2018届高中总复习(数学):7.8《立体几何中的向量方法(二)——求空间角与距离》课件
- 格式:ppt
- 大小:3.46 MB
- 文档页数:42
立体几何中的向量方法----空间角一、异面直线所成角的求法: ,则所成的角为与 异面直线|||||cos |cos CD AB CD AB ⋅〉〈=θθ...111111111所成的角的余弦值与求异面直线的中点、分别是、中, 正方体 例CF AE C A D A F E D C B A ABCD -二、直线与平面所成角的求法: , ,平面所成的角为与平面 设斜线|||||cos |sin n PA n PA PA ⋅=〉〈=θαθα 所成的角与平面中,求 如图,在正方体 例 ..21111111CD B A B A D C B A ABCD - 所成的角为 与平面直线 ), , (又), , ( 取 得 即 则 ),,(设平面 ) , , (), , , (),, , (),, ,,(),, , (),, , (,则这正方体的棱长为,角坐标系 解:如图建立空间直.3021282||||cos 220101002202002020202020220200002111111111111︒∴-=⋅-=⋅=〉〈∴-=-=⎩⎨⎧-==⎩⎨⎧=+=⎪⎩⎪⎨⎧=⋅=⋅===-CD B A B A n B A A A x z y z x y z y x CD B A A B C D xyz DABCD B 1C 1D 1E FA 1ABCDA 1B 1C 1D 1O二面角的求法:, 或 , 则 的一个法向量是,平面为 设二面角〉〈-=〉〈=--212121cos cos cos cos n n n n n n l θθβαθβα..311111的大小的中点,求二面角是, 已知正方体 例A BD P AD P D C B A ABCD ---的大小为 二面角 , ), , ( 取 得 即 则 ),,(设平面), , (), , , (又), , ( 取 得 即 则 ),,(设平面 ) , , (), , , (), , (),, , (),, , (),, , (),, , (,则这正方体的棱长为,角坐标系 解:如图建立空间直.302326102||||cos 101002202000202021122020200201021001202022020000211111111︒--∴=⋅++=⋅=〉〈∴-=⎩⎨⎧-==⎩⎨⎧=+=⎪⎩⎪⎨⎧=⋅=⋅===-=⎩⎨⎧-==⎩⎨⎧=+=+-⎪⎩⎪⎨⎧=⋅=⋅==-=-A BD P n m n m x z y z x y AD z y x ABD AD n y z y x z x y x PD z y x PBD PD P D C B A xyz ACBAD C 1B 1A 1D 1P练习: 所成的角的余弦值与平面的中点,求是中, 如图,正方体 ..1111111BD B BECC E D C B A ABCD -.311.211111111所成的角的余弦值与平面,试求的上的点,和分别是、中,的正方体 在以边长为 BD A EF F C BE D C BC F E D C B A ABCD ==-.21.3的余弦值求二面角,,,,平面 C PB A BC AC PA BC AC ABC PA --===⊥⊥ABC D B 1C 1D 1E A 1ABC DB 1C 1D 1 EF A 1BA CPBACP.''2'1.32'9060''''''.4所成角的大小 与)异面直线 (的大小)二面角 ( 求,,且,平面中,平面 如图,三棱柱 AO B A O AB O OA OO OB AOB OB O OAB O OBB B A O OAB --===︒=︒∠=∠⊥-ABO'A'B'O。
第八节 立体几何中的向量方法(二)——求空间角【最新考纲】 1.能用向量方法解决直线与直线,直线与平面,平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.1.异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a·n||a||n|. 3.求二面角的大小①若AB 、CD 分别是二面角αlβ的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB→与CD →的夹角.②设n 1,n 2分别是二面角αlβ的两个面α,β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( )(3)两个平面的法向量所成的角是这两个平面所成的角.( )(4)两异面直线夹角的范围是⎣⎢⎡⎦⎥⎤0,π2,直线与平面所成角的范围是⎝⎛⎦⎥⎤0,π2,二面角的范围是[0,π].( )答案:(1)× (2)× (3)× (4)×2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90° 解析:cos 〈m ,n 〉=m·n |m||n|=11×2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°. 答案:C3.(2016·泰安质检)已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150° 解析:设l 与α所成角为θ,∵cos 〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.答案:A4.(2014·课标全国Ⅱ卷)在直三棱柱ABCA 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110B.25C.3010D.22解析:建立如图所示的空间直角坐标系C xyz ,设BC =2,则B(0,2,0),A(2,0,0),M(1,1,2),N(1,0,2),所以BM→=(1,-1,2),AN →=(-1,0,2),故BM 与AN 所成角θ的余弦值cos θ=|BM→·AN →||BM →|·|AN →|=36×5=3010. 答案:C5.(2016·石家庄模拟)过正方形ABCD 的顶点A 作线段PA ⊥平面ABCD ,若AB =PA ,则平面ABP 与平面CDP 所成的二面角为________.解析:如图建立空间直角坐标系,设AB =PA =1,则A(0,0,0),D(0,1,0),P(0,0,1),由题意,AD ⊥平面PAB ,设E 为PD 的中点,连接AE ,则AE ⊥PD ,又CD ⊥平面PAD ,∴CD ⊥AE ,从而AE ⊥平面PCD.所以AD →=(0,1,0),AE →=(0,12,12)分别是平面PAB ,平面PCD 的法向量,且〈AD→,AE →〉=45°, 故平面PAB 与平面PCD 所成的二面角为45°. 答案:45°三个范围1.异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2;2.直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2;3.二面角的范围是[0,π]. 三种关系1.求两异面直线a ,b 夹角θ,须求出它们的方向向量a ,b 的夹角,则cos θ=|cos 〈a ,b 〉|.2.求直线l 与平面α所成的角θ,可先求出平面α的法向量n 与直线l 的方向向量a 的夹角,则sin θ=|cos 〈n ,a 〉|.3.求二面角αlβ的大小θ,可先求出两个平面的法向量n 1,n 2所成的角,则θ=〈n 1,n 2〉或π-〈n 1,n 2〉.一个易错点利用平面的法向量求二面角的大小时,当求出两个半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.A 级 基础巩固一、选择题1.(2016·秦皇岛模拟)已知正四棱柱ABCDA 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( )A.1010B.15C.31010D.35解析:以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D(0,0,0),C(0,1,0),B(1,1,0),E(1,0,1),D 1(0,0,2).所以BE →=(0,-1,1),CD 1→=(0,-1,2).所以cos 〈BE →,CD 1→〉=BE →·CD 1→|BE →|·|CD 1→|=32×5=31010.答案:C 2.正方体ABCDA 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM→=12MC 1→,N 为B 1B 的中点,则|MN →|为( ) A.216 a B.66a C.156 a D.153a解析:以D 为原点建立如图所示的空间直角坐标系D xyz ,则A(a ,0,0),C 1(0,a ,a),N(a ,a ,a2).设M(x ,y ,z),∵点M 在AC 1上 且AM →=12MC 1→, (x -a ,y ,z) =12(-x ,a -y ,a -z) ∴x =23a ,y =a 3,z =a 3.得M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,∴|MN →|= ⎝ ⎛⎭⎪⎫a -23a 2+⎝⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216a. 答案:A3.在正方体ABCDA 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析:以A 为原点建立如图所示的空间直角坐标系A xyz ,设棱长为1,则A 1(0,0,1),E(1,0,12),D(0,1,0),∴A 1D →=(0,1,-1),A 1E →=(1,0,-12), 设平面A 1ED 的一个法向量为n 1=(1,y ,z), 所以有⎩⎨⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,解得⎩⎨⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.答案:B4.已知三棱柱ABCA 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π6解析:如图所示:S △ABC =12×3×3×sin 60°=334.∴V ABC A 1B 1C 1=S △ABC ·OP =334·OP =94,∴OP = 3.又OA =32×3×23=1,∴tan ∠OAP =OPOA=3, 又0<∠OAP<π2,∴∠OAP =π3.答案:B5.在四面体P-ABC 中,PA ,PB ,PC 两两垂直,设PA =PB =PC =a ,则点P 到平面ABC 的距离为( )A.63B.33aC.a3D.6a 解析:根据题意,可建立如图所示的空间直角坐标系P xyz ,则P(0,0,0),A(a ,0,0),B(0,a ,0),C(0,0,a).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的距离.∵PA =PB =PC ,∴H 为△ABC 的外心. 又△ABC 为等边三角形,∴H 为△ABC 的重心,则H ⎝ ⎛⎭⎪⎫a 3,a 3,a 3.∴PH =⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02=33a.∴点P 到平面ABC 的距离为33a. 答案:B 二、填空题6.