北师大版初中数学各升中考总复习题完整版
- 格式:docx
- 大小:95.38 KB
- 文档页数:28
A B C31 23 6 78第一部分 选择题(本部分共12小题,每小题3分,共36分。
每小题给出的4个选项中,其中只有一个是正确的)1.12-的相反数等于( )A .12- B .12 C .-2 D .22.如图1所示的物体是一个几何体,其主视图是( )A .B .C .D . 图13.今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为( ) A .5.6×103 B .5.6×104 C .5.6×105 D .0.56×105 4.下列运算正确的是( )A .x 2+x 3=x 5B .(x +y )2=x 2+y 2C .x 2·x 3=x 6D .(x 2)3=x 6 5.某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5, 则这组数据的中位数为( )A .4B .4.5C .3D .26.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( ) A .100元 B .105元 C .108元 D .118元7.如图2,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC 相似的是( )图2 A . B . C . D . 8.如图3是两个可以自由转动的转盘,转盘各被等分成三个扇形, 并分别标上1,2,3和6,7,8这6个数字。
如果同时转动 两个转盘各一次(指针落在等分线上重转),当转盘停止后, 则指针指向的数字和为偶数的概率是( ) A .12 B .29 C .49D .139.已知a ,b ,c 均为实数,若a >b ,c ≠0。
下列结论不一定正确的是( ) A .a c b c +>+ B .c a c b ->- C .22a b c c> D .22a ab b >> 10.对抛物线223y x x =-+-而言,下列结论正确的是( )图7图5 A .与x 轴有两个交点 B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标为(1,-2) 11.下列命题是真命题的个数有( )①垂直于半径的直线是圆的切线; ②平分弦的直径垂直于弦;③若12x y =⎧⎨=⎩是方程x -ay =3的一个解,则a =-1;④若反比例函数3y x=-的图像上有两点(12,y 1),(1,y 2),则y 1<y2。
中考总复习:整式与因式分解—巩固练习(基础)【巩固练习】一、选择题1.下列计算中错误的是( )A.()2532242a b c a bcab ÷-= B.()()2322243216a b a b a ab -÷-= C.214)21(4222-=÷-⋅y x y y x D.3658410221)()(a a a a a a =÷÷÷÷ 2. 已知537x y 与一个多项式之积是736555289821x y x y x y +-,则这个多项式是( )A. 2243x y- B.2243x y xy - C.2224314x y xy -+D.223437x y xy -+ 3.把代数式分解因式,下列结果中正确的是( ) A . B .C .D . 4.(2015•佛山)若(x+2)(x ﹣1)=x 2+mx+n ,则m+n=( )A .1B .﹣2C .﹣1D .25. 如果,则b 为 ( )A .5B .-6C .-5D .66.把2222a b c bc --+进行分组,其结果正确的是( )A. 222()(2)a c b bc ---B. 222()2a b c bc --+C. 222()(2)a b c bc ---D. 222(2)a b bc c --+二、填空题 7.已知2220x +=,则2x 的值为 .8.(1)已知10m =3,10n =2,210m n -__________.(2)已知23m =6,9n =8,643m n -___________.9.分解因式:()()()()26121311x x x x x ----+=_________________. 10.(2015秋•乌海校级期中)在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证 (填写序号).①(a+b )2=a 2+2ab+b 2 ②(a ﹣b )2=a 2﹣2ab+b 2③a 2﹣b 2=(a+b )(a ﹣b ) ④(a+2b )(a ﹣b )=a 2+ab ﹣2b 2.11.多项式可分解为()()5x x b --,则a ,b 的值分别为_________. 12.分解因式:321a a a +--=__ ______.三、解答题13.将下列各式分解因式:(1)22355x x +-; (2)25166x x ++; (3)22616x xy y --; (4).14.(2015春•故城县期末)(1)实验与观察:(用“>”、“=”或“<”填空)当x=﹣5时,代数式x 2﹣2x+2 1;当x=1时,代数式x 2﹣2x+2 1;…(2)归纳与证明:换几个数再试试,你发现了什么?请写出来并证明它是正确的;(3)拓展与应用:求代数式a 2+b 2﹣6a ﹣8b+30的最小值.15. 已知 21x x =+,求下列代数式的值:(1)553x x -+; (2)221x x +.16.若三角形的三边长是a b c 、、,且满足2222220a b c ab bc ++--=,试判断三角形的形状. 小明是这样做的:解:∵2222220a b c ab bc ++--=,∴2222(2)(2)0a ab b c bc b -++-+=. 即()()220a b b c -+-=∵()()220,0a b b c -≥-≥,∴,a b b c a b c ====即.∴该三角形是等边三角形.仿照小明的解法解答问题:已知: a b c 、、为三角形的三条边,且2220a b c ab bc ac ++---=,试判断三角形的形状.【答案与解析】一、选择题1.【答案】D ;【解析】10485631()()22a a a a a a -÷÷÷÷=. 2.【答案】C ; 【解析】这个多项式为()7365555322228982174314x y x y x y x y x y xy +-÷=-+.3.【答案】D ;【解析】运用提取公因式法和公式法因式分解.4.【答案】C ;【解析】∵原式=x 2+x ﹣2=x 2+mx+n ,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选:C .5.【答案】B ;【解析】由题意5306b b =-=-,.6.【答案】D ;【解析】原式=()()222(2)a b bc c a b c a b c --+=+--+.二、填空题7.【答案】5;【解析】由2220x +=得22220x ⋅=.∴ 25x =.8.【答案】(1)29;(2)827; 【解析】(1)()2291010102m n m n -=÷=;(2)()()332642262733988m n m n -=÷==. 9.【答案】()22661x x -+;【解析】原式()()()()26112131x x x x x =----+⎡⎤⎡⎤⎣⎦⎣⎦ ()()222671651x x x x x =-+-++令2671x x u -+=, ()22222u u x x u ux x ++=++()()222661u x x x =+=-+. 10.【答案】 ③;【解析】∵图甲中阴影部分的面积=a 2﹣b 2,图乙中阴影部分的面积=(a+b )(a ﹣b ),而两个图形中阴影部分的面积相等,∴a 2﹣b 2=(a+b )(a ﹣b ).故可以验证③.故答案为:③.11.【答案】10,2a b =-=-;【解析】()()()2555x x b x b x b --=-++,所以53,2b b +==-,5,10a b a ==-.12.【答案】()()211a a +-; 【解析】321a a a +--()()()()221111aa a a a =+-+=+-. 三、解答题13.【答案与解析】(1)22355x x +-=()315x x ⎛⎫+- ⎪⎝⎭; (2)251116623x x x x ⎛⎫⎛⎫++=++ ⎪⎪⎝⎭⎝⎭. (3)()()2261682x xy y x y x y --=-+;(4)因为()()()25242292x x x -+-+=-+所以:原式()()225522x x =+-+-⎡⎤⎡⎤⎣⎦⎣⎦()()2158x x =-+14.【答案与解析】解:(1)把x=﹣5代入x 2﹣2x+2中得:25+10﹣2=33>1;把x=1代入x 2﹣2x+2中得:1﹣2+1=1,故答案为:>,=;(2)∵x 2﹣2x+2=x 2﹣2x+1+1=(x ﹣1)2+1,X 为任何实数时,(x ﹣1)2≥0,∴(x ﹣1)2+1≥1;(3)a 2+b 2﹣6a ﹣8b+30=(a ﹣3)2+(b ﹣4)2+5.∵(a ﹣3)2≥0,(b ﹣4)2≥0,∴(a ﹣3)2+(b ﹣4)2+5≥5,∴代数式a 2+b 2﹣6a ﹣8b+30的最小值是5.15.【答案与解析】(1)()()()2523343111x x x x x x x x x x =⋅=+⋅=+=+++ ()2231213153x x x x x =++=+++=+ ∴55353536x x x x -+=+-+=.(2)已知两边同除以x ,得111,1x x x x =+-=即 ∴22211()21x x x x -=+-= ∴2213x x+=.16.【答案与解析】∵2222222220a b c ab bc ac ++---=∴()()()2222222220a ab b b bc c a ac c -++-++-+= ()()()2220a b b c a c -+-+-= ∴000a b b c a c -=⎧⎪-=⎨⎪-=⎩∴a b c ==,该三角形是等边三角形.。
北师大版数学中考专题复习——几何专题【题型一】考察概念基础知识点型例1如图1,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线是DE ,则△BEC 的周长为 。
例 2 如图2,菱形ABCD 中,60A ∠=°,E 、F 是AB 、AD 的中点,若2EF =,菱形边长是______.DEBCA图1 图2 图3例3 (切线)已知AB 是⊙O 的直径,PB 是⊙O 的切线,AB =3cm ,PB =4cm ,则BC = . 【题型二】折叠题型:折叠题要从中找到对就相等的关系,然后利用勾股定理即可求解。
例4(09绍兴)D E ,分别为AC ,BC 边的中点,沿DE 折叠,若48CDE ∠=°,则APD ∠等于 。
例5如图4.矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿 EF 折叠, 使点A 与点C 重合,折叠后在其一面着色(图),则着色部分的面积为( ) A . 8 B .112C . 4D .52EDBC AP图4 图5 图6【题型三】涉及计算题型:常见的有应用勾股定理求线段长度,求弧长,扇形面积及圆锥体积,侧面积,三角函数计算等。
例6如图3,P 为⊙O 外一点,PA 切⊙O 于A ,AB 是⊙O 的直径,PB 交⊙O 于C ,PA =2cm ,PC =1cm,则图中阴影部分的面积S 是 ( ) A.2235cm π- B 2435cm π- C 24235cm π- D 2232cm π- 图3【题型四】证明题型:(一)三角形全等【判定方法1:SAS 】BD GFF例1 (2011广州)如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且 AE=AF 。
求证:△ACE ≌△ACF例2 (2010长沙)在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . (1)求证:△BEC ≌△DEC ;(2)延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.【判定方法2:AAS (ASA )】例3 如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于 E ,BF DE ∥,交 AG 于F ,求证:AF BF EF =+.【判定方法3:SSS 】例4 (2011浙江台州)如图,在□ABCD 中,分别延长BA ,DC 到点E ,使得AE=AB , CH=CD 连接EH ,分别交AD ,BC 于点F,G 。
