一元一次方程单元测试题
- 格式:doc
- 大小:205.62 KB
- 文档页数:8
一元一次方程单元测试题 【1 】(时光:90分钟,总分:100分)一.填空题:(本大题10个小题,每小题2分,共20分)在每小题中,请将答案直接填在题后的横线上.1.在0,-1,3中,是方程3x -9=0的解.2.假如3x 52a -=-6是关于x 的一元一次方程,那么a =,方程的解=x .3.若x =-2是关于x 的方程324=-a x 的解,则a =.4.由3x =2x +1变成3x -2x =1,其依据是.5.请你自编一道以5为解的一元一次方程是.6.“代数式9-x 的值比代数式x 32-1的值小6”用方程暗示为.7.当x =时,代数式223x -与32x-互为相反数.8.有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量雷同,则甲桶应向乙桶倒水升.9.假如(5a -1)2+| b +5 |=0,那么a +b =.10.某商场把彩电按标价的8折出售,仍可获利20%,若该彩电的进价为2000元,则标价是.二.选择题:(本大题8个小题,每小题3分,共24分)在每个小题的下面,都给出了代号为A.B.C.D 的四个答案,个中只有一个是准确的,请将准确答案的代号填在题后的括号中.11.下列各式中是一元一次方程的是( ) A.32=x B.2x =3C.2x -3D.x 2+2x =112.下列解方程错误的是( )A.由-31x =9得x =-3B.由7x =6x -1得7x -6x =-1C.由5x =10得x =2D.由3x =6-x 得3x+x =613.在公式s=21(a+b)h 中,已知a=3,h=4,s=16,那么b =( )A. 1B. 3C. 5D. 714.与方程x -1=2x 的解雷同的方程是( )A.x=2x+1B.x -2=1+2xC.x=2x+3D.x=2x -315.将方程xx 24213=+-去分母,准确的是( )A.3x -1=-4x -4B.3x -1+8=2xC.3x -1+8=0D.3x -1+8=4x16.假如方程axa x x =+=2131与 的解雷同,则a 的值是( )A.2B.-2D.-317.小明本年12岁,他爷爷60岁,经由( )年今后,爷爷的年纪是小明的4倍.B18.甲.乙两人演习短距离竞走,测得甲每秒跑7米,乙每秒跑6.5米,假如甲让乙先跑2秒,那么几秒钟后甲可以追上乙?若设x 秒后甲追上乙,列出的方程应为( )B.7x=6.5(x+2)C.D.三.解答题:(本大题3个小题,每小题4分,共12分)解答时每小题必须给出须要的演算进程或推理步调.19.)11(76)20(34y y y y --=--20.511312--=+x x 21.)12(43)]1(31[21+=--x x x 22.75.001.003.02.02.02.03=+-+x x四.解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出须要的演算进程或推理步调.23.当x 取何值时,代数式31--x x 比-53+x 的值大1?24.已知三支笔的价钱依次相差元,买这三支笔共需元,则这三支笔的价钱分离是若干元?25.某校一学生不幸得了白血病,全校学生踊跃捐钱献爱心,经统计初一共有学生420人,平均每人捐了5元,初二共有学生400人,平均每人捐了6元,初三学生平均每人捐了8元,占全校学生捐钱总额的94,则初三学生有若干人?26.某部书稿,甲.乙两个打字员一路打10天可以完成,若由甲单独打需14天完成.现两人合打4天后,余下的书稿由乙单独打,问乙还须要若干天才干完成?五.解答题:(本大题2个小题,每小题10分,共20分)解答时每小题必须给出须要的演算进程或推理步调.27.先浏览下列解题进程,然后解答问题(1).(2)解方程:|x+3|=2解:当x+3≥0时,原方程可化为:x+3=2,解得x=-1当x+3<0时,原方程可化为:x+3=-2,解得x=-5所以原方程的解是x=-1,x=-5(1)解方程:|3x-2|-4=0(2)探讨:当b为何值时,方程|x-2|=b+1 ①无解;②只有一个解;③有两个解.28.某黉舍举办一次登山比赛,有一同窗上山的速度为每小时5千米,下山的速度为每小时10千米,则该同窗往返的平均速度是若干?请解释来由.。
人教版2024—2025学年七年级上册第五章一元一次方程单元测试考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷选择题(每题只有一个正确选项,每小题3分,满分30分)1.方程3x+2(1﹣x)=4的解是()A.x=B.x=C.x=2D.x=12.若代数式4x﹣5与的值相等,则x的值是()A.1B.C.D.23.下列等式根据等式的变形正确的有()①若a=b,则ac=bc;②若ac=bc,则a=b;③若,则a=b;④若a=b,则.A.1个B.2个C.3个D.4个4.解方程时,去分母正确的是()A.3x﹣3=2(x﹣1)B.3x﹣6=2x﹣1C.3x﹣6=2(x﹣1)D.3x﹣3=2x﹣15.古代名著《孙子算经》中有一题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?设有车x辆,则根据题意,可列出方程是()A.3(x+2)=2x﹣9B.3(x+2)=2x+9C.3(x﹣2)=2x﹣9D.3(x﹣2)=2x+96.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250元C.270元D.300元7.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意时,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里8.