(2016·郑州模拟)在长方体ABCDA 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.解析:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设n =(x ,y ,z)为平面A 1BC 1的法向量.则n·A 1B →=0,n·A 1C 1→=0,即⎩⎨⎧2y -z =0,-x +2y =0,令z =2,则y =1,x =2, 于是n =(2,1,2),D 1C 1→=(0,2,0)设所求线面角为α,则sin α=|cos 〈n ,D 1C 1→〉|=13.答案:137.如图所示,在三棱柱ABCA 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是________.解析:以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E(0,1,0),F(0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2, ∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°. 答案:60°8.正△ABC 与正△BCD 所在平面垂直,则二面角A BDC 的正弦值为________.解析:取BC 中点O ,连接AO ,DO.建立如图所示坐标系,设BC =1,则A ⎝ ⎛⎭⎪⎫0,0,32,B(0,-12,0),D ⎝ ⎛⎭⎪⎫32,0,0. ∴OA →=⎝ ⎛⎭⎪⎫0,0,32,BA →=⎝ ⎛⎭⎪⎫0,12,32,BD →=⎝ ⎛⎭⎪⎫32,12,0.设平面ABD 的法向量为n =(x 0,y 0,z 0), 则BA→·n =0,且BD →·n =0, ∴y 02+32z 0=0且32x 0+y 02=0, 解之得y 0-3z 0,且y 0=-3x 0,取x 0=1,得平面ABD 的一个法向量n =(1,-3,1),由于OA →=⎝⎛⎭⎪⎫0,0,32为平面BCD 的一个法向量.∴cos 〈n ,OA→〉=55,∴sin 〈n ,OA →〉=255. 答案:255三、解答题9.(2016·课标全国Ⅰ卷)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值.(1)证明:由已知可得AF ⊥DF ,AF ⊥FE , 所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)解:过D 作DG ⊥EF ,垂足为G . 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF→的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0), B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知得AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°. 从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB→=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量, 则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n·m|n||m |=-21919.故二面角E -BC -A 的余弦值为-21919.10.如图,在直棱柱ABCD-A 1B 1C 1D 1中AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.(1)证明:易知,AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所成直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为A(0,0,0),B(t ,0,0),B 1(t ,0,3),C(t ,1,0),C 1(t ,1,3),D(0,3,0),D 1(0,3,3).从而B 1D →=(-t ,3,-3),AC →=(t ,1,0),BD →=(-t ,3,0). 因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0, 解得t =3或t =-3(舍去).于是B 1D →=(-3,3,-3),AC →=(3,1,0). 因为AC →·B 1D →=-3+3+0=0, ∴AC →⊥B 1D →,则AC ⊥B 1D.(2)解:由(1)知,AD 1→=(0,3,3),AC →=(3,1,0),B 1C 1→=(0,1,0).设n =(x ,y ,z)是平面ACD 1的一个法向量, 则⎩⎨⎧n·AC →=0,n·AD 1→=0,即⎩⎨⎧3x +y =0,3y +3z =0,令x =1,则n =(1,-3,3).设直线B 1C 1与平面ACD 1所成角为θ,则sin θ=|cos 〈n ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪n·B 1C 1→|n|·|B 1C 1→| =37=217.即直线B 1C 1与平面ACD 1所成角的正弦值为217.B 级 能力提升1.(2016·西安调研)如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35解析:不妨令CB =1,则CA =CC 1=2.可得O(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0), B 1(0,2,1),∴BC 1→=(0,2,-1),AB 1→=(-2,2,1), ∴cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-15×9=15=55>0.∴BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角, ∴直线BC 1与直线AB 1夹角的余弦值为55.答案:A2.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB.已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为________.解析:∵CD →=CA →+AB →+BD →, ∴|CD →|=(CA→+AB →+BD →)2 =36+16+64+2CA →·BD→=116+2CA →·BD→ =217.∴CA→·BD →=|CA →|·|BD →|·cos 〈CA →,BD →〉=-24. ∴cos 〈CA →,BD →〉=-12.又所求二面角与〈CA →,BD →〉互补, ∴所求二面角为60°. 答案:60°3.(2015·广东卷)如图,三角形PDC所在的平面与长方形ABCD 所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P AD C的正切值;(3)求直线PA与直线FG所成角的余弦值.解:在△PCD中,∵E为CD的中点,且PC=PD,∴PE⊥CD.又∵平面PCD⊥平面ABCD,且平面PCD∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD.取AB的中点H,连接EH,∵四边形ABCD是长方形,则EH⊥CD.如图所示,以E为原点,EH,EC,EP所在直线分别为x,y,z轴建立空间直角坐标系.∵PD =PC =4,AB =6,BC =3,AF =2FB ,CG =2GB.∴E(0,0,0),P(0,0,7),F(3,1,0),G(2,3,0),A(3,-3,0),D(0,-3,0),C(0,3,0).(1)证明:∵EP→=(0,0,7),FG →=(-1,2,0), ∴EP →·FG →=(0,0,7)·(-1,2,0)=0,因此EP→⊥FG →,EP ⊥FG. (2)解:∵PE ⊥平面ABCD ,∴平面ABCD 的法向量为EP→=(0,0,7). 设平面ADP 的一个法向量为n =(x 1,y 1,z 1),AP →=(-3,3,7),DP→=(0,3,7). 由于⎩⎨⎧AP →·n =0,DP→·n =0,即⎩⎨⎧-3x 1+3y 1+7z 1=0,3y 1+7z 1=0, 令z 1=3,则x 1=0,y 1=-7,∴n =(0,-7,3).由图可知二面角P AD C 是锐角,设为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪n·EP →|n||EP →|=3747=34, ∴sin α=74,tan α=73. (3)解:∵AP →=(-3,3,7),FG →=(-1,2,0),设直线PA 与直线FG 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪AP →·FG →|AP →||FG →|=3+69+9+7×5=9525. ∴直线PA 与FG 所成角的余弦值为9525.立体几何中的高考热点题型1.立体几何是高考的重要内容,每年基本上都是一个解答题,两个选择题或填空题.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性的存在问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).热点1空间点、线、面位置关系以空间几何体(主要是柱、锥或简单组合体)为载体,通过空间平行、垂直关系的论证命制,主要考查公理4及线、面平行与垂直的判定定理与性质定理,常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等.(2014·北京卷)如图,在三棱柱ABC A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.所以BB1⊥AB.又因为AB⊥BC,所以AB⊥平面B1BCC1.所以平面ABE⊥平面B1BCC1.(2)证明:法一如图1,取AB中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG=12AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1.所以四边形FGEC1为平行四边形.所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.法二如图2,取AC的中点H,连接C1H,FH.因为H ,F 分别是AC ,BC 的中点,所以HF ∥AB ,又因为E ,H 分别是A 1C 1,AC 的中点,所以EC 1AH ,所以四边形EAHC 1为平行四边形,所以C 1H ∥AE ,又C 1H ∩HF =H ,AE ∩AB =A ,所以平面ABE ∥平面C 1HF ,又C 1F ⊂平面C 1HF ,所以C 1F ∥平面ABE.(3)解:因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.1.(1)证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.(2)证明C 1F ∥平面ABE :①利用判定定理,关键是在平面ABE 中找(作)出直线EG ,且满足C 1F ∥EG.