初中毕业考试数学试卷(全卷三个大题,共25个小题;考试时间120分钟;满分:120分)注意:考生可将《2008年云南省高中(中专)招生考试说明与复习指导·数学手册》及科学计算器(品牌和型号不限)带入考场使用. 一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.-2的倒数是( )A .12-B .12C . 2D .-22.下列运算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 3.下图中所示的几何体的主视图是( )4.不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <3 5.下列事件是必然事件的是( )A .B .C .D .A .今年6月20日双柏的天气一定是晴天B .2008年奥运会刘翔一定能夺得110米跨栏冠军C .在学校操场上抛出的篮球会下落D .打开电视,正在播广告6.圆锥侧面展开图可能是下列图中的( )7.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )8.如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A .点AB .点BC .点CD .点D二、填空题(本大题共7个小题,每小题3分,满分21分)A .B .C.D .A .B .C . .9.分解因式:21x -= . 10.如图,直线a b ,被直线c 所截,若a b ∥,160∠=°,则2∠= °.11.双柏鄂加老虎山电站年发电量约为156亿千瓦时,用科学记数法表示156亿千瓦时= 千瓦时. 12.函数13y x =-中,自变量x 的取值范围是 . 13.为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.14.下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值是 .15.如图,点P 在AOB ∠的平分线上,若使AOPBOP △≌△, 则需添加的一个条件是 . (只写一个即可,不添加辅助线)三、解答题(本大题共10个小题,满分75分)12c a b兴趣爱好图1图2输入x(2)⨯- 4+输出ABPO16.(本小题6分)先化简,再求值:223(2)()()a b ab b b a b a b --÷-+-,其中112a b ==-,.17.(本小题6分)解分式方程:233x x=-.18.(本小题6分)AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若30P ∠=,求B ∠的度数.19.(本小题8分)如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF =. 请你猜想:BE 与DF 有怎样的位置..关系和数量..关系?并对你的猜想加以证明. AP猜想: 证明:20.(本小题6分)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:(1)作出关于直线AB 的轴对称图形; (2)将你画出的部分连同原图形绕点O 逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.21.(本小题6分)根据“十一五”规划,元双(双柏—元谋)高速工路即将动工.工程需要测量某一条河的宽度.如图,一测量员在河岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得 68=∠ACB .求所测之处河AB 的宽度. (o o o sin68≈0.93,cos68≈0.37,tan68≈2.4822.(本题81(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.A O BABCDE F23.(本小题8分)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.24.(本小题9分)依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元? (2)设x 表示公民每月收入(单位:元),y 表示应交税款(单位:元),当2500≤x ≤4000时,请写出y 关于x 的函数关系式; (3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?25.(本小题(1)~(3)问共12分;第(4)、(5)问为附加题10分,每小题5分,附加题得分可以记入总分,若记入总分后超过120分,则按120分记)已知:抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式; (3)求△ABC 的面积;(4)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S 与m之间的函数关系式,并写出自变量m的取值范围;(5)在(4)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.数学试卷参考答案一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.A 2.B 3.D4.D 5.C 6.D 7.C 8.B 二、填空题(本大题共7个小题,每小题3分,满分21分)9.(x+1)(x-1)10.60 11.1.56×10912.x≠3 13.到5 14.0 15.OA=OB或∠OAP=∠OBP或∠OPA=∠OPB三、解答题(本大题共10个小题,满分75分)16.(本小题6分)解:解:原式22222()a ab b a b =---- 22222a ab b a b =---+ 2ab =-将112a b ==-,代入上式得 原式12(1)2=-⨯⨯-1=17.(本小题6分)解:去分母,得23(3)x x =-去括号,移项,合并,得9x = 检验,得9x =是原方程的根. 18.(本小题6分)PA 切⊙O 于A AB ,是⊙O 的直径, ∴90PAO ∠=.30P ∠=,∴60AOP ∠=.∴1302B AOP ∠=∠=. 19.(本小题8分)猜想:BE DF ∥,BE DF =证明:证法一:如图19- 1四边形ABCD 是平行四边形. BC AD ∴= 12∠=∠ 又CE AF = BCE DAF ∴△≌△ BE DF ∴= 34∠=∠BE DF ∴∥证法二:如图19-2连结BD ,交AC 于点O ,连结DE ,BF .ABCDEF图19-2OAB CDE F 图19-1 2 3 4 1白1白2红白1白2红红白2白1第二次摸出 的球第一次摸出 的球开始四边形ABCD是平行四边形BO OD∴=,AO CO=又AF CE=AE CF∴=EO FO∴=∴四边形BEDF是平行四边形BE DF∴∥20.(本小题6分)如图.三步各计2分,共6分.21.(本小题6分)解:解:在BACRt∆中,68=∠ACB,∴24848.210068tan=⨯≈⋅=ACAB(米)答:所测之处河的宽度AB约为248米22.(本题8分)解:(1)从箱子中任意摸出一个球是白球的概率是23P=(2)记两个白球分别为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率2163P==.23.(本小题8分)解:(1)由题得到:2.2x+2.1y+2(30-x-y)=64 所以y = -2x+40 又x≥4,y≥4,30-x-y≥4,得到14≤x≤18(2)Q=6x+8y+5(30-x-y)= -5x+170Q随着x的减小而增大,又14≤x≤18,所以当x=14时,Q取得最大值,即Q= -5x+170=100(百元)=1万元。
北师大版中考数学总复习第1课时实数的有关概念【知识梳理】1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a0的相反数是0.5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】例1.下列运算正确的是()A.33--=B.3)31(1-=-C3=±D3=-例)A.B C.2-D.2例3.2的平方根是()A.4 B C.D.例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示, 则必有( )A .0a b +>B .0a b -<C .0ab >D .0ab< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( )A .16B .16-C .18D .18-2.2-的倒数是( ) A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<< 4.已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为(A .1B .1-C .12a -D .21a -5.2-的相反数是( ) A .2B .2-C .12D .12-6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 . 8.如果2()13⨯-=,则“”内应填的实数是( )A . 32B .23C .23-D .32-第4题图a 0 例5图第2课时实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.6.有理数的运算律:加法交换律:a+b=b+a(a b、为任意有理数)加法结合律:(a+b)+c=a+(b+c)(a, b,c为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A.伦敦时间2006年6月17日凌晨1时.B.纽约时间2006年6月17日晚上22时.C.多伦多时间2006年6月16日晚上20时.D.汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.-4-5例2图……思考与收获例4.下列运算正确的是( ) A .523=+B .623=⨯C .13)13(2-=- D .353522-=-例5.计算: (1) 911)1(8302+-+--+-π(2)0(tan 45π--+º(3)102)21()13(2-+--;(4)2008011(1)()3π--+-+【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -= D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间 4.如图,数轴上点P 表示的数可能是( ) AB .C . 3.2-D .5.计算:(1)02200960cos 16)21()1(-+--- (2))1112-⎛⎫- ⎪⎝⎭第4题图第3课时 整式与分解因式【知识梳理】1.即n m n m a a a +=⋅(m 、n 为正整数)底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n )乘方法则:幂的乘方,底数不变,指数相乘,即nnnb a ab =)((n 为正整数)零指数:10=a (a≠0);⑤负整数指数:n n aa 1=-(a≠0,n 为正整数); 2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项. (4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)它们的积的2倍,即2222)(b ab a b a +±=±3.式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,式法.⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】 【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2•a 3=a 6 D.6a 2÷2a 2=3a 2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .mC .m +1D .m -1【例3】若2320a a --=,则2526a a +-= . 【例4】下列因式分解错误的是( )A.22()()x y x y x y-=+-B.2269(3)x x x++=+C.2()x xy x x y+=+D.222()x y x y+=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x+-,21412x x++,2122x x-.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a-=,_____________223=---xxx2.对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“⊗”:(a,b)⊗(c,d)=(ac-bd,ad+bc).若(1,2)⊗(p,q)=(5,0),则p=,q=.3. 已知a=1.6⨯109,b=4⨯103,则a2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014.4.先化简,再求值:22()()(2)3a b a b a b a++-+-,其中2332a b=-=,.5.先化简,再求值:22()()()2a b a b a b a+-++-,其中133a b==-,.思考与收获第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中2x =3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,4.解下列方程(1)013522=--+xx x x (2)41622222-=-+-+-x x x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C.D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x有意义;当x 时,该式的值为0.3.计算22()ab ab的结果为 .4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2)x 2)3(x 22x x -=--;(3)11322xx x -=--- (4)11-x 1x 1x 22=+-- 思考与收获第5课时二次根式【知识梳理】1.二次根式:(1)定义:____________________________________叫做二次根式.2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式.