日历上竖列相邻的三个数,它们的和是39,则第一个数是()A.6B.12C.13D.14 9.若关于x的方程的解是x=2,则常数a的值是()A.﹣8B.5C.8D.10 10.已知关于x的方程有非负整数解,则整数a的所有可能的取值的和为()A.﹣6B.﹣7C.﹣14D.﹣19二、填空题(6小题,每题3分,共18分)11.关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为.12.代数式与代数式3﹣2x的和为4,则x=.13.如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”.如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为.14.关于x的方程x2+bx+2a=0(a、b为实数且a≠0),a恰好是该方程的根,则a+b的值为.15.已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.16.已知关于x的一元一次方程无解,则m=.第II卷人教版2024—2025学年七年级上册第五章一元一次方程单元测试姓名:____________ 学号:____________准考证号:___________ 12345678910题号答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.解方程:﹣=1.18.m为何值时,关于x的方程3x﹣m=2x+1的解是4=2x﹣1的解的2倍.19.七3班数学老师在批改小红的作业时发现,小红在解方程时,把“2﹣x”抄成了“x﹣2”,解得x=8,而且“a”处的数字也模糊不清了.(1)请你帮小红求出“a”处的数字.(2)请你正确地解出原方程.20.已知:方程(m+2)x|m|﹣1﹣m=0①是关于x的一元一次方程.(1)求m的值;(2)若上述方程①的解与关于x的方程x+=﹣3x②的解互为相反数,求a的值.21.对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.22.某超市有线上和线下两种销售方式.与2023年4月份相比,该超市2024年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2023年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2024年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2023年4月份a x a﹣x2024年4月份 1.1a 1.43x(2)求2024年4月份线上销售额与当月销售总额的比值.23.幻方最早源于我国,古人称之为纵横图.概念:在一个3×3方格中填入九个数,使每行、每列、每条斜对角线上的三个数之和都相等,便得到了一个“三阶幻方”.(1)将九个数按上述方式填入如图1所示的幻方中,求a﹣b的值;(2)将九个数按上述方式填入如图2所示的幻方中,分别求m,n的值;方法:下面介绍一种构造三阶幻方的方法——杨辉法:口诀(如图3所示):“九子斜排,上下对易,左右相更,四维挺出.”学以致用:(3)请你将下列九个数:﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入如图4所示的方格中,使得每行、每列、每条斜对角线上的三个数之和都相等.①求每行三个数的和;②将这九个数分别填入如图4所示的方格中,使得每行、每列、每条斜对角线上的三个数之和都相等.24.一般情况下,对于数m和n(mn≠0),(≠表示不等号),但是对于某些特殊的数m和n(mn≠0),能使等式成立,我们把这些特殊的数m和n 称为等式的“分型数对”,记作〈m,n〉.例如当m=1,n=﹣4时,有,那么〈1,﹣4〉就是等式“分型数对”.(1)〈﹣2,6〉,〈5,﹣20〉可以称为等式“分型数对”的是;(2)如果〈2,x〉是等式的“分型数对”,求x的值;(3)若〈a,b〉是等式的“分型数对”(ab≠0),求代数式(6a+3b﹣3)﹣(b﹣2a﹣1)的值.25.如图,在数轴上A点表示数a,B点表示数b,且a,b满足|a+12|+|6﹣b|=0.(1)求A、B两点之间的距离;(2)点C在A点的右侧,D在B点的左侧,AC为14个单位长度,BD为8个单位长度,求点C与点D之间的距离;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q以2个单位长度/秒的速度从点B出发沿负方向运动,则它们几秒钟相遇?相遇点E表示的数是多少?。
2023-2024学年鲁教版六年级数学上册第4章《一元一次方程》单元达标测试题一.选择题:1.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3B.﹣3C.±3D.±22.关于x的方程2x+5a=3的解是x=﹣1,则a的值是()A.1B.4C.D.﹣13.周末小明一家去爬山,上山时每小时走3km,下山时按原路返回,每小时走5km,结果上山时比下山多花h,设下山所用时间为xh,可得方程()A.5(x﹣)=3x B.5(x+)=3xC.5x=3(x﹣)D.5x=3(x+)4.若关于x的一元一次方程k﹣2x﹣4=0的解是x=﹣3,则k的值是()A.﹣2B.2C.6D.105.将一些课外书分给某班学生阅读,若每人分3本,则剩余20本,若每人分4本,则还差25本,设这个班共有x名学生,则可列方程()A.3x+20=4x+25B.3x+20=4x﹣25C.3x﹣20=4x+25 D.20+3x=25﹣4x6.