②利用面面平行的性质定理证明线面平行,则先要确定一个平面C 1HF 满足面面平行,实施线面平行、面面平行的转化.2.计算几何体的体积时,能直接用公式时,关键是确定几何体的高,而不能直接用公式时,注意进行体积的转化.【变式训练】(2015·四川卷)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.(1)解:标出点F、G、H的位置如图所示.(2)解:平面BEG∥平面ACH.证明如下:因为ABCD EFGH为正方体,所以BC∥FG,BC=FG.又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形.所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH,与EG交于点O,连接BD.因为ABCD EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.热点2平面图形折叠成空间几何体(真题探源)将平面图形折叠成空间几何体,并以此为载体考查点、线、面间的位置关系及有关几何量的计算是近年高考的热点,考查学生的空间想象能力、知识迁移能力和转化思想.试题以解答题为主要呈现形式,中档难度.(2015·陕西卷)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图②.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.命题立意:本题以翻折问题为背景,主要考查空间点、线、面的位置关系和空间角(二面角)的计算.考查学生的识图、用图的空间想象能力,以及考查学生的运算求解能力和数学推理论证能力,突出考查方程思想和转化化归思想.(1)证明:在题图①中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC.即在题图②中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC.又CD ∥BE ,所以CD ⊥平面A 1OC.(2)解:由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1BE C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎨⎧n 1·BC →=0,n 1·A1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); ⎩⎨⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63. 【真题探源】 本题源于人教A 版选修2-1P 119B 组第3题,两题都考查空间角的计算、数学逻辑推理论证和空间想象能力以及教材习题比较,高考真题“增添”平面图形的折叠背景,并将原题的第(1)问“体积计算”变为“线面垂直”的证明,突显数学证明和图形翻折热点内容的考查.求解的关键在于搞清翻折前后图形中线面位置关系和度量关系的变化情况.试题的导向有利于指导中学数学教学,而且有利于高校选拔合格新生.《人教A 版选修2-1》P 119习题B 组第3题:如图所示,在四棱锥S ABCD中,底面是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=0.5.(1)求四棱锥S ABCD的体积;(2)求平面SCD与平面SAB所成二面角的余弦值.【变式训练】如图,直角梯形ABCD中,∠ABC=90°,AB =BC=2AD=4,点E,F分别是AB,CD的中点,点G在EF上,沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF.(1)当AG+GC最小时,求证:BD⊥CG;(2)当2V B ADGE=V D GBCF时,求二面角D BG C的平面角的余弦值.(1)证明:∵点E、F分别是AB、CD的中点.∴EF∥BC,又∠ABC=90°,∴AE ⊥EF ,∵平面AEFD ⊥平面EBCF.∴AE ⊥平面EBCF ,AE ⊥EF ,AE ⊥BE ,又BE ⊥EF ,如图建立空间直角坐标系E -xyz.翻折前,连接AC 交EF 于点G ,此时点G 使得AG +GC 最小,EG =12BC =2,又知EA =EB =2, 则A(0,0,2),B(2,0,0),C(2,4,0),D(0,2,2),E(0,0,0),G(0,2,0),∴BD→=(-2,2,2),CG →=(-2,-2,0), ∴BD →·CG →=(-2,2,2)·(-2,-2,0)=0,∴BD ⊥CG.(2)解:设EG =k.∵AD ∥平面EFCB ,∴点D 到平面EFCB 的距离即为点A 到平面EFCB 的距离.∵S 四边形GBCF =12[(3-k)+4]×2=7-k , ∴V D GBCF =13·S 四边形GBCF ·AE =23(7-k).又V BADGE =13S 四边形ADGE ·BE =23(2+k), 2V B ADGE =V DGBCF ,∴43(2+k)=23(7-k), ∴k =1,即EG =1.设平面DBG 的法向量为n 1=(x ,y ,z),∵G(0,1,0),∴BG→=(-2,1,0),BD →=(-2,2,2), 则⎩⎨⎧n 1·BD →=0,n 1·BG →=0,即⎩⎨⎧-2x +2y +2z =0-2x +y =0, 取x =1,则y =2,z =-1,∴n 1=(1,2,-1).平面BCG 的一个法向量为n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-66. ∵所求二面角D BG C 的平面角为锐角, ∴此二面角的平面角的余弦值为66. 热点3 立体几何中的探索开放问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探索或空间角的计算问题,是高考命题的热点,一般有两种考查形式:(1)根据条件作出判断,再进一步论证.(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.(2015·天津高考改编)如图,在四棱柱ABCDA 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点.(1)求证:MN ∥平面ABCD ;(2)求二面角D 1AC B 1的正弦值;(3)在棱A 1B 1上是否存在点E ,使得直线NE 与平面ABCD 所成角的正弦值为13?若存在,求出线段A 1E 的长;若不存在,请说明理由.解:如图,以A 为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,-2,2).又因为M ,N 分别为B 1C 和D 1D 的中点,所以M ⎝ ⎛⎭⎪⎫1,12,1,N(1,-2,1).(1)证明:依题意,可得n =(0,0,1)为平面ABCD 的一个法向量,MN →=⎝ ⎛⎭⎪⎫0,-52,0,由此可得MN →·n =0. 又因为直线MN ⊄平面ABCD ,所以MN ∥平面ABCD.(2)解:AD 1→=(1,-2,2),AC →=(2,0,0),设n 1=(x 1,y 1,z 1)为平面ACD 1的一个法向量,则⎩⎨⎧n 1·AD 1→=0,n 1·AC→=0, 即⎩⎨⎧x 1-2y 1+2z 1=0,2x 1=0.不妨设z 1=1,可得n 1=(0,1,1).设n 2=(x 2,y 2,z 2)为平面ACB 1的一个法向量,则⎩⎨⎧n 2·AB 1→=0,n 2·AC→=0. 又AB 1→=(0,1,2),所以⎩⎨⎧y 2+2z 2=0,2x 2=0,不妨设z 2=1,可得n 2=(0,-2,1).因此有cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-1010, 于是sin 〈n 1,n 2〉=31010, 所以,二面角D 1ACB 1的正弦值为31010. (3)解:假设存在点E ,使得NE 与平面ABCD 所成角的正弦值为13. 依题意,可设A 1E →=λA 1B 1→,其中λ∈[0,1],则E(0,λ,2),从而NE→=(-1,λ+2,1). 又n =(0,0,1)为平面ABCD 的一个法向量,由已知,得|cos 〈NE →,n 〉|=|NE →·n||NE →||n|=1(-1)2+(λ+2)2+12=13, 整理得λ2+4λ-3=0,解得λ=-2±7.又因为λ∈[0,1],所以λ=7-2.因此,存在点E 满足题设条件,且线段A 1E =7-2.1.对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.2.对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【变式训练】(2016·河北保定调研)如图,在三棱柱ABC A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB =3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的余弦值;(3)在线段BC1上是否存在点D,使得AD⊥A1B?若存在,试求出BDBC1的值.(1)证明:在正方形AA1C1C中,A1A⊥AC.又平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(2)解:由(1)知AA 1⊥AC ,AA 1⊥AB ,由题意知,在△ABC 中,AC =4,AB =3,BC =5,∴BC 2=AC 2+AB 2,∴AB ⊥AC.∴以A 为坐标原点,建立如图所示空间直角坐标系A -xyz.A 1(0,0,4),B(0,3,0),C 1(4,0,4),B 1(0,3,4),于是A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4). 设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1),平面B 1BC 1的法向量n 2=(x 2,y 2,z 2).∴⎩⎨⎧A 1C 1→·n 1=0,A1B →·n 1=0⇒⎩⎨⎧4x 1=0,3y 1-4z 1=0, ∴取向量n 1=(0,4,3).由⎩⎨⎧B 1C 1→·n 2=0,BB1→·n 2=0⇒⎩⎨⎧4x 2-3y 2=0,4z 2=0.取向量n 2=(3,4,0)∴cos θ=n 1·n 2|n 1||n 2|=165×5=1625. 由题图可判断二面角A 1BC 1B 1为锐角, 故二面角A 1BC 1B 1的余弦值为1625. (3)解:假设存在点D(x ,y ,z)是线段BC 1上一点,使AD ⊥A 1B ,且BD →=λBC 1→. ∴(x ,y -3,z)=λ(4,-3,4),解得x =4λ,y =3-3λ,z =4λ,∴AD→=(4λ,3-3λ,4λ), 又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0,解得λ=925, 因为925∈[0,1],所以在线段BC 1上存在点D , 使得AD ⊥A 1B ,此时BD BC 1=925. 热点4 空间向量在几何体中的应用(多维探究)在高考中主要考查通过建立恰当的空间直角坐标系,利用空间向量的坐标运算证明空间中的线、面的平行与垂直关系,计算空间角(特别是二面角),常与空间几何体的结构特征,空间线、面位置关系的判定定理与性质定理等知识综合,以解答题形式出现,难度中等.角度一 线线角、线面角的计算1.