴极射线管对应显示像素的亮度,由于生成一幅高质量图像一般需要数秒或者数十秒/帧,所以模拟电镜使用慢余辉显像管终端显示一幅活图像,为了便于在显像管上观察图像,需要暗室,操作者可按照一定规程调整仪器参数,如图像聚焦,移动样品台搜索感兴趣区域,调节放大倍数,亮度对比度,消象散等从而获得最佳的图像质量。
模拟图像输出采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。
自1985年以来,模拟图像电镜已经被数字电镜取代。
数字图像扫描系统:样品上每个像素发出的成像信号,被图像探测器探测器后,经过前置放大器,和视频放大器放大,直接进行信号数字化,然后存储在图像采集卡的帧存器,形成数字图像数据,图像数据可被电镜操作软件读取,操作者在图形交互界面(GUI)上对图像进行调整控制,并把调整好的数字图像存储在计算机中硬盘中。
模拟控制是控制信号不经过计算机软件,直接由操作台按键旋钮等对执行机构进行控制,属于人工手动控制,控制精度由操作者观察仪表盘的变化决定.例如高压电源,扫描线圈,探测器电源,电子枪控制,磁透镜控制,样品台的运动控制等等。
扫描电子显微镜的构造和工作原理扫描电子显微镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,它通过使用聚焦的电子束来替代传统显微镜中使用的光束,从而能够观察到非常小尺寸的物体或细节。
SEM的构造和工作原理如下:构造:1.电子源:SEM使用热电子发射或场致发射的方式产生电子束。
常用的电子源是热丝电子枪,其中一个被称为热阴极的钨丝加热电子产生材料,产生电子束。
2. 电子透镜系统:SEM中有两个电子透镜,分别称为透镜1(即准直透镜)和透镜2(即聚经透镜)。
透镜1和透镜2的作用是使电子束呈现较小的束斑(electron beam spot),从而提高分辨率和放大率。
3. 检测系统:SEM的检测系统包括两个主要部分,即二次电子检测器(Secondary Electron Detector,SED)和回散射电子检测器(Backscattered Electron Detector,BED)。
SED主要用于表面形貌观察,它能够检测到由扫描电子激发的二次电子。
BED则用于分析样品的成分和区分不同物质的特性。
4.微控样品台:SEM中的样品台可以精确调整样品位置,使其与电子束的路径重合,并且可以在不同的方向上转动,以便于观察不同角度的样品。
5.显示和控制系统:SEM使用计算机控制系统来控制电子束的扫描和样品台的移动,并将观察结果显示在计算机屏幕上。
工作原理:1.电子束的生成:SEM中的电子源产生高能电子束。
电子源加热电子发射材料,如钨丝,产生高速电子束。
2.电子透镜系统的聚焦:电子束经过透镜1和透镜2的聚焦,使其呈现出较小的束斑。
3.样品的扫描:样品台上的样品被置于电子束的路径中,并通过微控样品台控制样品的位置和方向。
电子束扫描过样品表面,通过电磁透镜和扫描线圈控制电子束的位置。
4.二次电子和回散射电子的检测:电子束与样品相互作用时,会产生二次电子和回散射电子。
二次电子是由电子束激发样品表面产生的电子,可以用来观察样品的表面形貌。
扫描电子显微镜的原理及应用实验1. 简介扫描电子显微镜(Scanning Electron Microscope,SEM)是一种利用电子束扫描样品表面并获取图像的仪器。
相比传统的光学显微镜,扫描电子显微镜具有更高的分辨率和更大的深度视野,能够观察到更加细微的结构和表面形貌。
2. 原理扫描电子显微镜的工作原理是利用电子束与样品相互作用并产生不同信号的原理。
主要包括以下几个步骤:2.1 电子束产生扫描电子显微镜使用热阴极或场发射阴极产生电子束。
电子束经过聚焦系统的聚焦后,形成一个细小的束斑。
2.2 电子束扫描和探测电子束通过扫描线圈进行水平和垂直方向的扫描。
样品的表面与电子束相互作用,产生多种信号,如二次电子(Secondary Electrons,SE)、反射电子(Backscattered Electrons,BSE)等。
2.3 信号响应与检测不同的信号在显微镜中被收集和检测。
二次电子主要用于获得样品表面拓扑信息,反射电子则用于获取样品的组成成分和晶体结构信息。
2.4 图像重建和显示收集到的信号经过放大、调制、转换等处理后,通过显示器显示出样品的图像。
图像的亮度和对比度可以通过调节各种参数来优化。
3. 应用实验3.1 表面形貌观察利用扫描电子显微镜可以观察到样品表面的形貌特征,例如微观纹理、晶体结构等。
这对于材料科学、地球科学以及生物学等领域的研究具有重要意义。