方程|2x+1|=7的解是()A.x=3 B.x=3或x=﹣3 C.x=3或x=﹣4 D.x=﹣47.某外贸服饰店一天内销售两种服装的情况是,甲种服装共卖得200元,乙种服装共卖得100元,若按两种服装的成本分别计算,甲种服装盈利,乙种服装亏本,那么两种服装合起来算该外贸店这一天是()A.盈利B.盈利C.盈利D.盈利8.方程|2x+1|=7的解是()A.x=3B.x=3或x=﹣3C.x=3或x=﹣4D.x=﹣49.方程2x﹣1=3与方程1﹣=0的解相同,则a的值为()A.3B.2C.1D.10.学校组织植树活动,已知在甲处植树的有10人,在乙处植树的有16人,现调10人去支援,使在乙处植树的人数是在甲处植树人数的2倍,设应调往甲处x人,则可列方程为()A.10+x=2(16+10﹣x)B.2(10+x)=16+10﹣xC.10+10﹣x=2(16+x)D.2(10+10﹣x)=16+x11.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:一百馒头一百僧,大僧三个更无争;小僧三人分一个,大僧共得几馒头.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得()个馒头A.25B.72C.75D.9012.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.二.填空题:13.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是千克.15.小马虎在解关于x的方程2a﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x=3,则原方程的解为.16.若2n﹣1=6,则4×2n﹣4=.17.若ab<0,且m=+,则关于x的一元一次方程(m﹣3)x+6=4的解是.18. 如图,数轴上A、B、C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,且c是关于x的方程(m−4)x+16=0的解,则m的值为______。
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)姓名: 考号: 分数:一、单选题(共 24 分)1 .下列各选项是一元一次方程的是( )A .3x 2 + 4 = 5B .m + 2n = 0C .2y +1 = 一3D .4x + 2 > 3 2 .下列运用等式的性质,变形不正确的是( )A .若a = b ,则 a + c = b + cB .若a = b ,则 a 一 3 = b + 3C .若a = b ,则 a 尝 5 = b 尝 5D .若a = b ,则 一2a = 一2b3 .已知方程(k 一 4)x |k|一3 + 5 = 6 是关于x 的一元一次方程,则k 的值为( )A .4B .一4C .4 或一4D .11 4 .如果单项式 x 2m y 与2x 4 y n +3 是同类项,那么n m = ( )A .一9B .9C .一4D .45 .已知x = 1 是关于 x 的方程ax + 2x 一 3 = 0 的解,则 a 的值为( )A .一1B .1C .一3D .36 .若代数式 —1一2x 的值是 1,则 x 的值是( ) 3A .一1B .0C .1D .27 .将一个周长为 42cm 的长方形的长减少 3cm ,宽增加 2cm ,能得到一个正方形.若设长 方形的长为 x cm ,根据题意可列方程为( )A .x + 2 = (42 一 x )一 3B .x 一 3 = (42 一 x )+ 2C .x + 2 = (21一 x )一 3D .x 一 3 = (21一 x )+ 28 .一套仪器由一个 A 部件和三个 B 部件构成,用1m 3 钢材可做 40 个 A 部件或 240 个 B 部 件。
现要用6m 3 钢材制作这种仪器,为了使制作的 A 、B 部件恰好配套,设应用xm 3 钢材制 作 A 部件,则可列方程为( )A .40x 根 3 = 240 根 (6 一 x )B .40x = 240 根 (6 一 x )根 3C .4=40 根 (6 一 x )根 3 = 240xD .40 根 (6 一 x )= 240x 根 33二、填空题(共24 分)9 .若x = 1 是关于x 的方程2x + a = 1 的解,则a = .10 .若代数式2(x - 3) 的值与9 - x 的值互为相反数,x 的值为.11 .如果a + 1 + b - 2 = 0 ,则a -(-b)= .12 .用符号※定义一种新运算a※b =ab+2(a﹣b),若3※x =2021,则x 的值为.13 .已知a:b:c=2:3:5 ,a -b + c = 36 ,则2a +b - 2c = .14 .若方程2x-m =1 和方程3x =2(x-1)的解相同,则m 的值为.15 .某商品标价100 元,现在打6 折出售仍可获利25% ,则这件商品的进价是元.16 .两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30 千米/时,3 小时后甲船能比乙船多航行60 千米,设水流速度是x 千米/时,则可列方程.__________三、解答题(共72 分)17 .解下列方程:(1)16x - 40 = 9x +16 ;(2)4x = 20 x + 16 ;3(3)2(3 - x) = -4(x + 5) ;(4)3(-2x - 5) + 2x = 9 ;(5)1(x - 4) - (3x + 4) = -15;(6)x - 7 - 5x + 8 = 1 .2 2 4 318 .