(2)根号内不含分母(3)分母上没有根号4几个二次根式就叫做同类二次根式.5.二次根式的乘法、除法公式:(1)a b=ab a0b0⋅≥≥(,)(2)a a=a0b0bb≥(,)6..二次根式运算注意事项:(1化简不正确;④合并出错.(2来简化计算,运算结果一定写成最简二次根式或整式.【思想方法】非负性的应用【例题精讲】【例1】要使式子1xx+有意义,x的取值范围是()A.1x≠B.0x≠C.10x x>-≠且D.10x x≠≥-且【例2】估计132202⨯+的运算结果应在().A.6到7之间B.7到8之间C.8到9之间D.9到10之间【例3】若实数x y,满足22(3)0x y++-=,则xy的值是.【例4】如图,A,B,C,D四张卡片上分别写有523π7-,,,任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A,B,C,D表示);(2)求取到的两个数都是无理数的概率.思考与收获【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)101(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1)01232tan 60(12)+--+-+. (2)cos45°·(-21)-2-(22-3)0+|-32|+121- (3)026312()cos 304sin 6022++-+.2.如图,实数a 、b 在数轴上的位置,化简222()a b a b -思考与收获第6课时 一元一次方程及二元一次方程(组)【知识梳理】1的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 . 3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”助图表等,在得到方程的解后,要检验它是否符合实际意义. 【思想方法】方程思想和转化思想【例题精讲】例1. (1)解方程.x x+--=21152156(2)解二元一次方程组 ⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值. 方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________. 例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= .例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 用电费外,超过部分还要按每度 0.5 元交费. ①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x【当堂检测】1.方程x -=52的解是___ ___.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元. 3.若关于x 的方程x k =-153的解是x =-3,则k =_________. 4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____.5.解下列方程(组):(1)()x x -=--3252; (2)....x x +=-0713715023; (3)⎩⎨⎧=+=+832152y x y x ; (4)x x-+=-21141356.当x =-2时,代数式x bx +-22的值是12,求当x =27.应用方程解下列问题:初一(4付9元,则多了5元,后来组长收了每人8元,自己多付了2板价值多少?8.甲、乙两人同时解方程组8(1)5 (2)mx ny mx ny +=-⎧⎨-=⎩由于甲看错了方程①中的m ,到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确,m n的值.第7课时 一元二次方程【知识梳理】1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法 3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为 4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根. 当b 2-4ac <0时,方程 实数根.【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0(1) 求证:不论k 取什么实数值,这个方程总有实数根;(2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c 个根,求△ABC 的周长.aac b b x 242-±-=【当堂检测】 一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ ②01x 2=+③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=--⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 . 4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = . 5.一元二次方程ax 2+bx+c=0有一根-2,则bc a 4+的值为 .6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k是__________.7.如果关于的一元二次方程的两根分别为3和4是 . 二、选择题:8.对于任意的实数x,代数式x 2-5x +10的值是一个( ) A.非负数 B.正数 C.整数 D.不能确定的数 9.已知(1-m 2-n 2)(m 2+n 2)=-6,则m 2+n 2的值是( ) A.3 B.3或-2 C.2或-3 D. 210.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) (A )x 2+4=0 (B )4x 2-4x +1=0(C )x 2+x +3=0(D )x 2+2x -1=0 11.下面是李刚同学在测验中解答的填空题,其中答对的是( ) A .若x 2=4,则x=2 B .方程x(2x-1)=2x-1的解为x=1 C .方程x 2+2x+2=0实数根为0个 D .方程x 2-2x-1=012.若等腰三角形底边长为8,腰长是方程x 2-9x+20=0的一个根,则这个三角形的周长是( ) A.16 B.18 C.16或18 D.21 三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x 2-4x-4=0(4)x 2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0第8课时 方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要. 【注意点】分式方程的检验,实际意义的检验.【例题精讲】例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0队打了14场,负5场,共得19分,那么这个队胜了( ) A .4场 B .5场 C .6场 D .13场例2. 某班共有学生49人.人数的一半.若设该班男生人数为x ,女生人数为y 算出x 、y 的是( )A .⎩⎨⎧x –y= 49y=2(x+1) B .⎩⎨⎧x+y= 49y=2(x+1) C .⎩⎨⎧x –y= 49y=2(x –1) D .⎩⎨⎧x+y= 49y=2(x –1)例3. 张老师和李老师同时从学校出发,步行15李老师每小时多走1千米?设李老师每小时走x 千米,依题意得到的方程是( )1515115151..12121515115151..1212A B x x x x C D x x x x -=-=++-=-=--例4.用一张信笺,教务处每发出一封信都用3封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,的信笺数为x 张,•信封个数分别为y 个,则可列方程组 . 例5. 团体购买公园门票票价如下: 100别购票,两团共计应付门票费1392元,门票费1080元.(1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?【当堂检测】1. 某市处理污水,需要铺设一条长为1000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.原计划每天铺设管道xm ,则可得方程 .2. “鸡兔同笼”是我国民间流传的诗歌形式的数学题, “头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x y 只,所列方程组正确的是( ) ⎩⎨⎧=+=+100236.y x y x A 3636..2410022100x y x y B C x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩⎩⎨⎧=+=+1002436..y x y x D 3.为满足用水量不断增长的需求,某市最近新建甲、乙、•厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3. (1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A B•型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆型汽车,每辆B 载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到远的郊区进行抢修.维修工骑摩托车先走,15min 结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000已知体彩中心有A 、B 、C 三种不同价格的彩费,进价分别是A•种彩票每张元,B 种彩票每张2元,C 种彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000票方案;(2)若销售A 型彩票一张获手续费0.2元,B 型彩票一张获手续费0.3元,C 彩票一张获手续费0.5最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A 、B 、C 三种彩票20方案.第9课时 方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】 例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( ) A .16 B .25 C .34 D .61例2. 如图,在宽为20米、长为30米的矩形地面上修 建两条同样宽的道路,余下部分作为耕地.若耕地面积 需要551米2,则修建的路宽应为( ) A .1米 B .1.5米 C .2米 D .2.5米 例3. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x = B.22500(1)3600x +=C.22500(1%)3600x += D.22500(1)2500(1)3600x x +++= 例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s 的速度向D移动.⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30kg 30kg以下但不超过50kg50kg以上每千克价格3元 2.5元2元第10课时 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法. 【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( ) A. 0b a >-B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( )A.12x >- B.2x >- C.2x <-D.12x <-例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( ) A. 49kg B. 50kg C. 24kg D. 25kg 例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( ) A .0 B .1 C .2D .3例7.解不等式组:(1)21113x xx +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x4321B A O C)c a (b >-1 01- 10 1- 1 0 1- 1 0 1-第12课时 一次函数图象和性质【知识梳理】1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(kb-,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质【思想方法】数形结合【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积.例2. 已知一次函数y=(3a+2)x -(4-b),求字母a 、b 为何值时: (1)y 随x 的增大而增大; (2)图象不经过第一象限;(3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y 轴交点在x 轴下方.例3. 