3.2 粒径测量通过扫描电子显微镜观察样品表面的颗粒,可以进行颗粒的粒径测量。
结合适当的图像处理软件,可以对颗粒的大小、形状等进行分析。
3.3 成分分析通过检测反射电子信号,可以分析样品的成分和元素分布情况。
利用能谱仪,可以进行能谱特征分析,获得样品中元素的种类和含量。
3.4 结构分析扫描电子显微镜可以观察到样品的晶体结构和纹理信息。
结合电子衍射技术,可以进一步分析样品中的晶体结构、晶体取向以及晶界等细节。
3.5 故障分析对于材料科学和工程领域的故障分析,扫描电子显微镜是一种常见且有效的工具。
扫描电子显微镜的原理和应用扫描电子显微镜是一种利用电子束扫描样品表面并对扫描到的电子信号进行成像的高分辨率显微镜。
与光学显微镜不同,扫描电子显微镜利用电子束通过透镜和场控制技术非常高效地聚焦并成像,以获得超高分辨率的成像效果,以及大量的表面和物质信息。
扫描电子显微镜的原理扫描电子显微镜的核心是电子光源,它利用热发射、光电发射或场致发射等方式产生的电子束,经过一系列的焦距透镜、偏转线圈、探针控制和信号采集系统组成。
扫描电子显微镜的成像原理和传统光学显微镜略有不同。
它不是通过透镜去聚焦光线来成像,而是通过利用电子作用在样品表面的电磁场和电子-物质相互作用来实现的。
扫描电子显微镜利用电子束在样品表面扫描出一个小点,由电子-物质相互作用产生的电子信号被收集并转化成电子图像数据,然后利用计算机对数据进行图像处理,形成高分辨率的显微成像,以及其它相关物化信息。
扫描电子显微镜的应用扫描电子显微镜因其超高分辨率和强大的化学和物理分析功能而广泛应用于许多领域。
在材料科学领域,扫描电子显微镜广泛用于各种材料的表面和微结构分析,包括晶体结构、颗粒形貌、纳米结构、原子局部构型等。
其中,扫描透射电子显微镜(STEM)可以提供比常规扫描电子显微镜更高的结构分辨率,可用于对材料和生物样品的超高分辨率成像和分析。
在生物科学领域,扫描电子显微镜广泛应用于生物样品的形态与结构分析,如细胞器、膜结构、细胞外矩阵等。
同时,扫描电子显微镜也被用于对代谢过程和细胞凋亡等重要生物过程的研究。
在微电子制造和半导体工业中,扫描电子显微镜用于分析芯片表面的纳米结构和性能,以及其他半导体材料和器件的研究和开发。
在环境科学领域,扫描电子显微镜可用于分析环境污染物的化学成分和形态,如粉尘、气溶胶、烟尘等,有助于研究它们的来源、形成机制和生物毒性。
结论扫描电子显微镜是一种高分辨率的显微镜技术,具有广泛的应用前景和重要的科学意义。
不仅能够提高我们对材料、生物样品、半导体和环境的理解,而且也在未来的许多领域中发挥着重要的作用。
了光子,发明扫描电子显微镜,“照”出了微观物质的相。
Q1:为什么电子束能当光源?1、仪器构造及原理扫描电子显微镜主要由电子光学系统、信号收集、检测系统、真空系统组成。
电子光学系统包括电子枪、电磁透镜、物镜光阑、扫描线圈、信号探测器组成。
蔡司Gemini500选用热场发射式电子枪,一般选用钨或六硼化镧作为灯丝,一旦通电加热,无数电子从灯丝表面发射出来,热场发射式电子枪对真空要求较小,但灯丝的寿命有限,需要经常更换;电磁透镜具有汇聚电子束作用,将发射出几十微米的电流汇聚为1nm的电子束;物镜光阑主要用来控制束流,光阑孔径在操作界面可选择,从而调节景深;最后极细的电子束到达扫描线圈,扫描线圈用于控制电子束在样品表面的扫描方向以及速度,使电子束进行栅网式扫描,最后电子束与样品表面原子发生碰撞而产生一系列的物理效应,如图3所示产生背散射电子、二次电子、吸收电子、透射电子、X射线等,通过信号探测器对这些信息的接受、放大,获得测试样品表面形貌、组成和结构的丰富信息。
Q2:为什么不能测试强磁性的样品?磁性样品可能会改变电子束的汇聚方向而离开样品台,打在透镜上,轻则有可能影响未来设备的成像效果(电子束无法很好聚焦),重则可能打坏透镜。
Q3:扫描电镜为什么在真空环境中工作?电子束系统中的灯丝在普通大气中会迅速氧化而失效,空气会使电子束变型,影响成像分辨率。
高能电子与样品作用能获得哪些物理信号?高速运动的电子束轰击样品表面,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,有一些电子被反射出样品的表面,其余的渗入样品中,逐渐失去其动能,最后被阻止,并被样品吸收。
在此过程中有99%以上的入射电子能量转变成热能,只有约1%的入射电子能量从样品中激发出各种信号。
今天我们主要来学习背散射电子、二次电子、x射线的产生机理以及应用。
这三个物理信号所产生的作用深度不同,二次电子产生在样品表面5-10nm处,背散射电子产生在样品几十到100nm处,特征X射线则产生在样品表面微米范围处。