已知 x =2 是方程6x mx + 4 = 0 的解,求m 2 2m 的值.19 .若方程2x 1 = 3 和方程4x a = 2 的解相同,求 a 的值.20 .关于 x 的方程1 ax = 2x + 2a 的解比方程2x 3 =1 的解小 3,求 a 的值.3x 121 .关于 x 的一元一次方程 ── + m = 3 ,其中 m 是正整数.2 (1)当m =2 时,求方程的解;(2)若方程有正整数解,求 m 的值.22 .把一些图书分给某班学生阅读,如果每人分 3 本则剩余 20 本;如果每人分 4 本,则还缺 25 本.这个班有多少学生?23.制作一张桌子需要一个桌面和四个桌腿,1m3 木材可制作20 个桌面或制作400 条桌腿,现有12m3 的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?24 .某校为承办县初中学校内涵建设,需制作一块活动展板,请来师徒两名工人.已知师傅单独完成需4 天,徒弟单独完成需6 天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1 天,师徒两人再合作完成这项工作,问:徒弟共做了几天?25 .如图,在数轴上点A 表示数a ,点B 表示数b ,并且a ,b 满足a +13 +(5 -b)2 = 0 .(1)求点A ,B 之间的距离;(2)点C 在点A 的右侧,点D 在点B 的左侧,AC 为15 个单位长度,BD 为8 个单位长度,求点C ,D 之间的距离;(3)动点P 以3 个单位长度/秒的速度从点A 出发沿数轴正方向运动,同时点Q 以2 个单位长度/秒的速度从点 B 出发沿数轴负方向运动,则它们几秒钟相遇?相遇点E 表示的数是多少?参考答案1 .C2 .B3 .B4 .D5 .B6 .A7 .D8 .A9 ._110 ._311 .112 .201513 ._2714 .-515 .4816 .3(30 + x)_ 3 (30 _ x)= 60317 .(1)x = 8 ;(2)x = _6 ;(3)x = _13 ;(4)x = _6 ;(5)x = ;(6)518 .4819 .a = 620 .321 .(1) x=1(2) m=222 .这个班有45 名学生.23 .用10 立方米做桌面,用2 立方米做桌腿,可以配成200 套桌椅.1224 .(1)两个人合作需要—天完成5(2)3 天25 .(1)18(2)518 (3) 5 ;11565x = _ -17。
一元一次方程单元测试题一、选择题(每题2分,共10分)1. 解下列方程,求x的值:\[ 3x - 5 = 14 \]A. -1B. 3C. 5D. 72. 已知方程 \( ax + b = 0 \) 的解是 \( x = 5 \),那么 \( a \) 和 \( b \) 的关系是:A. \( a = 0 \)B. \( b = 0 \)C. \( 5a + b = 0 \)D. \( 5a = -b \)3. 如果方程 \( 2x - 1 = 7x + 3 \) 的解是正数,那么 \( x \) 的范围是:A. \( x > -1 \)B. \( x > 0 \)C. \( x < 0 \)D. \( x < -1 \)4. 方程 \( 3x + 2 = 2x + 5 \) 的解是:A. \( x = 1 \)B. \( x = 2 \)C. \( x = 3 \)D. \( x = 4 \)5. 根据题目中的信息,下列哪个方程没有解:A. \( x + 2 = 3x \)B. \( x - 5 = 2x + 3 \)C. \( 3x - 4 = 2x + 6 \)D. \( 4x + 5 = 5x - 4 \)二、填空题(每题2分,共10分)6. 解方程 \( 4x + 6 = 2x + 10 \) 后,\( x \) 的值为 _______。
7. 如果 \( x \) 是方程 \( 5x - 3 = 2x + 7 \) 的解,那么 \( 3x \) 的值为 _______。
8. 方程 \( ax - b = 0 \) 的解是 \( x = \frac{b}{a} \),当\( a \) 不等于 _______ 时,方程有唯一解。
9. 已知 \( x \) 是方程 \( 3x + 1 = 2x + 4 \) 的解,那么 \( x- 1 \) 的值为 _______。
10. 如果方程 \( 2x = 6 \) 的解也是方程 \( 3x - 5 = 0 \) 的解,那么 \( x \) 的值为 _______。
人教2024版七年级上册数学第五章一元一次方程单元测试卷一.选择题1.已知关于x的方程3x+a−2=2的解为x=5,则a的值为()A.1B.−11C.−3D.−132.某商品的标价为300元,打8折后销售仍获利40元,该商品的进价为()A.220元B.200元C.180元D.160元3.下列方程变形中,正确的是()A.由y3=0,得y=3B.由2x=3,得x=23C.由2a−3=a,得a=3D.由2b−1=3b+1,得b=24.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组人数的3倍,则变化后乙组的人数有()人.A.12B.13C.14D.155.一船在静水中的速度为20km/h,水流速度为4k m/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为x km,则下列方程正确的是()A.x20+x4=5B.20x+4x=5C.(20+4)x+(20-4)x=5D.x20+4+x20−4=56.某商场举行促销活动,全场商品一律打八折销售.