如图,直线l 1 、l 2相交于点A ,l 1与x 轴的交点坐标为(-1,0),l 2与y 轴的交点坐标为(0,-2),结合图象解答下列问题: (1)求出直线l 2表示的一次函数表达式;(2)当x 为何值时,l 1 、l 2表示的两个一次函数的函数值都大于0?k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图像的大致位置经过象限 第 象限 第 象限第 象限第 象限 性质y 随x 的增大 而y 随x 的增大而而y 随x 的增大 而y 随x 的增大 而xyO 32y x a=+1y kx b=+yxOBA例4.如图,反比例函数xy2=的图像与一次函数bkxy+=的图像交于点A(m,2),点B(-2, n ),一次函数图像与y轴的交点为C.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOC的面积.【当堂检测】1.直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______;2.一次函数1y kx b=+与2y x a=+的图象如图,则下列结论:①0k<;②0a>;③当3x<时,12y y<中,正确的个数是()A.0 B.1 C.2 D.33.一次函数(1)5y m x=++,y值随x增大而减小,则m的取值范围是()A.1m>-B.1m<-C.1m=-D.1m<4.一次函数23y x=-的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.已知函数y kx b=+的图象如图,则2y kx b=+的图象可能是()6.已知整数x满足-5≤x≤5,y1=x+1,y2=-2x+4对任意一个x,m都取y1,y2中的较小值,则m的最大值是()A.1B.2C.24D.-97.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )A.(0,0)B.(22,22-)C.(-21,-21) D.(-22,-22)第2题图第5题图第13课时 一次函数的应用【例题精讲】例题1.某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图像如图所示.⑴月用电量为100度时,应交电费 元; ⑵ 当x≥100时,求y 与x 之间的函数关系式; ⑶ 月用电量为260度时,应交电费多少元?例题2. 在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出t 的取值范围.例题3.某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)2·4·6· 8· S(km) 2 0 t(h) A B1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.图(1) 2 O 5 x A B C P D 图(2)第1题图 例题4.奥林玩具厂安排甲、乙两车间分别加工1000只同一型号的奥运会吉祥物,每名工人每天加工的吉祥物个数相等且保持不变,由于生产需要,其中一个车间推迟两天开始加工.开始时,甲车间有10名工人,乙车间有12名工人,图中线段OB 和折线段ACB 分别表示两车间的加工情况.依据图中提供信息,完成下列各题:(1)图中线段OB 反映的是________车间加工情况;(2)甲车间加工多少天后,两车间加工的吉祥物数相同? (3)根据折线段ACB 反映的加工情况, 请你提出一个问题,并给出解答.【当堂检测】 1.如图(1),在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,则△BCD 的面积是( )A .3B .4C .5D .6 2.如图,在中学生耐力测试比赛中,甲、乙两学生测试的路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( ) A .乙比甲先到终点B .乙测试的速度随时间增加而增大C .比赛到29.4秒时,两人出发后第一次相遇D .比赛全程甲测试速度始终比乙测试速度快 3.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟C .25分钟D .27分钟4.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示.根据图像信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y 与x 之间的函数表达式; (3)求这辆汽车从甲地出发4h 时与甲地的距离.2 B x (天) AC18 20 O 960 1000 y (只) 第2题图 第3题图 第4题图。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯北师大版2021年中考数学总复习《圆》一、选择题1.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种B.2种C.3种D.4种1.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.81.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.20°B.40°C.50°D.80°1.有四个命题,其中正确的命题是( )①经过三点一定可以作一个圆;②任意一个三角形有且只有一外接圆;③三角形的外心到三角形的三个顶点的距离相等;④在圆中,平分弦的直径一定垂直于这条弦A.①②③④B.①②③C.②③④D.②③1.如图,两个圆的圆心都是点O,AB是大圆的直径,大圆的弦BC所在直线与小圆相切于点D.则下列结论不一定成立的是()A.BD=CDB.AC⊥BCC.AB=2ACD.AC=2OD1.如图,PA、PB、AB都与⊙O相切,∠P=60°,则∠AOB等于()A.50°B.60°C.70°D.70°1.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,1.如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)( )A.8﹣π B.16﹣2π C.8﹣2π D.8﹣π二、填空题1.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于.1.如图,四边形ABCD为⊙O的内接四边形,连接AC、BO,已知∠CAB=36°,∠ABO=30°,则∠D= °.1.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.1.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.三、解答题1.如图,AB、CD是⊙O的弦,且AB=CD,OM⊥AB,ON⊥CD,垂足分别是点M、N, BA、DC的延长线交于点P .求证:PA=PC.1.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.1.如图,AB是⊙O的直径,P为AB延长线上一点,PD切⊙O于点C,BC和AD的延长线相交于点E,且AD⊥PD.(1)求证:AB=AE;(2)当AB:BP为何值时,△ABE为等边三角形并说明理由.1.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.参考答案1.答案为:B.1.D1.D1.答案为:D1.C.1.B.1.D1.答案为:C.1.答案为:36°.1.答案为:96.1.答案为:.1.答案为:﹣.1.略1.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.1. (1)证明:连接OC,∵PD切⊙O于点C,∴OC⊥PD;又∵AD⊥PD,∴OC∥AD;∵O是AB的中点,∴OC=0.5AE,而OC=0.5AB,∴AB=AE.(2)解:当AB:BP=2:1时,△ABE是等边三角形.理由如下:由(1),知△ABE是等腰三角形,要使△ABE成为等边三角形,只需∠ABE=60°(或∠EAB=60°),从而∠OCB=60°,∠BCP=∠P=30°,故PB=BC=0.5AB,即当AB:BP=2:1时,△ABE是等边三角形.1.解:一天,毕达哥拉斯应邀到朋友家做客。
中考数学专题复习(压轴题)1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22)2. 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?P图 3B D 图 2B 图 1 AB C D E R PH Q4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.6如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点.(1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.7.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能,求出正方形MEFN 的面积;若不能,请说明理由.C DA B E F NM8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数x k y =的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标 为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为.9.如图16,在平面直角坐标系中,直线y =x 轴交于点A ,与y 轴交于点C ,抛物线2(0)y ax x c a =-+≠经过A B C ,,三点. 友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.(1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.x图16压轴题答案1. 解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得 c=3,b =2∴抛物线的线的解析式为223y x x =-++(2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO BOFD S S S ∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,====所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==, 所以AOB DBE ∆∆.2 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=. (2)QR AB ∥,90QRC A ∴∠=∠=. C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x -∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠. AB CD E R P H Q M 2184cos 1cos 105C ∴∠===,45QMQP ∴=,1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=.②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QRBAC CR CA ==,366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.3解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴ AM ANAB AC =,即43x AN=.∴ AN =43x . ……………2分∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分H Q A B C D E R P H QB 图 1(2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =, ∴ 58OD x =. …………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BC AC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴当x=4996时,⊙O 与直线B C 相切.…………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC∴ △AMO ∽ △ABP .∴ 12AM AO AB AP ==. AM =MB =2. 故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.BD 图 2QBP 图 3∴ 当x =2时,2332.82y =⨯=最大 ……………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABCS PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴()2322PEF S x ∆=-. ……………………………………………… 9分 MNP PEFy S S ∆∆=-=()222339266828x x x x --=-+-.