(2016·上饶模拟)(1)如图所示,已知三棱柱ABC A 1B 1C 1的所有棱长都相等,且AA 1⊥面ABC ,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.(2)已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.①证明:BN ⊥平面C 1B 1N.②设直线C 1N 与平面CNB 1所成的角为θ,求cos θ的值.解:(1)不妨设三棱柱ABC -A 1B 1C 1的棱长为2,以BA →,BC →,BB 1→作为基向量.由于AA 1⊥平面ABC ,所以BB 1→·BA →=0,BB 1→·BC →=0.∵AB 1→=BB 1→-BA →,BM →=BC →+12BB 1→, ∴AB 1→·BM →=(BB 1→-BA →)·(BC →+12BB 1→) =0+12BB 1→2-BA →·BC →=2-|BA→|·|BC →|·cos 60°=2-2=0. 因此,AB 1→⊥BM →,则直线AB 1与BM 成90°的角. 答案:90°(2)①证明:该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,则BA ,BC ,BB 1两两垂直.以BA ,BB 1,BC 分别为x ,y ,z 轴建立空间直角坐标系,则N(4,4,0),B 1(0,8,0),C 1(0,8,4),C(0,0,4), 因为BN →·NB 1→=0,BN →·B 1C 1→=0,所以BN ⊥NB 1,且BN ⊥B 1C 1,又因为B 1N ∩B 1C 1=B 1, 所以BN ⊥平面B 1NC 1.②解:设n =(x 0,y 0,z 0)为平面CNB 1的一个法向量,则⎩⎨⎧n·CN →=0,n·NB 1→=0即⎩⎨⎧x 0+y 0-z 0=0,x 0-y 0=0,令x 0=1,则n =(1,1,2). 又C 1N →=(4,-4,-4),则sin θ=|cos 〈n ,C 1N →〉|=23,从而cos θ=73.1.第(1)题利用空间向量的线性运算,关键是选择好基底,第(2)题利用垂直关系,建立空间直角坐标系,运用向量的坐标运算,其关键是写对点的坐标.2.解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化.角度二 二面角的计算2.(2015·重庆卷)如图,三棱锥P-ABC 中,PC ⊥平面ABC ,PC =3,∠ACB =π2.D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2.(1)证明:DE⊥平面PCD;(2)求二面角A-PD-C的余弦值.(1)证明:由PC⊥平面ABC,DE⊂平面ABC,得PC⊥DE.由CE=2,CD=DE=2得△CDE为等腰直角三角形,故CD⊥DE.由PC∩CD=C,DE垂直于平面PCD内两条相交直线,故DE⊥平面PCD.(2)解:由(1)知,△CDE为等腰直角三角形,∠DCE=π4.如图,过D作DF垂直CE于F,易知DF=FC=FE=1.又已知EB =1,故FB =2. 由∠ACB =π2,得DF ∥AC ,∴DF AC =FB BC =23, 故AC =32DF =32.以C 为坐标原点,分别以CA→,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C(0,0,0),P(0,0,3),A(32,0,0),E(0,2,0),D(1,1,0),ED→=(1,-1,0),DP →=(-1,-1,3),DA →=(12,-1,0). 设平面PAD 的法向量为n 1=(x 1,y 1,z 1), 由n 1·DP →=0,n 1·DA →=0, 得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0,取n1=(2,1,1).由(1)可知DE⊥平面PCD,故平面PCD的法向量n2可取为ED→,即n2=(1,-1,0),从而法向量n1,n2的夹角的余弦值为cos〈n1,n2〉=n1·n2|n1||n2|=3 6,故所求二面角A-PD-C的余弦值为3 6.1.本题主要考查数学推理论证能力,利用空间向量进行数学运算能力,同时考查化归转化的数学思想.2.求二面角A PD C的余弦值,转化为求两个半平面所在平面的法向量.通过两个平面的法向量的夹角求得二面角的大小,但要注意结合实际图形判断所求角的大小.角度三根据空间角的大小求相关量3.(2014·课标全国Ⅱ卷)如图,四棱锥P-ABCD中,底面ABCD 为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC.(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥EACD的体积.(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB,又EO⊂平面AEC,PB⊄平面AEC.所以PB∥平面AEC.(2)解:因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.→的方向为x轴的正方向,建立空间如图,以A为坐标原点,AB直角坐标系A -xyz ,则D(0,3,0),E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12.设B(m ,0,0)(m>0),则C(m ,3,0),AC →=(m ,3,0). 设n 1=(x ,y ,z)为平面ACE 的法向量, 则⎩⎨⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0,可取n 1=⎝ ⎛⎭⎪⎫3m ,-1,3.又n 2=(1,0,0)为平面DAE 的法向量, 由题设|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32. 因为E 为PD 的中点,所以三棱锥E -ACD 的高为12.三棱锥E -ACD 的体积V =13×12×3×32×12=38.建立恰当的空间直角坐标系,将两平面的法向量用与待求相关的参数(字母)表示,利用两向量的夹角公式构建方程或不等式或函数,进而求解.【变式训练】(2015·江苏卷)如图,在四棱锥PABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.解:以{AB→,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)由题意知,AD ⊥平面PAB ,所以AD→=(0,2,0)是平面PAB 的一个法向量. 因为PC→=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z), 则m·PC →=0,m·PD→=0, 即⎩⎨⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1. 所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD→·m |AD →||m|=33,所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP→=(-1,0,2), 设BQ→=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB→=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ). 又DP→=(0,-2,2), 从而cos 〈CQ →,DP →〉=CQ→·DP →|CQ →|·|DP →|=1+2λ10λ2+2.设1+2λ=t ,t ∈[1,3]. 则cos 2〈CQ→,DP →〉=2t 25t 2-10t +9=29⎝⎛⎭⎪⎫1t -592+209≤910. 当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎪⎫0,π2上是减函数, 所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.1.如图所示,已知直三棱柱ABC-A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.。
立体几何中的向量方法(二)——求空间角和距离1. 空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 2. 点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × )(3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π2],二面角的范围是[0,π].( √ )(5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°.( √ )(6)若二面角α-a -β的两个半平面α、β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )2. 已知二面角α-l -β的大小是π3,m ,n 是异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( )答案 B解析 ∵m ⊥α,n ⊥β,∴异面直线m ,n 所成的角的补角与二面角α-l -β互补. 又∵异面直线所成角的范围为(0,π2],∴m ,n 所成的角为π3.3. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( )A .4B .2C .3D .1答案 B解析 P 点到平面OAB 的距离为 d =|OP →·n||n |=|-2-6+2|9=2,故选B.4. 若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为_________.答案41133解析 ∵n ·a =-8-3+3=-8,|n |=16+1+1=32, |a |=4+9+9=22,∴cos 〈n ,a 〉=n ·a |n|·|a |=-832×22=-41133.又l 与α所成角记为θ,即sin θ=|cos 〈n ,a 〉|=41133.5. P 是二面角α-AB -β棱上的一点,分别在平面α、β上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为________. 答案 90°解析 不妨设PM =a ,PN =b ,如图, 作ME ⊥AB 于E ,NF ⊥AB 于F , ∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0,∴EM →⊥FN →,∴二面角α-AB -β的大小为90°.题型一 求异面直线所成的角例1 长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )思维启迪 本题可以通过建立空间直角坐标系,利用向量BC 1→、AE →所成的角来求. 答案 B解析 建立坐标系如图,则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2). BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010. 