杨老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元7.如图,在数轴上,点A、B表示的数分别为−12,16,(规定数轴上两点A、B之间的距离记为AB).若点C在A,B两点之间,且满足AC−BC=4,则点C对应的数是()A.1B.2C.4D.68.我国古代《孙子算经》中记载了“多人共车”问题:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意是:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车各是多少?若设有x辆车,则可列方程是()A.x3+2=x−92B.3(x−2)=2x+9C.x−23=x−92D.3(x+2)=2x−9二.填空题9.已知x=2是关于x的方程3a+2x=9−x的解,那么关于y的方程2−ay=−1+2y的解为.10.列等式表示“x的3倍与5的和等于x的4倍与2的差”为.11.乐乐在解关于x的方程2x+15−1=x+m2去分母时,方程左边的-1没有乘10,因而求得方程的解为x=4,则这个方程的正确解为12.甲、乙两班共有48人,若从甲班调3人到乙班,此时甲乙两班人数正好相等.那么甲班原来有人.13.幻方最早源于我国,古人称之为纵横图,如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.−1−6−a02a4a−5−2a−3三.计算题14.解方程:(1)2x−13+1=x−22(2)5x−2x−1=x−2四.解答题15.老师在黑板上出了一道解方程的题:2x−13=1−x+24,东东马上举起了手,要求到黑板上去做,他是这样做的:4(2x−1)=1−3(x+2),①8x−4=1−3x−6,②8x+3x=1−6+4,③11x=−1,④x=−111.⑤老师说:东东解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第步(填序号),错误的原因是.现在,请你细心地解下列方程x−32−2x+13=1.16.某车间有28名工人,生产特种螺栓和螺帽,一个螺栓的两头各套上一个螺帽配成一套,每人每天平均生产螺栓12个或螺帽18个.问要有多少工人生产螺栓,其余的工人生产螺帽,才能使一天所生产的螺栓和螺帽刚好配套?17.某校七年级准备观看电影,由各班班长负责买票,每班人数都多于40人,票价每张36元.一班班长问售票员买团体票是否可以优惠,售票员说:“40人以上的团体票有两种优惠方案可选择.方案1:全体人员可打八折;方案2:若打九折,有5人可以免票.”(1)若一班有43名学生,则班长该选择哪个方案?(2)二班班长思考了一会儿说,你知道二班有多少人吗?18.某企业已收购毛竹52.5吨,根据市场信息,将毛竹直接销售,每吨可获得100元,如果对毛竹进行粗加工,每天可加工8吨,每吨可获得1000元;如果进行精加工,每天加工0.5吨,每吨可获得5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,为此研究了两种方案:(1)方案一:将毛竹全部粗加工后销售,则可获利元(2)方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元(3)问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.19.乐乐用的练习本可以到甲、乙两家商店购买,已知两家商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是从第一本起按标价的80%出售.(1)设乐乐要购买x(x>10)本练习本,则当乐乐到甲商店购买时,须付款元,当到乙商店购买时,须付款元.(2)买多少本练习本时,两家商店付款相同?(3)乐乐准备买50本练习本,为了节约开支,选择哪家更合算?。
一元一次方程试题1一、选择题1.下列方程中,属于一元一次方程的是( ) A.0127=+yB.082=+y xC.103=zD.0232=-+x x2.已知ax=ay ,下列等式中成立的是( ) A .x=y B.ax+1=ay-1 C .ax=-ay D.3-ax=3-ay 3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A.40% B.20% C25% D.15% 4.一列长a 米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是( )A .a 米 B .(a +60)米 C .60a 米 D .(60+2a)米 5.解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。
A 、200025101032x x -+= B 、20025100.132x x -+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是( ) A .10 B .52 C .54 D .567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ) A .x -1=5(1.5x ) B .3x +1=50(1.5x ) C .3x -1=(1.5x ) D .180x +1=150(1.5x )8.某商品的进货价为每件x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x 为( ) A .约700元 B .约773元 C .约736元 D .约865元 9.下午2点x 分,钟面上的时针与分针成110度的角,则有( )A . 1105.06+=x xB .1705.06+=x xC .x x 5.01806=-D .505.06+=x x10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为( ) A .15% B .17% C .22% D .80%二、填空题11.若x =-9是方程131-=+m x 的解,则m = 。