……………………1分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. ……………………11分 综上所述,当83x =时,y 值最大,最大值是2. …………………………12分4 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得k =,P图 4以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o, ∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=32,DH=GH+GD=32+23=532, ∴GB=32BD=32,OH=OE+HE=OE+BG=37222+=∴D(532,72)(3)设OP=x,则由(2)可得D(323,22x x ++)若ΔOPD 的面积为:133(2)224x x += 解得:23213x -±=所以P(23213-±,0)5yxHG E DBA OP67解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H.……………1分∵AB∥CD,∴DG=CH,DG∥CH.∴四边形DGHC为矩形,GH=CD=1.∵DG=CH,AD=BC,∠AGD=∠BHC=90°,D∴△AGD≌△BHC(HL). CMN∴ AG =BH =2172-=-GH AB =3. ………2分 ∵ 在Rt △AGD 中,AG =3,AD =5, ∴ DG =4.∴ ()174162ABCD S +⨯==梯形. ………………………………………………3分(2)∵ MN ∥AB ,ME ⊥AB ,NF ⊥AB ,∴ ME =NF ,ME ∥NF .∴ 四边形MEFN 为矩形.∵ AB ∥CD ,AD =BC , ∴ ∠A =∠B .∵ ME =NF ,∠MEA =∠NFB =90°, ∴ △MEA ≌△NFB (AAS ).∴ AE =BF . ……………………4分 设AE =x ,则EF =7-2x . ……………5分 ∵ ∠A =∠A ,∠MEA =∠DGA =90°, ∴ △MEA ∽△DGA .∴ DGME AG AE =. ∴ ME =x 34. …………………………………………………………6分∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN 矩形. ……………………8分 当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分 (3)能. ……………………………………………………………………10分由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF .即 =34x 7-2x .解,得 1021=x . ……………………………………………11分∴ EF =21147272105x -=-⨯=<4.A B E F G H∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形.8解:(1)由题意可知,()()()131-+=+m m m m .解,得 m =3. ………………………………3分∴ A (3,4),B (6,2);∴ k =4×3=12. ……………………………4分(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k .∴ 直线M 1N 1的函数表达式为232+-=x y . ……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2). ∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k ,∴ 直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . ………………11分(3)选做题:(9,2),(4,5). ………………………………………………2分9解:(1)直线y=-x轴交于点A,与y轴交于点C.(10)A∴-,,(0C, ················································································· 1分点A C,都在抛物线上,3a cc⎧=++⎪∴⎨⎪=⎩3ac⎧=⎪∴⎨⎪=⎩∴抛物线的解析式为2y x x=-- ····················································· 3分∴顶点1F⎛-⎝⎭, ······················································································ 4分(2)存在····································································································· 5分1(0P ·································································································· 7分2(2P ·································································································· 9分(3)存在····································································································10分理由:解法一:延长BC到点B',使B C BC'=,连接B F'交直线AC于点M,则点M就是所求的点.··············································································11分过点B'作B H AB'⊥于点H.B点在抛物线233y x x=-(30)B∴,在Rt BOC△中,tan OBC∠=,x30OBC∴∠=,BC=在Rt BB H'△中,12B H BB''==6BH H'==,3OH∴=,(3B'∴--, ··············································12分设直线B F'的解析式为y kx b=+3k bk b⎧-=-+⎪∴⎨=+⎪⎩解得2kb⎧=⎪⎪⎨⎪=-⎪⎩62y x∴=-························································································13分62yy x⎧=⎪∴⎨=-⎪⎩解得377xy⎧=⎪⎪⎨⎪=-⎪⎩37M⎛∴⎝⎭∴在直线AC上存在点M,使得MBF△的周长最小,此时37M⎛-⎝⎭,.········14分解法二:过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点.连接BH交AC于点M,则点M即为所求.11分过点F作FG y⊥轴于点G,则OB FG∥,BC FH∥.90BOC FGH∴∠=∠=,BCO FHG∠=∠xHFG CBO ∴∠=∠同方法一可求得(30)B ,.在Rt BOC △中,tan 3OBC ∠=,30OBC ∴∠=,可求得3GH GC ==, GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形,AC ∴垂直平分FH .即点H 为点F 关于AC的对称点.03H ⎛∴- ⎝⎭, ············································ 12分设直线BH 的解析式为y kx b =+,由题意得03k b b =+⎧⎪⎨=⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩y ∴=······················································································· 13分y y ⎧=-⎪∴⎨⎪=⎩解得37x y ⎧=⎪⎪⎨⎪=⎪⎩37M ⎛∴ ⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛⎫- ⎪ ⎪⎝⎭,. 110解:(1)点E 在y 轴上 ·············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分(2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM = 点D 在第一象限, ∴点D 的坐标为12⎫⎪⎪⎝⎭, ··············································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A 的坐标为( ················································································· 6分抛物线2y ax bx c =++经过点E , 2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨+=⎪⎩解得899a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴所求抛物线表达式为:28299y x x =--+ ·················································· 9分 (3)存在符合条件的点P ,点Q . ·································································· 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ······················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =--+上282299m m ∴--+= 解得,10m =,2m =1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形, PQ OB ∴∥,PQ OB ==∴当点1P 的坐标为(02),时,点Q的坐标分别为1(Q,2Q ; 当点2P的坐标为2⎛⎫ ⎪ ⎪⎝⎭时,点Q的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ··········································· 14分 (以上答案仅供参考,如有其它做法,可参照给分)。
北师大版九年级数学中考复习试题及答案全套(共9套)《数与式》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题2分,共24分)1.下列各数:π3,sin 30°,-3,4,其中无理数的个数有( B )A .1个B .2个C .3个D .4个2.某种药品说明书上标明保存温度是(20±3) ℃,则该药品最合适保存的温度范围是 ( C )A .17℃~20℃B .20℃~23℃C .17℃~23℃D .17℃~24℃3.下列运算中,正确的是( D ) A .a 2+a 2=2a 4 B .(a -b )2=a 2-b 2 C .(-x 6)·(-x )2=x 8D .(-2a 2b )3÷4a 5=-2ab 3 4.中国的“天眼”绝对是我们中国人的骄傲,它可以一眼看穿130亿光年以外,换句话来说就是它可以接收到130亿光年之外的电磁信号,几乎已经可以达到我们人类现在所了解到的宇宙的极限边缘.数据130亿(精确到亿位)正确的表示是( B )A .1.3×1010B .1.30×1010C .0.13×1011D .130×1085.设n 为正整数,且n <65<n +1,则n 的值为( D ) A .5 B .6 C .7D .86.如果ab >0,a +b <0,那么下面各式:①a b =ab;②a b ·ba=1;③ab ÷ab=-b ,其中正确的是( B )A .①②B .②③C .①③D .①②③7.若最简二次根式3a -12a +5b 与a -2b +8是同类二次根式,则a 、b 的值为( A )A .a =1,b =1B .a =2,b =-1C .a =-2,b =1D .a =-1,b =18.整数n 满足n <26<n +1,则n 的值为( A ) A .4 B .5 C .6D .79.实数a 、b 在数轴上的位置如图所示,且|a |>|b |,则化简a 2-|a +b |的结果为( C )A .2a +bB .-2a +bC .bD .2a -b10.如图1,把一个长为2m ,宽为2n (m >n )的矩形两次对折后展开,再用剪刀沿图中折痕剪开,把它分成四块完全相同的小矩形,最后按如图2那样拼成一个正方形,则中间空的部分的面积是( C )A .2mB .(m +n )2C .(m -n )2D .m 2-n 211.把所有正偶数从小到大排列,并按如下规律分组:第一组:2,4;第二组:6,8,10,12;第三组:14,16,18,20,22,24;第四组:26,28,30,32,34,36,38,40……则现有等式A m =(i ,j )表示正偶数m 是第i 组第j 个数(从左到右数),如A 10=(2,3),则A 2020=( B )A .(31,63)B .(32,18)C .(33,16)D .(34,2)12.