思维升华 用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来求解,而两异面直线所成角的范围是θ∈⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],所以要注意二者的区别与联系,应有cos θ=|cos α|.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( )答案 C解析 如图,以D 为坐标原点建立如图所示空间直角坐标系. 设AA 1=2AB =2,则B (1,1,0),E (1,0,1),C (0,1,0),D 1(0,0,2), ∴BE →=(0,-1,1), CD 1→=(0,-1,2),∴cos 〈BE →,CD 1→〉=1+22·5=31010.题型二 求直线与平面所成的角例2 如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 的中点. (1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.思维启迪 平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图), 则A (1,0,0),B (0,1,0).设C (m,0,0),P (0,0,n ) (m <0,n >0),则D (0,m,0),E ⎝ ⎛⎭⎪⎫12,m 2,0.可得PE →=⎝ ⎛⎭⎪⎫12,m 2,-n ,BC →=(m ,-1,0).因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解 由已知条件可得m =-33,n =1, 故C ⎝ ⎛⎭⎪⎫-33,0,0,D ⎝ ⎛⎭⎪⎫0,-33,0,E ⎝ ⎛⎭⎪⎫12,-36,0, P (0,0,1).设n =(x ,y ,z )为平面PEH 的法向量,则⎩⎪⎨⎪⎧n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).又PA →=(1,0,-1), 所以|cos 〈PA →,n 〉|=24.所以直线PA 与平面PEH 所成角的正弦值为24. 思维升华 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2013·湖南)如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.方法一(1)证明如图,因为BB1⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BB1.又AC⊥BD,所以AC⊥平面BB1D,而B1D⊂平面BB1D,所以AC⊥B1D.(2)解因为B1C1∥AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为θ).如图,连接A1D,因为棱柱ABCD-A1B1C1D1是直棱柱,且∠B1A1D1=∠BAD=90°,所以A1B1⊥平面ADD1A1,从而A1B1⊥AD1.又AD=AA1=3,所以四边形ADD1A1是正方形.于是A 1D ⊥AD 1,故AD 1⊥平面A 1B 1D ,于是AD 1⊥B 1D . 由(1)知,AC ⊥B 1D ,所以B 1D ⊥平面ACD 1. 故∠ADB 1=90°-θ, 在直角梯形ABCD 中,因为AC ⊥BD ,所以∠BAC =∠ADB .从而Rt △ABC ∽Rt △DAB ,故AB DA =BC AB, 即AB =DA ·BC = 3.连接AB 1,易知△AB 1D 是直角三角形,且B 1D 2=BB 21+BD 2=BB 21+AB 2+AD 2=21,即B 1D =21.在Rt △AB 1D 中,cos ∠ADB 1=AD B 1D =321=217, 即cos(90°-θ)=217.从而sin θ=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217. 方法二 (1)证明 易知,AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建 立空间直角坐标系.设AB =t ,则相关各点的坐标为A (0,0,0),B (t,0,0),B 1(t,0,3),C (t,1,0),C 1(t,1,3),D (0,3,0),D 1(0,3,3).从而B 1D →=(-t,3,-3),AC →=(t,1,0),BD →=(-t,3,0). 因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0, 解得t =3或t =-3(舍去).于是B 1D →=(-3,3,-3),AC →=(3,1,0), 因为AC →·B 1D →=-3+3+0=0, 所以AC →⊥B 1D →,即AC ⊥B 1D .(2)解 由(1)知,AD 1→=(0,3,3),AC →=(3,1,0), B 1C 1→=(0,1,0).设n =(x ,y ,z )是平面ACD 1的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧3x +y =0,3y +3z =0,令x =1,则n =(1,-3,3). 设直线B 1C 1与平面ACD 1所成角为θ,则sin θ=|cos 〈n ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·B 1C 1→|n |·|B 1C 1→|=37=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217. 题型三 求二面角例3 (2013·课标全国Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.思维启迪 根据题意知∠ACB =90°,故CA 、CB 、CC 1两两垂直,可以C 为原点建立空间直角坐标系,利用向量求二面角.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC . 以C 为坐标原点,CA →的方向为x 轴正方向,CB →的方向为y 轴正 方向,CC 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系Cxyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2), CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2).设n =(x 1,y 1,z 1)是平面A 1CD 的法向量, 则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量, 则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63.思维升华 求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是的中点,D 为AC 的中点.(1)证明:平面POD ⊥平面PAC ; (2)求二面角B -PA -C 的余弦值.(1)证明 如图,以O 为坐标原点,OB ,OC ,OP 所在直线分别 为x 轴,y 轴,z 轴建立空间直角坐标系,则O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D (-12,12,0).设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量, 则由n 1·OD →=0,n 1·OP →=0, 得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.所以z 1=0,x 1=y 1,取y 1=1,得n 1=(1,1,0). 设n 2=(x 2,y 2,z 2)是平面PAC 的一个法向量, 则由n 2·PA →=0,n 2·PC →=0,得⎩⎨⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2.取z 2=1,得n 2=(-2,2,1).因为n 1·n 2=(1,1,0)·(-2,2,1)=0, 所以n 1⊥n 2.从而平面POD ⊥平面PAC . (2)解 因为y 轴⊥平面PAB ,所以平面PAB 的一个法向量为n 3=(0,1,0).由(1)知,平面PAC 的一个法向量为n 2=(-2,2,1). 设向量n 2和n 3的夹角为θ,则cos θ=n 2·n 3|n 2|·|n 3|=25=105.由图可知,二面角B -PA -C 的平面角为锐角,所以二面角B -PA -C 的余弦值为105. 题型四 求空间距离例4 已知正方形ABCD 的边长为4,CG ⊥平面ABCD ,CG =2,E ,F 分别是AB ,AD 的中点,则点C 到平面GEF 的距离为________.思维启迪 所求距离可以看作CG 在平面GEF 的法向量的投影.答案61111解析 建立如图所示的空间直角坐标系Cxyz ,则CG →=(0,0,2),由题意易得平面GEF 的一个法向量为n =(1,1,3), 所以点C 到平面GEF 的距离为d =|n ·CG →||n |=61111.思维升华 求点面距一般有以下三种方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.(2012·大纲全国改编)已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AB =2,CC 1=22,E 为CC 1的中点,则点A 到平面BED 的距离为 ( ) A .2D .1答案 D解析 以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(如图),则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,22),E (0,2,2).设n =(x ,y ,z )是平面BDE 的法向量. 则⎩⎪⎨⎪⎧n ·BD →=2x +2y =0n ·DE →=2y +2z =0.取y =1,则n =(-1,1,-2)为平面BDE 的一个法向量. 又DA →=(2,0,0),∴点A 到平面BDE 的距离是 d =|n ·DA →||n |=|-1×2+0+0|-12+12+-22=1.利用空间向量求角典例:(15分)(2013·江西)如图,四棱锥P -ABCD 中,PA ⊥平面ABCD ,E 为BD 的中点,G为PD 的中点,△DAB ≌△DCB ,EA =EB =AB =1,PA =32,连接CE 并延长交AD 于F .(1)求证:AD ⊥平面CFG ;(2)求平面BCP 与平面DCP 的夹角的余弦值. 思维启迪 (1)可利用判定定理证明线面垂直;(2)利用AD 、AP 、AB 两两垂直建立空间直角坐标系,求两个平面的法向量,利用向量夹角求两个平面BCP 、DCP 夹角的余弦值. 规范解答(1)证明 在△ABD 中,因为E 为BD 的中点, 所以EA =EB =ED =AB =1,故∠BAD =π2,∠ABE =∠AEB =π3.因为△DAB ≌△DCB ,所以△EAB ≌△ECB , 从而有∠FED =∠BEC =∠AEB =π3,所以∠FED =∠FEA .[3分]故EF ⊥AD ,AF =FD , 又因为PG =GD ,所以FG ∥PA . 又PA ⊥平面ABCD ,[5分]所以GF ⊥AD ,故AD ⊥平面CFG .