《一元一次方程》单元测试题时间:100分钟 满分:110分班别: 座号: 姓名: 分数:一、选择题(每小题3分,共36分)1、方程2x+1=0的解是 ( )(A) 21 (B ) 21- (C ) 2 (D ) —-22、已知下列方程中①x x 22=-、②0.3x=1、③152-=x x、④34=-x x⑤x=6、⑥x+2y=0、⑦x x x x 3222+=+-,其中是一元一次方程的有( )(A ) 2个 (B ) 3个 (C ) 4个 (D )5个3、下列解方程错误的是( )(A )由-31x =9得x =-3 (B)由7x =6x -1得7x -6x =-1(C )由5x =10得x =2 (D )由3x =6-x 得3x+x =64、方程2(x-7)=x+4的解是 ( )(A ) x=—5 (B )x=5 (C ) x=14 (D) x=185、对于等式x x 2131=-,下列变形正确的是 ( )(A ) 1231=+x x (B)1312-=-x x (C )135=x (D) x x 23=-6、下列等式变形错误的是 ( )(A)由a=b,得a+5=b+5 (B )由a=b ,得33-=-ba(C )由x+2=y+2,得x=y (D)由-3x=-3y, 得x=-y7、方程x x 73374-=的解是 ( )(A) x=3 (B) 21=x (C) 21-=x (D ) x=—38、将方程11)14(3)12(7=---x x 去括号后正确的是( )(A)1112714=+--x x (B) 11312714=+--x x(C )11312114=---x x (D) 14x-1—12x+3=119、方程16531=-+x x 的解是 ( ) (A )31- (B) 34 (C) 31 (D) 34- 10、方程)1(4242103-=++x x a 的解为3=x ,则a 的值为( ) (A )2 (B )22 (C)10 (D )-211、A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨。
一元一次方程单元测试题篇1:一元一次方程单元测试题一元一次方程单元测试题一.填空题:(每小题3分,共30分)1.方程的解为____________________;2.相邻5个自然数的和为45,则这5个自然数分别为______________________;3.如果x=1是方程m(x-1)=3(x+m)的解,则m=_________________;4.一根长18米的铁丝围成一个长是宽的2倍的长方形的面积为________________;5.若代数式2x-6的值与0.5互为倒数,则x=____.6.一件衬衫进货价60元,提高50%标价为_______,八折优惠价为________,利润为______;7.小明跑步每秒钟跑4米,则他15秒钟跑_____米,2分钟跑_____米,1小时跑____公里;.8.笼子里鸡和兔总共有56个头,160只脚,设鸡有x只,则兔有___________只,列方程__________________可求出鸡兔的.只数;9.小明今年6岁,他的祖父72岁,__________年后,小明的年龄是他祖父年龄的;10.关于x的一元一次方程2x+a=x+1的解是-4,则方程-ay+1=3的解为:y=________________;二.选择题(每小题3分,共24分)11.方程3(x+1)=2x-1的解是A、x=-4B.x=1C.x=2D.x=-212.某商品提价100%后要恢复原价,则应降价()A30%,B50%,C75%,D100%;13.方程去分母后可得()A3x-3=1+2x,B3x-9=1+2x,C3x-3=2+2x,D3x-12=2+4x;14、小山上大学向某商人贷款1万元,月利率为6‰,1年后需还给商人多少钱?()A17200元,B16000元,C10720元,D10600元;15.小明每秒钟跑6米,小彬每秒钟跑5米,小彬站在小明前10米处,两人同时起跑,小明多少秒钟追上小彬()A5秒,B6秒,C8秒,D10秒;16.甲商品进价为1000元,按标价1200元9折出售,乙商品进价为400元,按标价600元7.5折出售,则甲、乙两商品的利润率()A、甲高B、乙高C、一样高D、无法比较17.某种产,商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。
一元一次方程单元测试(附参考答案)一、填空题1、1y =是方程()232m y y --=的解,则m = 。
2、若()23340x y -++=,则xy = 。
3、如果21m x-+8=0是一元一次方程,则m= 。
4、若3x -的倒数等于12,则x -1= 。
5、今年母女二人年龄之和53,10年前母女二人年龄之和是 ,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x ,则可列方程 。
6、如果方程340x +=与方程3418x k +=是同解方程,则k= 。
7、单项式1414x a b +与9a 2x -1b 4是同类项,则x= 。
8、若52x +与29x -+是相反数,则x -2的值为 。
二、选择题9、下列各式中是一元一次方程的是( )。