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1、E 1、E 2、C 2、E 3、E 4、C 3、…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A 2020B 2020C 2020D 2020的边长是( D )A .⎝⎛⎭⎫122019B .⎝⎛⎭⎫122020C .⎝⎛⎭⎫332020D .⎝⎛⎭⎫332019二、填空题(每小题2分,共16分) 13.若分式x +1x -1有意义,则x 的取值范围为__x ≥-1且x ≠1__. 14.计算:2(2-3)+6=__2__.15.将多项式m 2n -2mn +n 分解因式的结果是__n (m -1)2__. 16.若y =x -4+4-x 2-2,则(x +y )y =__14__.17.中国清代学者华衡芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,说明了所谓“代数”,就是用符号来代表数的一种方法.若实数a 用代数式表示为13+12n ,实数b 用代数式表示为12n -13,则a -b 的值为__23__.18.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出输出的结果为12,…,则第2020次输出的结果为__3__.19.若x 2-3x +1=0,则x 2x 4+x 2+1的值为__18__.20.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=12+122+123+…+12n +….图1 图2图2也是一种无限分割:在△ABC 中,∠C =90°,∠B =30°,过点C 作CC 1⊥AB 于点C 1,再过点C 1作C 1C 2⊥BC 于点C 2,又过点C 2作C 2C 3⊥AB 于点C 3,如此无限继续下去,则可将△ABC 分割成△ACC 1、△CC 1C 2、△C 1C 2C 3、△C 2C 3C 4、…、△C n -2C n -1C n 、….假设AC =2,这些三角形的面积和可以得到一个等式是=2⎣⎡⎦⎤1+34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -1+⎝⎛⎭⎫34n +…__.三、解答题(共60分) 21.(8分)计算: (1)⎝⎛⎭⎫46-412+38÷22; 解:(1)原式=(46-22+62)÷22=(46+42)÷22=23+2. (2)⎝⎛⎭⎫-12-2-|3-2|+(2-1.414)0-3tan 30°-(-2)2.解:原式=4-(2-3)+1-3×33-2=4-2+3+1-3-2=1. 22.(5分)已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2)(1+2)=-1,∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-22)2-2×(-22)+(-1)=7+4 2.23.(5分)已知实数a 、b 、c 满足|a +6|+b -2+(c -3)2=0,求-abc 的值. 解:∵|a +6|+b -2+(c -3)2=0,∴a +6=0,b -2=0,c -3=0,∴a =-6,b =2,c =3,∴-abc =-(-6)×2×3=36=6.24.(5 分)化简:⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷⎝⎛⎭⎫1-4x . 解:原式=⎣⎢⎡⎦⎥⎤x +2x (x -2)-x -1(x -2)2÷x -4x =x 2-4-(x 2-x )x (x -2)2·x x -4=x -4x (x -2)2·x x -4=1x 2-4x +4. 25.(5分)先化简,再求值:a 4-b 4a 2-2ab +b 2×b -aa 2+b 2,其中a =2019,b =2020.[:学科网] 解:原式=(a 2+b 2)(a +b )(a -b )(a -b )2·-(a -b )a 2+b 2=-(a +b )=-a -b .当a =2019,b =2020时,原式=-2019-2020=-4039.26.(5分)先化简,再求值:a -2a 2-1÷⎝⎛⎭⎪⎫a -1-2a -1a +1,其中a 是方程x 2-x =6的根. 解:原式=a -2a 2-1÷(a +1)(a -1)-(2a -1)a +1=a -2a 2-1÷a 2-2a a +1=1a 2-a .∵a 是方程x 2-x =6的根,∴a 2-a =6,∴原式=16.27.(6分)先化简,再求值:a 2-6ab +9b 2a 2-2ab ÷⎝⎛⎭⎫5b 2a -2b -a -2b -1a ,其中a 、b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2. 解:原式=(a -3b )2a (a -2b )÷⎣⎢⎡⎦⎥⎤5b 2a -2b -(a -2b )(a +2b )a -2b -1a =(a -3b )2a (a -2b )÷9b 2-a 2a -2b -1a =(a -3b )2a (a -2b )·a -2b(3b -a )(3b +a )-1a =-(a -3b )a ()3b +a -1a =-(a -3b )a (3b +a )-3b +a a (3b +a )=-2a a (3b +a )=-2a +3b .解⎩⎪⎨⎪⎧ a +b =4,a -b =2,得⎩⎪⎨⎪⎧a =3,b =1.∴当a =3,b =1时,原式=-23+3×1=-13.28.(6分)先化简,再求值:x 2+x x 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,其中整数x 满足-2<x ≤2. 解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2×x (x -1)x +1=x 2x -1.其中⎩⎪⎨⎪⎧x 2-2x +1≠0,x (x -1)≠0,x +1≠0,即x ≠-1、0、1.又∵-2<x ≤2,且x 为整数,∴x =2.将x =2代入x 2x -1中,得原式=222-1=4. 29.(7分)如果一个正整数能表示为两个连续奇数的平方差,那么我们称这个正整数为“和谐数”,如8=32-12,16=52-32,24=72-52,因此,8,16,24这三个数都是“和谐数”.(1)在32,75,80这三个数中,是和谐数的是__32,80__;(2)若200为和谐数,即200可以写成两个连续奇数的平方差,则这两个连续奇数的和为__100__;(3)小鑫通过观察发现以上求出的“和谐数”均为8的倍数,设两个连续奇数为2n -1和2n +1(其中n 取正整数),请你通过运算验证“和谐数是8的倍数”这个结论是否正确.证明:∵(2n +1)2-(2n -1)2=4n 2+4n +1-(4n 2-4n +1)=4n 2+4n +1-4n 2+4n -1=8n ,∴“和谐数是8的倍数”这个结论是正确的.30.(8分)观察下列等式:第一个等式:a 1=21+3×2+2×22=12+1-122+1; 第二个等式:a 2=221+3×22+2×(22)2=122+1-123+1; 第三个等式:a 3=231+3×23+2×(23)2=123+1-124+1; 第四个等式:a 4=241+3×24+2×(24)2=124+1-125+1.按上述规律,回答下列问题:(1)请写出第六个等式:a 6=__261+3×26+2×(26)2__=__126+1-127+1__; (2)用含n 的代数式表示第n 个等式:a n =__2n1+3×2+2×(2)__=__12+1-12++1;(3)a 1+a 2+a 3+a 4+a 5+a 6=__1443__(得出最简结果);(4)计算:a 1+a 2+…+a n . 解:原式=12+1-122+1+122+1-123+1+…+12n+1-12n +1+1=12+1-12n +1+1=2n +1-23(2n +1+1).《函数的图象与性质》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题3分,共30分) 1.函数y =x +2x -3的自变量的取值范围是( C ) A .x ≠3B .x ≥-2C .x ≥-2且x ≠3D .x ≥32.一辆复兴号高铁从青州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,复兴号到达下一个高铁站停下,乘客上、下车后,复兴号又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出这辆复兴号高铁在这段时间内的速度变化情况的是( D )3.已知二次函数y =-(x -h)2+4(h 为常数),在自变量x 的值满足1≤x ≤4的情况下,与其对应的函数值y 的最大值为0,则h 的值为( A )A .-1和6B .2和6C .-1和3D .2和34.若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( C ) A .(2,2)B .(-2,-2)C .(2,2)或(-2,-2)D .(-2,2)或(2,-2)5.一次函数y =kx -k 与反比例函数y =kx在同一直角坐标系内的图象大致是( C )6.如图,A 、B 两点在双曲线y =4x上,分别经过A 、B 两点向坐标轴作垂线段,已知S阴影=1,则S 1+S 2=( D )A .3B .4C .5D .67.抛物线y =x 2-4x +3的图象向右平移2个单位长度后所得新抛物线的顶点坐标为( A )A .(4,-1)B .(0,-3)C .(-2,-3)D .(-2,-1)8.设A (-2,y 1)、B (1,y 2)、C (2,y 3)是抛物线y =-(x +1)2+m 上的三点,则y 1、y 2、y 3的大小关系为( A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 1>y 39.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①a +b +c <0;②a -b +c <0;③b +2a <0;④abc >0.其中所有正确结论的序号是( C )A .③④B .②③C .①④D .①②③10.如图,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点O 重合.在边AB 从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数y =kx(k ≠0)中k 的值的变化情况是( C )A .一直增大B .一直减小C .先增大后减小D .先减小后增大二、填空题(每小题3分,共18分)11.一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则k ·b 的值是__2或-7__.12.若抛物线y =x 2+bx +c 与x 轴只有一个交点,且过点A (m ,n ),B (m +6,n ),则n =__9__.13.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是__m >1__.14.如图,直线x =2与反比例函数y =2x 和y =-1x 的图象分别交于A 、B 两点,若点P是y 轴上任意一点,则△P AB 的面积是__1.5__15.如图,点A 在双曲线y =6x 上,过点A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当OA =4时,则△ABC 周长为16.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8 m ,两侧距地面4 m 高处各有一盏灯,两灯间的水平距离为6 m ,则这个门洞的高度为__9.1__m.(精确到0.1 m)三、解答题(共52分)17.(6分)已知一次函数的图象与x 轴、y 轴分别交于点A (-2,0)、B (0,3).(1)求这个一次函数的解析式;(2)过点B 的另外一条直线l 与x 轴交于点C (c,0),若点A 、B 、C 构成面积不大于6的三角形,求c 的取值范围.解:(1)设一次函数解析式为y =kx +b ,把A (-2,0)、B (0,3)代入,得⎩⎪⎨⎪⎧-2k +b =0,b =3,解得⎩⎪⎨⎪⎧k =32,b =3,所以一次函数解析式为y =32x +3.(2)根据题意得12·3·|c +2|≤6,即|c +2|≤4,所以-6≤c ≤2且c ≠-2.18.(6分)在平面直角坐标系中,已知点A (4,0),点B (0,3),点P 从点A 出发,以每秒1个单位的速度在x 轴上向右平移,点Q 从B 点出发,以每秒2个单位的速度沿直线y =3向右平移,又P 、Q 两点同时出发,设运动时间为t 秒.(1)当t 为何值时,四边形OBPQ 的面积为8; (2)连接AQ ,当△APQ 是直角三角形时,求Q 的坐标.解:(1)设运动时间为t 秒,BQ =2t ,OP =4+t ,则S =12(3t +4)×3=8,解得t =49.(2)当∠QAP =90°时,Q (4,3);当∠QP A =90°时,Q (8,3);当∠AQP =90°时,不存在Q 点的坐标,故Q 点坐标为(4,3)、(8,3).19.(6分)如图1所示,在A 、B 两地之间有汽车站C 站,客车由A 地驶往C 站,货车由B 地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C 站的距离y 1、y 2(千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:A 、B 两地相距__420__千米;(2)求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式; (3)客、货两车何时相遇?