[7分](2)解 以A 为坐标原点建立如图所示的坐标系,则A (0,0,0),B (1,0,0),C ⎝ ⎛⎭⎪⎫32,32,0,D (0,3,0), P ⎝⎛⎭⎪⎫0,0,32, 故BC →=⎝ ⎛⎭⎪⎫12,32,0,CP →=⎝ ⎛⎭⎪⎫-32,-32,32, CD →=⎝ ⎛⎭⎪⎫-32,32,0. [9分]设平面BCP 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·CP →=0n 1·BC →=0即⎩⎪⎨⎪⎧-32x 1-32y 1+32z 1=012x 1+32y 1=0令y 1=-3,则x 1=3,z 1=2,n 1=(3,-3,2). [11分] 同理求得面DCP 的法向量为n 2=(1,3,2),[13分]从而平面BCP 与平面DCP 的夹角θ的余弦值为cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=44×22=24.[15分]利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.温馨提醒(1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.(2)本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范.(3)将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.方法与技巧1.用向量来求空间角,各类角都可以转化为向量的夹角来计算.2.求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段.失误与防范1.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2.求点到平面的距离,有时利用等体积法求解可能更方便.3.求二面角要根据图形确定所求角是锐角还是钝角.A 组 专项基础训练 (时间:40分钟)一、选择题1. 已知正方体ABCD —A 1B 1C 1D 1如图所示,则直线B 1D 和CD 1所成的角为( )A .60°B .45°C .30°D .90°答案 D解析 以A 为原点,AB 、AD 、AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体边长为1,则射线CD 1、B 1D 的方向向量分别是CD 1→=(-1,0,1),B 1D →=(-1,1, -1),cos 〈CD 1→,B 1D →〉=1+0-12×3=0,∴直线B 1D 和CD 1所成的角为90°.2. 如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( )A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角答案 D解析 ∵四边形ABCD 是正方形,∴AC ⊥BD . 又∵SD ⊥底面ABCD ,∴SD ⊥AC .其中SD ∩BD =D ,∴AC ⊥平面SDB ,从而AC ⊥SB . 故A 正确;易知B 正确;设AC 与DB 交于O 点,连接SO .则SA 与平面SBD 所成的角为∠ASO ,SC 与平面SBD 所成的角为∠CSO , 又OA =OC ,SA =SC ,∴∠ASO =∠CSO . 故C 正确;由排除法可知选D.3. (2013·山东)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 ( )答案 B解析 如图所示:S ABC =12×3×3×sin 60°=334.∴VABC -A 1B 1C 1=S ABC ×OP =334×OP =94,∴OP = 3.又OA =32×3×23=1,∴tan ∠OAP =OPOA =3, 又0<∠OAP <π2,∴∠OAP =π3.4. 在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1, 则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0, ∴⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.5. 在四面体P -ABC 中,PA ,PB ,PC 两两垂直,设PA =PB =PC =a ,则点P 到平面ABC 的距离为( )a a答案 B解析 根据题意,可建立如图所示的空间直角坐标系Pxyz ,则P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的距离.∵PA =PB =PC ,∴H 为△ABC 的外心. 又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝ ⎛⎭⎪⎫a 3,a 3,a3.∴PH =⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02=33a . ∴点P 到平面ABC 的距离为33a . 二、填空题6. 已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.答案π4或3π4解析 cos 〈m ,n 〉=m ·n |m ||n |=22,∴〈m ,n 〉=π4.∴两平面所成二面角的大小为π4或3π4.7. 如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1 所成的角是________. 答案 60°解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2, ∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°.8. 正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别为BB 1、CD 的中点,则点F 到平面A 1D 1E 的距离为________.答案3510解析 以A 为坐标原点,AB 、AD 、AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则A 1(0,0,1),E (1,0,12),F (12,1,0),D 1(0,1,1).∴A 1E →=(1,0,-12),A 1D 1→=(0,1,0).设平面A 1D 1E 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1E →=0,n ·A 1D 1→=0,即⎩⎪⎨⎪⎧x -12z =0,y =0.令z =2,则x =1.∴n =(1,0,2). 又A 1F →=(12,1,-1),∴点F 到平面A 1D 1E 的距离为 d =|A 1F →·n ||n |=|12-2|5=3510.三、解答题9. 如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,PA 与平面ABD 所成的角为60°,在四边形ABCD 中,∠ADC =∠DAB =90°,AB =4,CD =1,AD =2.(1)建立适当的坐标系,并写出点B ,P 的坐标; (2)求异面直线PA 与BC 所成的角的余弦值. 解 (1)建立如图空间直角坐标系,∵∠ADC =∠DAB =90°,AB =4,CD =1,AD =2, ∴A (2,0,0),C (0,1,0),B (2,4,0).由PD ⊥平面ABCD ,得∠PAD 为PA 与平面ABCD 所成的角, ∴∠PAD =60°.在Rt △PAD 中,由AD =2, 得PD =23,∴P (0,0,23).(2)∵PA →=(2,0,-23),BC →=(-2,-3,0), ∴cos 〈PA →,BC →〉=2×-2+0×-3+-23×0413=-1313,∴异面直线PA 与BC 所成的角的余弦值为1313. 10.(2013·天津)如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱 AA 1的中点.(1)证明:B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长.方法一 如图,以点A 为原点,以AD ,AA 1,AB 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)证明 易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →= 0,所以B 1C 1⊥CE .(2)解 B 1C →=(1,-2,-1). 设平面B 1CE 的法向量m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1).由(1)知,B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m |·|B 1C 1→|=-414×2=-277,从而sin 〈m ,B 1C 1→〉=217,所以二面角B 1-CE -C 1的正弦值为217. (3)解 AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →|·|AB →|=2λλ2+λ+12+λ2×2=λ3λ2+2λ+1, 于是λ3λ2+2λ+1=26,解得λ=13(负值舍去), 所以AM = 2.方法二 (1)证明 因为侧棱CC 1⊥底面A 1B 1C 1D 1,B 1C 1⊂平面A 1B 1C 1D 1,所以CC 1⊥B 1C 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3, 从而B 1E 2=B 1C 21+EC 21, 所以在△B 1EC 1中,B 1C 1⊥C 1E ,又CC 1,C 1E ⊂平面CC 1E ,CC 1∩C 1E =C 1, 所以B 1C 1⊥平面CC 1E , 又CE ⊂平面CC 1E ,故B 1C 1⊥CE .(2)解 过B 1作B 1G ⊥CE 于点G ,连接C 1G .由(1)知,B 1C 1⊥CE ,故CE ⊥平面B 1C 1G ,得CE ⊥C 1G ,所以∠B 1GC 1为二面角B 1-CE -C 1的平面角.在△CC 1E 中,由CE =C 1E =3,CC 1=2,可得C 1G =263.在Rt △B 1C 1G 中,B 1G =423,所以sin ∠B 1GC 1=217, 即二面角B 1-CE -C 1的正弦值为217.(3)解 连接D 1E ,过点M 作MH ⊥ED 1于点H ,可得MH ⊥平面ADD 1A 1,连接AH ,AM ,则∠MAH 为直线AM 与平面ADD 1A 1所成的角.设AM =x ,从而在Rt △AHM 中,有MH =26x ,AH =346x . 在Rt △C 1D 1E 中,C 1D 1=1,ED 1=2, 得EH =2MH =13x .在△AEH 中,∠AEH =135°,AE =1, 由AH 2=AE 2+EH 2-2AE ·EH cos 135°, 得1718x 2=1+19x 2+23x , 整理得5x 2-22x -6=0,解得x =2(负值舍去). 所以线段AM 的长为 2.B 组 专项能力提升 (时间:30分钟)1. 