A 、1232x y -=- B 、2341x x x -=- C 、1123y y -=+ D 、1226x x-=+ 10、根据“x 的3倍与5的和比x 的13多2”可列方程( )。
A 、3525x x +=- B 、3523x x +=+ C 、3(523x x +=-) D 、3(523xx +=+) 11、解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。
A 、200025101032x x -+= B 、20025100.132x x-+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 12、三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是( )。
A 、56 B 、48 C 、36 D 、1213、方程2152x kx x -+=-的解为-1时,k 的值为( )。
A 、10 B 、-4 C 、-6 D 、-814、已知:()2135m --有最大值,则方程5432m x -=+的解是( )7979B C D 9797A --、、、、 15、若关于x 的方程230m mxm --+=是一元一次方程,则这个方程的解是( )A 、0x =B 、3x =C 、3x =-D 、2x =16、某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )。
一元一次方程单元测试题班级________ 姓名________ 座号________ 分数________一、选择题:(每小题3%,共30%)1.下列方程是一元一次方程的是( )A.3x -2=6y +3B.2m +1=3C. x1+x=1 D.2x -1=x 22.下列方程变形正确的是( )A.由4+x=6得x=6+4B.由3x=-5得x=-53 C.由41y=0得y=4 D.由3-x=-2得x=3+2 3.方程1-3x=0的解是( ) A.-31 B. 31C.-3D.3 4.已知某数比它的2倍小3,若设某数为x,则下列列出的方程不正确的是( ) A.2x=x +3 B.2x -x=3 C.x -3=2x D.x=2x -3 5.如单项式2x 53-n 与-3x )1(2-n 是同类项,则n 为( ) A. 1 B. 2 C. 3 D. 46.当x=2时,代数式ax -2的值为4,则当x=-2时,代数式ax -2的值为( ) A.-8 B.-4 C.2 D.87.某商品以八折的优惠价出售一件,少收入15元,那么原来一件的价格为( ) A.35元 B.60元 C.75元 D.150元8.植树节到了,某学习小组组织大家种树,如每个人种10棵,则还剩6棵;如每个人种12棵,则缺6棵,设该学习小组共有x 人种树,则方程为( )A.10x -6=12x +6B.10x +6=12x -6C.10x +6=12x -6 D.10x -6=12x +6 9.小明在解方程3a -2x=11(x 是未知数)时,误将-2x 看成了+2x,得到的解为x=-2,请聪明的你帮小明算一算,方程正确的解为( )A. x=2B.x=0C. x=-3D.x=110.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a ≠0时,有唯一解x=a b;(2)当a=0,b=0时有无数解;(3)当a=0,b ≠0时无解.请你根据以上知识作答:已知关于x 的方程3x+a=2x -61(x -6)无解,则a 的值是 ( ) A.1 B.-1 C.±1 D.a ≠1二、填空题:(每小题4%,共20%)11.请你写出一个解为-5的一元一次方程_______________. 12.若2(x +3)和3(1-x )互为相反数,则x=________.13.今年母女二人的年龄和为60岁,10年前母亲的年龄是女儿10年前年龄的7倍,则母亲今年的年龄为_________岁.14.一个两位数,十位数字是8,个位数比十位数字小a ,则该两位数为_______. 15.方程│2x +1│=5的解为x=__________.三.解答题:(每小题22%,共22%)16.解方程:5x -3(x -1)=x +1 (7分)17.解方程:62 y =3y+1 (7分)18.已知关于x的方程6x+a=12与方程3x+1=7的解相同,求a的值.(8分)四.解答题:(20题,21题每小题5%,22题,23题,24题每小题6%,25题7% ,共35%)19.甲工厂有某种原料120吨,乙工厂有同样原料96吨,现在每天甲厂用去原料15吨,乙厂用去原料9吨,多少天后两厂剩下的原料数量相等?20. 一次足球赛11轮(即每队均需赛11场),胜一场记2分,平一场记1分,负一场记0分,北京国安队所负场数是所胜场数的 ,结果共得14分,求国安队共平了多少场?一.选择题:1.B;2.D;3.B;4.C;5.C;6.A;7.C;8.B;9.A;10.D.二.填空题:11.略;12.9;13.45;14.470;15.x=2或x=-3三:解答题:16.x=-2;17.y=-8;18.(提示:方程左右两边同乘以10)a=5.5 19.先解得x=2,后再解得a=0 四.解答题:20.m=31-,n=3,m 2-n 2=988-21.a=1522.设x 天后,两厂原料数量相等,则有120-15x=96-9x x=423.设存活期为x 元,则有0.8%x +(4800-x )1.1%=48 x=1600所以存活期1600元,买企业债券3200元.24.(提示:利用长方形的长相等列方程)设第二小的正方形的边长为xcm.则有 x +x +(x +1)=(x +2)+(x +3) x=4 所以长方形的长为13,宽为11,面积=13×11=143㎝225.