解:(2)由图可知货车的速度为60÷2=30(千米/时),货车到达A 地一共需要2+360÷30=14(小时).设y 2=kx +b ,代入点(2,0)、(14,360),得⎩⎪⎨⎪⎧ 2k +b =0,14k +b =360,解得⎩⎪⎨⎪⎧k =30,b =-60,所以y 2=30x -60.(3)设y 1=mx +n ,代入点(6,0)、(0,360),得⎩⎪⎨⎪⎧ 6m +n =0,n =360,解得⎩⎪⎨⎪⎧m =-60,n =360,所以y 1=-60x +360.由y 1=y 2,得-60x +360=30x -60,解得x =143.故客、货两车经过143小时相遇.20.(6分)已知某市2017年企业用水量x (吨)与该月应缴的水费y (元)之间的函数关系如图.(1)当x ≥50时,求y 关于x 的函数关系式;(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量; (3)为贯彻省委发展战略,鼓励企业节约用水,该市自2019年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x 超过80吨,则除按2018年收费标准收取水费外,超过80吨部分每吨另加收x20元,若某企业2019年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y 关于x 的函数关系式y =kx +b .∵直线y =kx +b 经过点(50,200),(60,260),∴⎩⎪⎨⎪⎧ 50k +b =200,60k +b =260,解得⎩⎪⎨⎪⎧k =6,b =-100,∴y 关于x 的函数关系式是y =6x -100.(2)由图可知,当y =620时,x >50,∴6x -100=620,解得x =120.故该企业2018年10月份的用水量为120吨.(3)由题意得6x -100+x20(x -80)=600,化简,得x 2+40x -14 000=0,解得x 1=100,x 2=-140(不合题意,舍去).故这个企业2019年3月份的用水量是100吨.21.(6分)如图,已知抛物线y =ax 2+32x +c (a ≠0)与y 轴交于A (0,4),与x 轴交于B 、C两点,点C 坐标为(8,0),连接AB 、AC .(1)求抛物线的解析式;(2)判断△ABC 的形状,并说明理由.解:(1)∵抛物线y =ax 2+32x +c 与y 轴交于A (0,4),与x 轴交于B 、C 两点,点C 坐标为(8,0),∴⎩⎪⎨⎪⎧c =4,64a +12+c =0,解得⎩⎪⎨⎪⎧a =-14,c =4,∴抛物线的解析式为y =-14x 2+32x +4.(2)△ABC 为直角三角形,理由如下:当y =0时,即-14x 2+32x +4=0,解得x 1=8,x 2=-2,∴点B 的坐标为(-2,0).在Rt △ABO 中,AB 2=BO 2+AO 2=22+42=20.在Rt △ACO 中,AC 2=CO 2+AO 2=82+42=80.∵BC =OB +OC =2+8=10,∴在△ABC 中,AB 2+AC 2=20+80=102=BC 2,∴△ABC 是直角三角形.22.(7分)如图,已知A ⎝⎛⎭⎫-4,12,B (-1,2)是一次函数y =kx +b 与反比例函数y =mx (m ≠0,m <0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC 、PD ,若△PCA 和△PDB 面积相等,求点P 的坐标.解:(1)当-4<x <-1时,一次函数图象在反比例函数图象上方,故一次函数的值大于反比例函数的值.(2)设一次函数的解析式为y =kx +b .∵y =kx +b 的图象过点⎝⎛⎭⎫-4,12,(-1,2), ∴⎩⎪⎨⎪⎧-4k +b =12,-k +b =2,解得⎩⎨⎧k =12,b =52,故一次函数的解析式为y =12x +52.反比例函数y =mx图象过点(-1,2),则m =-1×2=-2.(3)连接PC 、PD ,设P ⎝⎛⎭⎫x ,12x +52.由△PCA 和△PDB 面积相等,得12×12×(x +4)=12×|-1|×⎝⎛⎭⎫2-12x -52,解得x =-52,则y =12x +52=54,∴点P 的坐标是⎝⎛⎭⎫-52,54. 23.(7分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =-10x +500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?解:(1)当x =20时,y =-10x +500=-10×20+500=300,300×(12-10)=600,即政府这个月为他承担的总差价为600元.(2)依题意,得w =(x -10)(-10x +500)=-10x 2+600x -5000=-10×(x -30)2+4000.∵a =-10<0,∴当x =30时,w 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意,得-10x 2+600x -5000=3000,解得x 1=20,x 2=40.∵a =-10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,w ≥3000.又∵x ≤25,∴当20≤x ≤25时,w ≥3000.设政府每个月为他承担的总差价为p 元,则p =(12-10)×(-10x +500)=-20x +1000.∵k =-20<0.∴p 随x 的增大而减小,∴当x =25时,p 有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.24.(8分)如图,已知抛物线y =-14x 2-12x +2与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A 、B 、C 的坐标;(2)点E 是此抛物线上的点,点F 是其对称轴上的点,求以A 、B 、E 、F 为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M ,使得△ACM 是等腰三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)令y =0,得-14x 2-12x +2=0,∴x 2+2x -8=0,解得x =-4或2,∴点A 坐标为(2,0),点B 坐标为(-4,0).令x =0,得y =2,∴点C 坐标为(0,2).(2)①AB 为平行四边形的边时,∵AB =EF =6,对称轴x =-1,∴点E 的横坐标为-7或5,∴点E 坐标为⎝⎛⎭⎫-7,-274或⎝⎛⎭⎫5,-274,此时点F ⎝⎛⎭⎫-1,-274,∴以A 、B 、E 、F 为顶点的平行四边形的面积为6×274=812;②当点E 在抛物线顶点时,点E ⎝⎛⎭⎫-1,94,设对称轴与x 轴交点为M ,令EM 与FM 相等,则四边形AEBF 是菱形,此时以A 、B 、E 、F 为顶点的平行四边形的面积为12×6×92=272.(3)如图所示,①当C 为顶点时,CM 1=CA ,CM 2=CA ,作M 1N ⊥OC 于点N .在Rt △CM 1N 中,CN =CM 21-M 1N 2=7,∴点M 1坐标为(-1,2+7),点M 2坐标为(-1,2-7);②当M 3为顶点时,∵直线AC 解析式为y =-x +2,线段AC 的垂直平分线为y =x ,∴点M 3坐标为(-1,-1);③以点A 为顶点的等腰三角形不存在.综上所述,点M 坐标为(-1,-1)或(-1,2+7)或(-1,2-7).《方程(组)与不等式(组)》综合检测卷 (时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.已知实数a 、b ,若a >b ,则下列结论错误的是( D ) A .a -7>b -7 B .6+a >b +6 C .a 5>b 5D .-3a >-3b2.已知x =2是方程2x +m -4=0的解,则m 的值为( C ) A .8 B .-8 C .0D .23.不等式组⎩⎪⎨⎪⎧x +1>0,1-13x >0的解集在数轴上表示正确的是( A )4.已知⎩⎪⎨⎪⎧ x =-1,y =2是二元一次方程组⎩⎪⎨⎪⎧3x +2y =m ,nx -y =1的解,则m -n 的值是( D )A .1B .2C .3D .45.一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是( C )A .4B .5C .6D .76.关于x 的方程m 2x 2-8mx +12=0至少有一个正整数解,且m 是整数,则满足条件的m 的值的个数是( B )A .5个B .4个C .3个D .2个7.为加快环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同.设现在平均每天植树x 棵,则列出的方程为( A )A .400x =300x -30B .400x -30=300xC .400x +30=300xD .400x =300x +308.大学生嘉嘉假期去图书馆做志愿者服务,并与图书馆达成如下协议:做满30天,图书馆将支付给他一套名著和生活费600元,但他在做到20天时,由于学校有临时任务,只能终止服务,图书馆只付出一套名著和300元,设这套名著的价格为x 元,则下面所列方程正确的是( B )A .x +60020=x +30030B .x +60030=x +30020C .x -60030=x -30020D .x -60020=x -300309.若解分式方程x -1x +4=mx +4时产生增根,则m =( D )A .1B .0C .-4D .-510.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( B )A .29人B .30人C .31人D .32人二、填空题(每小题3分,共18分)11.如果不等式(a -3)x <b 的解集是x <ba -3,那么a 的取值范围是__a >3__.12.方程x x -2 = 12-x的根x =__-1__.13.对于实数a 、b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4]__3或-3__. 14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm ,长与宽的比为3∶2,则该行李箱的长的最大值为__78__cm.15.若方程x 2+2x -13=0的两根分别为m 、n ,则mn (m +n )=__26__.16.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为__80__元.三、解答题(共52分) 17.(6分)解方程(组):(1)⎩⎪⎨⎪⎧x -y =4, ①3x +y =16; ②解:(1)①+②,得4x =20,即x =5.将x =5代入①,得y =1,故⎩⎪⎨⎪⎧x =5,y =1.(2)(x -5)(x +4)=10;解:去括号、移项、整理,得x 2-x -30=0,解得x 1=-5,x 2=6. (3)1x -2-3=x -12-x. 解:去分母,得1-3(x -2)=-(x -1),整理,得-2x +6=0,解得x =3.经检验,x =3是原分式方程的根.18.(4分)解不等式组:⎩⎪⎨⎪⎧3x >x -6,x -12≤x +16,并把它的解集在数轴(如图)上表示出来.解:⎩⎨⎧3x >x -6,①x -12≤x +16,②由①,得x >-3.由②,得x ≤2.∴原不等式组的解集为-3<x ≤2.19.(6分)已知关于x 的方程2x 2+kx -1=0 (1)求证:方程有两个不相等的实数根;(2)若方程的一根是-1,求另外一个根及k 的值.(1)证明:b 2-4ac =k 2+8>0,即方程2x 2+kx -1=0有两个不相等的实数根.(2)解:把x =-1代入原方程,得2-k -1=0,所以k =1,即原方程为2x 2+x -1=0,解得x 1=-1,x 2=12,即另外一根为12.20.(6分)百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接五一劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?解:设每件童装应降价x 元.由题意,得(100-60-x )(20+2x )=1200,解得x 1=10,x 2=20.∵尽量减少库存,∴x =20,∴100-20=80(元),故每件童装应定价为80元.21.(7分)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元;(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问:每支售价至少是多少元?解:(1)设第一次每支铅笔进价为x 元.根据题意,得600x -60054x =30,解得x =4.经检验,x =4是原分式方程的解,故第一次每支铅笔的进价是4元.(2)设售价为y 元.根据题意,列不等式为6004×(y -4)+6004×54×(y -5)≥420,解得y ≥6.故每支售价至少是6元.22.(7分)阅读材料:我们知道:若几个非负数相加得零,则这些数必同时为零. 例如:①若(a -1)2+(b +5)2=0,则(a -1)2=0,(b +5)2=0,∴a =1,b =-5. ②若m 2-4m +n 2+6n +13=0,求m 、n 的值.