过正方形ABCD 的顶点A 作线段PA ⊥平面ABCD ,若AB =PA ,则平面ABP 与平面CDP 所成的二面角为( )A .30°B .45°C .60°D .90°答案 B解析 建立如图所示的空间直角坐标系,设AB =PA =1,知A (0,0,0),B (1,0,0),D (0,1,0),C (1,1,0),P (0,0,1)由题意得,AD ⊥平面ABP ,设E 为PD 的中点,连接AE ,则AE ⊥PD ,又∵CD ⊥平面PAD ,∴AE ⊥CD , 又PD ∩CD =D ,∴AE ⊥平面CDP .∴AD →=(0,1,0),AE →=(0,12,12)分别是平面ABP 、平面CDP 的法向量,而〈AD →,AE →〉=45°,∴平面ABP 与平面CDP 所成的二面角为45°.2. 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中点,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于________.答案155解析 以D 为原点,分别以DA 、DC 、DD 1为x 轴、y 轴、z 轴建立 空间直角坐标系,∴F (1,0,0),D 1(0,0,2),O (1,1,0),E (0,2,1), ∴FD 1→=(-1,0,2), OE →=(-1,1,1),∴cos 〈FD 1→,OE →〉=1+25·3=155.3. 设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是________.答案233解析 如图建立空间直角坐标系,则D 1(0,0,2),A 1(2,0,2),D (0,0,0),B (2,2,0),∴D 1A 1→=(2,0,0), DA 1→=(2,0,2),DB →=(2,2,0),设平面A 1BD 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DA 1→=2x +2z =0n ·DB →=2x +2y =0.令x =1,则n =(1,-1,-1),∴点D 1到平面A 1BD 的距离 d =|D 1A 1→·n ||n |=23=233.4. 如图,在底面为直角梯形的四棱锥P —ABCD 中,AD ∥BC ,∠ABC=90°,PA ⊥平面ABCD ,PA =3,AD =2,AB =23,BC =6. (1)求证:BD ⊥平面PAC ; (2)求二面角P —BD —A 的大小.(1)证明 如图,建立空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3),∴AP →=(0,0,3),AC →=(23,6,0),BD →=(-23,2,0). ∴BD →·AP →=0,BD →·AC →=0.∴BD ⊥AP ,BD ⊥AC . 又∵PA ∩AC =A ,∴BD ⊥平面PAC .(2)解 设平面ABD 的法向量为m =(0,0,1), 设平面PBD 的法向量为n =(x ,y ,z ), 则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3),∴⎩⎨⎧-23x +2y =0,-23x +3z =0,解得⎩⎪⎨⎪⎧y =3x ,z =233x .令x =3,则n =(3,3,2),∴cos 〈m ,n 〉=m ·n |m||n |=12.∴二面角P —BD —A 的大小为60°.5. (2013·北京)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5. (1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值. (1)证明 在正方形AA 1C 1C 中,A 1A ⊥AC .又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC , ∴AA 1⊥平面ABC .(2)解 在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,AB ⊥AC∴以A 为坐标原点,建立如图所示空间直角坐标系Axyz .A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1),平面B 1BC 1的法向量n 2=(x 2,y 2,z 2).∴⎩⎪⎨⎪⎧ A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=03y 1-4z 1=0∴取向量n 1=(0,4,3) 由⎩⎪⎨⎪⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0.取向量n 2=(3,4,0)∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=165×5=1625.由题意知二面角A 1-BC 1-B 1为锐角, 所以二面角A 1-BC 1-B 1的余弦值为1625.(3)证明 设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→. ∴(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ. ∴AD →=(4λ,3-3λ,4λ)又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0 则λ=925,因此BD BC 1=925.第7讲 立体几何中的向量方法(二)一、选择题1.两平行平面α,β分别经过坐标原点O 和点A (2,1,1),且两平面的一个法向量n =(-1,0,1),则两平面间的距离是( )D .32解析 两平面的一个单位法向量n 0=⎝ ⎛⎭⎪⎫-22,0,22,故两平面间的距离d =|OA →·n 0|=22. 答案 B2.已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-12,则l与α所成的角为( ).A .30°B .60°C .120°D .150°解析 设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=12,∴θ=30°.答案 A3.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( ).解析 建立坐标系如图,则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2). BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE→|BC 1→||AE →|=3010. 所以异面直线BC 1与AE 所成角的余弦值为3010. 答案 B4.已知直二面角αl β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足,若AB =2,AC =BD =1,则CD =( ).A .2 D .1 解析 如图,建立直角坐标系D xyz ,由已 知条件B (0,0,1),A (1,t,0)(t >0), 由AB =2解得t = 2. 答案 C5.如图,在四面体ABCD 中,AB =1,AD =23,BC =3,CD =2.∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为( ).解析 二面角A -BC -D 的大小等于AB 与CD 所成角的大小.AD →=AB →+BC →+CD →.而AD →2=AB →2+CD →2+BC →2-2|AB →|·|CD →|·cos 〈AB →,CD →〉,即12=1+4+9-2×2cos 〈AB →,CD →〉,∴cos 〈AB →,CD →〉=12,∴AB 与CD 所成角为π3,即二面角A -BC -D 的大小为π3.故选B.答案 B6.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )C .2解析 如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1) 设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ).则⎩⎪⎨⎪⎧m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0x +az =0,令z =-1,得m =(a,1,-1),又平面C 1DC 的一个法向量为n (0,1,0),则由cos60°=m ·n |m ||n |,得1a 2+2=12,即a =2,故AD = 2. 答案 A 二、填空题7.若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为________.解析 cos 〈n ,a 〉=n ·a |n ||a |=-832×22=-41133.又l 与α所成角记为θ,即sin θ=|cos 〈n ,a 〉|=41133.答案41133. 8.若向量a =(1,λ,2),b =(2,-1,2)且a 与b 的夹角的余弦值为89,则λ=________.解析 由已知得89=a ·b |a ||b |=2-λ+45+λ2·9,∴8 5+λ2=3(6-λ),解得λ=-2或λ=255.答案 -2或2559.已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则面AEF 与面ABC 所成的二面角的正切值为________.解析 如图,建立直角坐标系D -xyz ,设DA =1由已知条件A (1,0,0),E ⎝⎛⎭⎪⎫1,1,13,F ⎝⎛⎭⎪⎫0,1,23,AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝ ⎛⎭⎪⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ), 面AEF 与面ABC 所成的二面角为θ,由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3) 平面ABC 的法向量为m =(0,0,-1) cos θ=cos 〈n ,m 〉=31111,tan θ=23.答案2310.在三棱锥O -ABC 中,三条棱OA ,OB ,OC 两两垂直,且OA =OB =OC ,M 是AB 边的中点,则OM 与平面ABC 所成角的正切值是________.解析 如图所示建立空间直角坐标系,设OA =OB =OC =1,则A (1,0,0),B (0,1,0),C (0,0,1),M ⎝ ⎛⎭⎪⎫12,12,0,故AB →=(-1,1,0),AC →=(-1,0,1),OM →=⎝ ⎛⎭⎪⎫12,12,0. 设平面ABC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ⊥AB →,n ⊥AC →,得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,令x =1,得n =(1,1,1).故cos 〈n ,OM →〉=13×22=63, 所以OM 与平面ABC 所成角的正弦值为63,其正切值为 2. 答案 2三、解答题11.如图,四面体ABCD 中,AB 、BC 、BD 两两垂直,AB =BC =BD =4,E 、F 分别为棱BC 、AD 的中点.(1)求异面直线AB 与EF 所成角的余弦值; (2)求E 到平面ACD 的距离;(3)求EF 与平面ACD 所成角的正弦值.解 如图,分别以直线BC 、BD 、BA 为x 、y 、z 轴建立空间直角坐标系,则各相关点的坐标为A (0,0,4)、C (4,0,0)、D (0,4,0),E (2,0,0)、F (0,2,2).