能赶上火车,有两种可行方案:①小车在送前4 人的同时,剩下的人也同时步行不停的往前走,小车送到火车站后再返回接剩下的人:设小车在送第一批人到火车站后,返回时用了x 小时与步行的人相遇,则有: 60x +x 545(+)=15 x=5211≈12.7 所以共用时间:12.7×2+15≈40.4(分钟) ②先用小汽车把第一批人送到离火车站较近的某一处,让第一批人步行,与此同时第二批人也在步行中;接着小汽车再返回接第二批人,使第二批人与第一批同时到火车站,在整个过程中,每个人不是乘车就是在步行,没有人浪费时间原地不动,所以这样最省时,需37分钟. 一.选择题:1.B;2.D;3.B;4.C;5.C;6.A;7.C;8.B;9.A;10.D.二.填空题:11.略;12.9;13.45;14.470;15.x=2或x=-3三:解答题:16.x=-2;17.y=-8;18.(提示:方程左右两边同乘以10)a=5.5 19.先解得x=2,后再解得a=0 四.解答题:20.m=31-,n=3,m 2-n 2=988-21.a=1522.设x 天后,两厂原料数量相等,则有120-15x=96-9x x=423.设存活期为x 元,则有0.8%x +(4800-x )1.1%=48 x=1600所以存活期1600元,买企业债券3200元.24.(提示:利用长方形的长相等列方程)设第二小的正方形的边长为xcm.则有 x +x +(x +1)=(x +2)+(x +3) x=4 所以长方形的长为13,宽为11,面积=13×11=143㎝225.能赶上火车,有两种可行方案:①小车在送前4 人的同时,剩下的人也同时步行不停的往前走,小车送到火车站后再返回接剩下的人:设小车在送第一批人到火车站后,返回时用了x 小时与步行的人相遇,则有: 60x +x 545(+)=15 x=5211≈12.7 所以共用时间:12.7×2+15≈40.4(分钟) ②先用小汽车把第一批人送到离火车站较近的某一处,让第一批人步行,与此同时第二批人也在步行中;接着小汽车再返回接第二批人,使第二批人与第一批同时到火车站,在整个过程中,每个人不是乘车就是在步行,没有人浪费时间原地不动,所以这样最省时,需37分钟.第十二周《整式》培优专题训练专题一:代数式找规律1.观察下列单项式:54325,4,3,2,a a a a a --,…(1)观察规律,写出第2010和第2011个单项式: ; 。
(2)请你写出第2m 个单项式和第2n+1个单项式。
(m,n 为自然数): ; 。
2.一个多项式为332456b a b a b a a -+-…,按这种规律,第六项是= ,最后一项是= 。
3.观察一列数2,4,8,16,32,…发现从第二项开始,每一项与前一项之比是一个常数,这个常数是= ,如果n a (n 为正整数)表示这个数列的第n 项,那么18a = ,n a = 。
专题二:整体代换问题1.若a a -2=2010,则()201022--a a = 。
2.若式子6432+-x x 的值是9,则16342+-x x 的值是= 。
3.已知代数式xy x +2=2,xy y +2=5,则22352y xy x ++的值是多少?4.当x=2010时,201013=++bx ax ,那么x=-2010时,13++bx ax 的值是多少?ca b专题三:绝对值问题16、有理数a 、b 在数轴上位置如图所示,试化简b b b 322231-++--.17、有理数a 、b 、c 在数轴上的对应点如图,化简代数式:c b a c b a b a -+--++-2专题四:综合计算问题1.若212y x m -与n y x 2-的和是一个单项式,则m= ,n= 。
2.如果关于x 的代数式15222--++-x nx mx x 的值与x 的取值无关,则m= ,n= 。
3.已知m 、n 是系数,且y xy mx +-22与y nxy x 3232++的差中不含二次项,求222n mn m ++的值。
4.已知A=223y x +-,B=2222y x x --,若1+x =2,1-y =3,且x >0,y <0,求A -B 的值。
5.已知7=-+b a b a ,求)(3)(2b a ba b a b a +---+的值;6.若543zy x ==,且1823=+-z y x ,求z y z 35-+的值;7.已知211=+y x ,求代数式yxy x yxy x 535323+++-的值; 8.若t z t y t x 32==,且t z y x 2223=++,求tz y x 5234--的值;9.当7=x 时,代数式885=-+bx ax ,求当7-=x 时,8225++x bx a 的值;10.若b a ,互为相反数,求b b b b b a a a a a 865429753+++++++++的值.11.已知3a b -=,2b c -=;求代数式()2313a c a c -++-的值。
竞赛提高:1.计算220052005.])5[(04.0-⨯得( )2.化简))()()()()()((12121212121212643216842+++++++得( ) A.12823⨯ B. 1282C. 12128+ D. 12128-3.已知a=123456789×987654321,b=123456788×987654322,则下列各式正确的是( ) A.a =b B.a <b C.a >b D.不能确定4.已知.122,62,32===cb a 则下列各式正确的是( ) A.2a=b+c B.2b=a+c C.2c=a+b D.a=b+c5.当2005-=x 时,代数式120032005-+bx ax的值是2005,那么当2005=x 时,代数式 ∴当2005=x 时,。