(1)∵AB →=(0,0,-4),EF →=(-2,2,2),∴|cos 〈AB →,EF →〉|=⎪⎪⎪⎪⎪⎪-84×23=33,∴异面直线AB 与EF 所成角的余弦值为33. (2)设平面ACD 的一个法向量为n =(x ,y,1),则⎩⎪⎨⎪⎧n ·AC →=0,n ·CD →=0,∵AC →=(4,0,-4),CD →=(-4,4,0),∴⎩⎪⎨⎪⎧4x -4=0,-4x +4y =0,∴x =y =1,∴n =(1,1,1,).∵F ∈平面ACD ,EF →=(-2,2,2),∴E 到平面ACD 的距离为d =|n ·EF →||n |=23=233. (3)EF 与平面ACD 所成角的正弦值为|cos 〈n ,EF →〉|=23×23=1312.如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,PA ⊥平面ABCD ,PA =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面PAC ;(2)求二面角P -BD -A 的大小. (1)证明 如图,建立空间直角坐标系, 则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3),∴AP →=(0,0,3),AC →=(23,6,0), BD →=(-23,2,0).∴BD →·AP →=0,BD →·AC →=0.∴BD ⊥AP ,BD ⊥AC . 又∵PA ∩AC =A ,∴BD ⊥面PAC .(2)解 设平面ABD 的法向量为m =(0,0,1), 设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3),∴⎩⎨⎧-23x +2y =0,-23x +3z =0解得⎩⎪⎨⎪⎧y =3x ,z =233x .令x =3,则n =(3,3,2),∴cos 〈m ,n 〉=m ·n |m||n |=12.∴二面角P -BD -A 的大小为60°.13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC .(2)求二面角A 1-BD -C 1的大小.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点, 故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD . 因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1A 1,所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,CA →的方向为x 轴的正方向,|CA →|为单位长,建立如图所示的空间直角坐标系 C -xyz .由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2). 则A 1D →=(0,0,-1),BD →=(1,-1,1),DC 1→=(-1,0,1). 设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则⎩⎪⎨⎪⎧ n ·BD →=0,n ·A 1D →=0,即⎩⎪⎨⎪⎧x -y +z =0,z =0,可取n =(1,1,0).同理,设m =(x ,y ,z )是平面C 1BD 的法向量,则⎩⎪⎨⎪⎧m ·BD →=0,m ·DC 1→=0,即⎩⎪⎨⎪⎧x -y +z =0,-x +z =0,可取m =(1,2,1).从而cos 〈n ,m 〉=n ·m |n |·|m |=32.故二面角A 1-BD -C 1的大小为30°.14.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE ;(3)求直线BF 和平面BCE 所成角的正弦值.解 方法一:(1)证法一:取CE 的中点G ,连接FG 、BG . ∵F 为CD 的中点,∴GF ∥DE 且GF =12DE ,∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE ,∴GF ∥AB .又AB =12DE ,∴GF =AB .又DE =2AB ,∴四边形GFAB 为平行四边形,则AF ∥BG . ∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴AF ∥平面BCE .证法二:取DE 的中点M ,连接AM 、FM , ∵F 为CD 的中点,∴FM ∥CE .∵AB ⊥平面ACD ,DE ⊥平面ACD ,∴DE ∥AB .又AB =12DE =ME ,∴四边形ABEM 为平行四边形,则AM ∥BE . ∵FM 、AM ⊄平面BCE ,CE 、BE ⊂平面BCE , ∴FM ∥平面BCE ,AM ∥平面BCE . 又FM ∩AM =M ,∴平面AFM ∥平面BCE . ∵AF ⊂平面AFM , ∴AF ∥平面BCE .(2)证明:∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF . 又CD ∩DE =D ,故AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE . ∵BG ⊂平面BCE , ∴平面BCE ⊥平面CDE .(3)在平面CDE 内,过F 作FH ⊥CE 于H ,连接BH , ∵平面BCE ⊥平面CDE ,∴FH ⊥平面BCE . ∴∠FBH 为BF 和平面BCE 所成的角.设AD =DE =2AB =2a ,则FH =CF sin45°=22a ,BF =AB 2+AF 2=a 2+3a2=2a ,在Rt △FHB 中,sin ∠FBH =FH BF =24. ∴直线BF 和平面BCE 所成角的正弦值为24. 方法二:设AD =DE =2AB =2a ,建立如图所示的坐标系A -xyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).∵F 为CD 的中点,∴F ⎝ ⎛⎭⎪⎫32a ,32a ,0.(1)证明:AF →=⎝ ⎛⎭⎪⎫32a ,32a ,0,BE →=(a ,3a ,a ),BC →=(2a,0,-a ),∵AF →=12(BE →+BC →),AF ⊄平面BCE ,∴AF ∥平面BCE .(2)证明:∵AF →=⎝ ⎛⎭⎪⎫32a ,32a ,0,CD →=(-a ,3a,0),ED →=(0,0,-2a ),∴AF →·CD →=0,AF →·ED →=0,∴AF →⊥CD →,AF →⊥ED →. ∴AF →⊥平面CDE ,又AF ∥平面BCE , ∴平面BCE ⊥平面CDE .(3)设平面BCE 的法向量为n =(x ,y ,z ),由n ·BE →=0,n ·BC →=0可得x +3y +z =0,2x -z =0,取n =(1,-3,2).又BF →=⎝ ⎛⎭⎪⎫32a ,32a ,-a ,设BF 和平面BCE 所成的角为θ,则 sin θ=|BF →·n ||BF →|·|n |=2a 2a ·22=24. ∴直线BF 和平面BCE 所成角的正弦值为24.。
•・・点力在AG8.8立体几何中的向量方法(II) ——求空间角、距离一、选择题1. 如图所示,在正方体ABCD~A\BW 。
是底面正方形力救的屮心,必是D\D 的屮点,冲是力必上的动点,则直线冲0、加/的位置关系是().V15 ・6 解析 以〃为原点建立如图所示的空间直角坐标系D~ xyz,则水00,0), C(0,A.平行C.异而垂直解析 建立坐标系如图,设正方体的棱长为2, 则 J(2,0,0), #(0,0, 1), B.相交 D.异而不垂直(9(1, 1,0), M2, t,2), NO= — t, -2),AM= (-2, 0, 1), N0・仙 =0,则直线N0、加孑的 位置关系是异面垂直.答案C2. 正方体ABCD~ A\B\C\D\的棱长为日,点〃在%上且加/=[也,艸为〃/的小点, 则I MN\为().V15・3BA. 设 Mg y. z),答案A3. 在正方体ABC0A\BGD^,M 、"分别为棱创和隅的中点,则sin 〈CM, DZ 的值为().解析设正方体的棱长为2,以〃为坐标原点, 刃为x 轴,加为y 轴,〃〃为2轴建立空间直角坐标系(如图),可知CM= (2, -2, 1),仇V=(2,2, -1),%—► —► —► —► [— cos (CM, D\2sin 〈CM, D {N) =~,答案B 4. 两平行平面a, 0分别经过坐标原点。
和点水2, 1,1),且两平面的一个法 向量/?= (-1,0,1),则两平面间的距离是()A.f B ・¥ C ・£ D. 3^2答案B5. 已知直二面角o-l- /3,点sea,化丄厶C 为垂足,点BW 0, BDL1. D为垂足,若AB=2, AC=BD=\,则Q=( )・解析 如图,建立直角坐标系D~xyz,由已解析两平面的一个单位法向量心=2 /• x=-a,知条件 5(0, 0, 1), J (l,乙0)&>0), 由 AB=2 解得 t=y[2.答案C6. 止方体ABCD —AbCA 中,E 是梭BB 冲点、,0是〃〃中点,厂是%上一点且皿 解析 如图建立直角坐标系1> xyz,设DA=\,由已知条件cosJGB, EF) = " =0,则仞丄必:I GB\ | EF\答案D7. 如图,在直三棱柱ABC-AM 屮,Z 力防=90° , 2AC=AA 、= BC=2・若二而角 B-DC-Q 的大小为60° ,则的长为()A.^2C. 2 解析如图,以C 为坐标原点,CA. CB, %所在的直线分别为/轴,y 轴,z 轴 建立空间直角坐标系,则C (0, 0,0),力(1,0,0), A (0,2, 2),( 1、 (1 1) L b "2>,EF= r °’ GB= =\BQ 则血与莎所成的角为(). A. 30°B. 120°C. 60°D. 90°6 0, 0, 2,〃(1,1, 0), ( 1)%1, L ~y /3 右,D.设 AD=a,则〃点坐标为(1, 0, a), CD = (1, 0, a),CB { = (0, 2, 2),设平面$仞的一个法向量为/n= (x, y, z)・[///• CB X =0 则 一 CD=0得“]=(a, \, -1), 乂平面的一个法向量为刀(0,1,0), 贝ij 由 cos60°故 AD=y[2.答案:A二、填空题8•已知正方体ABCD-A^C^的棱长为1,点戶在线段血上•当ZAPC 最大时,三棱锥 宀力力的体积为 _________ ・解析以〃为坐标原点,刃为/轴,虑为y 轴,酬为z 轴建 立空间直角坐标系(如图),设BP=ABD i9可得戶(人,人,人),故 K>-^=|x|xixix|=^.答案令9.如图,在空间宜角坐标系中有棱长为々的正方体ABCD-AACA,点必是线段 加上的动点,则点〃到直线弭〃距离的最小值为 _______________ ・j2y+2z=0 I 卄 az= 0 再由 cos ZAPC=丽■丽 AP CP 可求得当 ZAPC 最大,解析设〃(0,/〃,/〃)(0W 刃Ww), AD {= 0, a),直线昇〃i 的一个单位方向向O10.若向量a= (1,人,2), b= (2, —1, 2)且a 与方的夹角的余弦值为了则人___ 7 2 ・・.8 ^5+川=3(6 —久),解得久=一2或久=焉・2 答案—2或扁11・正四棱锥S ■应匕9中,。