解:∵m 2-4m +n 2+6n +13=(m 2-4m +4)+(n 2+6n +9)=0(将13拆成4和9,等式左边就出现了两个完全平方式),∴(m -2)2+(n +3)2=0, ∴(m -2)2=0,(n +3)2=0, ∴m =2,n =-3.根据你的观察,探究下面的问题:(1)已知x 2+2xy +2y 2-6y +9=0,求x y 的值;(2)已知a 、b (a ≠b )是等腰三角形的边长,且满足2a 2+b 2-8a -6b +17=0,求三角形的周长.解:(1)∵x 2+2xy +2y 2-6y +9=x 2+2xy +y 2+y 2-6y +9=(x +y )2+(y -3)2=0,∴x +y =0,y -3=0,∴y =3,x =-y =-3,∴x y =(-3)3=-27.(2)∵2a 2+b 2-8a -6b +17=2a 2-8a +8+b 2-6b +9=2(a 2-4a +4)+(b 2-6b +9)=2(a -2)2+(b -3)2=0,∴a -2=0,b -3=0,∴a =2,b =3.∴当a 为腰时,周长为7;当b 为腰时,周长为8.∴三角形的周长为7或8.23.(8分)如果方程x 2+px +q =0的两个根是x 1、x 2,那么x 1+x 2=-p ,x 1·x 2=q .请根据以上结论,解决下列问题:(1)已知关于x 的方程x 2+mx +n =0 (n ≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;(2)已知a 、b 满足a 2-15a -5=0,b 2-15b -5=0,求a b +ba的值;(3)已知a 、b 、c 均为实数,且a +b +c =0,abc =16,求正数c 的最小值.解:(1)设x 2+mx +n =0 (n ≠0)的两根为x 1、x 2.∴x 1+x 2=-m ,x 1·x 2=n .∴1x 1+1x 2=x 1+x 2x 1x 2=-m n ,1x 1·1x 2=1n .∴所求一元二次方程为x 2+m n x +1n=0,即nx 2+mx +1=0. (2)①当a ≠b 时,由题意知a 、b 是一元二次方程x 2-15x -5=0的两根,∴a +b =15,ab =-5.∴a b +b a =a 2+b 2ab =(a +b )2-2ab ab =152-2×(-5)-5=-47.②当a =b 时,a b +ba =1+1=2.综上,a b +ba=-47或2.(3)∵a +b +c =0,abc =16,∴a +b =-c ,ab =16c .∴a 、b 是方程x 2+cx +16c =0的两根,∴Δ=c 2-4×16c≥0.∵c >0,∴c 3≥64,∴c ≥4,∴c 的最小值为4.24.(8分)某小区准备新建60个停车位,以解决小区停车难的问题.已知新建2个地上停车位和3个地下停车位共需1.7万元;新建4个地上停车位和2个地下停车位共需1.4万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过14万元而不超过15万元,问共有几种建造方案? (3)对(2)中的几种建造方案,哪一种方案的投资最少?并求出最少投资金额.解:(1)设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元.由题意,得⎩⎪⎨⎪⎧ 2x +3y =1.7,4x +2y =1.4,解得⎩⎪⎨⎪⎧x =0.1,y =0.5.故新建一个地上停车位需0.1万元,新建一个地下停车位需0.5万元.(2)设新建m 个地上停车位,由题意,得14<0.1m+0.5(60-m )≤15,解得37.5≤m <40,因为m 为整数,所以m =38或39,对应的60-m =22或21,故一共有2种建造方案.(3)当m =38时,投资0.1×38+0.5×22=14.8(万元),当m =39时,投资0.1×39+0.5×21=14.4(万元),故当地上建39个车位,地下建21个车位时,投资最少,金额为14.4万元.《图形及其变化》综合检测卷(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列美丽的图案中,既是轴对称图形又是中心对称图形的有(C)A.1个B.2个C.3个D.4个2.如图是某几何体的三视图,该几何体是(B)A.圆锥B.圆柱C.棱柱D.正方体3.一个正方体的每个面上都写有一个汉字,如图,在该正方体中,和“超”相对的字是(C)A.沉B.信C.自D.着4.如图是由4个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形不可能是(C)5.如图,将△ABC沿BC方向平移2 cm得到△DEF,若△ABC的周长为16 cm,则四边形ABFD的周长为(C)A.16 cm B.18 cmC.20 cm D.22 cm6.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是( C )A .(2,10)B .(-2,0)C .(2,10)或(-2,0)D .(10,2)或(-2,0)7.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标为( C )A .(3,1)B .(3,3)C .(4,4)D .(4,1)8.如图,在△ABC 中,AB =AC ,∠ABC =70°,以B 为圆心,任意长为半径画弧分别交AB 、BC 于点E 、F ,再分别以点E 、F 为圆心、以大于12EF 长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则∠BDC 为( B )A .65°B .75°C .80°D .85°9.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为( B )A .35B .45C .23D .3210.如图,△AOB 为等腰三角形,AO =AB ,顶点A 的坐标为(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ,点A 的对应点A ′在x 轴上,则点O ′的坐标为( C )A .⎝⎛⎭⎫203,103B .⎝⎛⎭⎫163,435 C .⎝⎛⎭⎫203,435D .⎝⎛⎭⎫163,43二、填空题(每小题3分,共18分)11.在平面直角坐标系中,点A 的坐标是(2,-3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是__(-2,3)__.12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为__12__.13.如图,矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE =OD ,则AP 的长为__245__.14.如图,已知Rt △ABC 中,∠ACB =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF =__5__.15.如图,将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC的中点E的对应点为F,则∠EAF的度数是__60°__.16.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2020的直角顶点的坐标为__(8076,0)__.三、解答题(共52分)17.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为__(2,7)__,点C的坐标为__(6,5)__;(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1,若M为△ABC内的一点,其坐标为(a,b),则平移后点M1的坐标为__(a-7,b)__;(3)以原点O为位似中心,将△ABC缩小,使变换后的△A2B2C2与△ABC对应边的比为1∶2,请在网格内画出一个△A2B2C2,则点A2的坐标为__(1,3.5)__.18.(6分)如图,已知四边形ABCD是平行四边形.(1)用直尺和圆规作出对角线AC的垂直平分线,分别交AD、BC于E、F;(保留作图痕迹,不写作法)(2)在(1)作出的图形中,连接CE、AF,若AB=4,BC=8,且AB⊥AC,求四边形AECF 的周长.解:(1)如图所示:(2)根据作图,易知四边形AECF 是菱形,∴AF =FC ,∴∠F AC =∠FCA .∵AB ⊥AC ,∴∠BAC =90°,∴∠BAF +∠F AC =90°,∠B +∠FCA =90°,∴∠B =∠BAF ,∴AF =BF ,∴BF =FC .∴四边形AECF 的周长=4FC =2BC =16.19.(6分)如图,小明家窗外有一堵围墙AB ,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =0.8 m ,窗高CD =1.2 m ,并测得OE =0.8 m ,OF =3 m ,求围墙AB 的高度.解:延长OD .∵DO ⊥BF ,∴∠DOE =90°.∵OD =0.8 m ,OE =0.8 m ,∴∠DEB =45°.∵AB ⊥BF ,∴∠BAE =45°,∴AB =BE ,设AB =EB =x m .∵AB ⊥BF ,CO ⊥BF ,∴AB ∥CO ,∴△ABF ∽△COF ,∴AB BF =CO OF ,即x x +(3-0.8)=1.2+0.83,解得x =4.4.经检验,x =4.4是原方程的解.故围墙AB 的高度是4.4 m.20.(6分)如图,菱形OABC 的顶点A 的坐标为(2,0),∠COA =60°,将菱形OABC 绕坐标原点O 逆时针旋转120°得到菱形ODEF .(1)直接写出点F 的坐标;(2)求线段OB 的长及图中阴影部分的面积.解:(1)(-2,0).(2)连接OE 、OB 、AC ,OB 与AC 相交于点H .∵菱形OABC 中,OA =2,∠COA =60°,∴∠BOC =∠BOA =30°,OB ⊥AC ,∴OB =2OH =2OA ·cos ∠BOA =2×2×32=23,CH =AH =OA ·sin ∠BOA =2×12=1.∵将菱形OABC 绕坐标原点O 逆时针旋转120°得到菱形ODEF ,∴∠BOE=120°.S 阴影=S 扇形OBE -2S △OBC =120π×(23)2360-2×12×23×1=4π-2 3.21.(7分)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求A 与A 1,B 与B 1,C 与C 1相对应)(2)作出△ABC 绕点C 顺时针方向旋转90°后得到的△A 2B 2C ;(3)在(2)的条件下直接写出点B 旋转到B 2所经过的路径的长.(结果保留π)解:(1)△A 1B 1C 1如图所示. (2)△A 2B 2C 如图所示. (3)根据勾股定理,BC =12+42=17,所以点B 旋转到B 2所经过的路径的长=π217.22.(7分)如图,点O 为平面直角坐标系的原点,点A 在x 轴的正半轴上,正方形OABC 的边长是3,点D 在AB 上,且AD =1.将△OAD 绕着点O 逆时针旋转得到△OCE .(1)求证:OE ⊥OD ;(2)在x 轴上找一点P ,使得PD +PE 的值最小,求出点P 的坐标.(1)证明:∵将△OAD 绕着点O 逆时针旋转得到△OCE ,∴∠AOD =∠COE .∵四边形OABC 是正方形,∴∠AOC =90°,∴∠AOD +∠COD =∠COE +∠COD =90°,即∠DOE =90°,∴OE ⊥OD .(2)解:∵OA =3,AD =1,∴D (3,1).作点D 关于x 轴对称的点F ,连接EF 交x 轴于点P ,此时,PD +PE 的值最小.∵D (3,1),∴F (3,-1).∵将△OAD 绕着点O 逆时针旋转90°得到△OCE ,∴E (-1,3).设直线EF 的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧ 3=-k +b ,-1=3k +b ,∴⎩⎪⎨⎪⎧k =-1,b =2,∴直线EF 的解析式为y =-x +2.当y =0时,x =2,∴P (2,0).23.(7分)如图,一伞状图形,已知∠AOB =120°,点P 是∠AOB 平分线上一点,且OP =2,∠MPN =60°,PM 与OB 交与点F ,PN 与OA 交于点E .(1)如图1,当PN 与PO 重合时,探索PE 、PF 的数量关系;(2)如图2,将∠MPN 在(1)的情形下绕点P 逆时针旋转α(0<α<60°),继续探索PE 、PF 的数量关系,并求四边形OEPF 的面积.解:(1)∵∠AOB =120°,OP 平分∠AOB ,∴∠POF =60°.∵∠MPN =60°,∴△PEF 是等边三角形,∴PE =PF .(2)过点P 作PQ ⊥OA ,PH ⊥OB .∵OP 平分∠AOB ,∴PQ =PH ,∠PQO =∠PHO =90°.∵∠AOB =120°,∴∠QPH =60°=∠MPN ,∴∠QPE +∠EPH =∠FPH +∠EPH ,∴∠QPE =∠HPF .在△QPE 和△HPF 中,⎩⎪⎨⎪⎧∠EQP =∠FHP ,PQ =PH ,∠QPE =∠HPF ,∴△QPE ≌△HPF ,∴PE =PF ,S 四边形OEPF =S 四边形OQPH .∵PQ⊥O A ,PH ⊥OB ,OP 平分∠AOB ,∴∠QPO =30°,∴OQ =1,QP =3,∴S △OPQ =32,∴S 四边形OEPF =2S △OPQ =3.24.(7分)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为22的正方形AEFG 按图1位置放置,AD 与AE 在同一直线上,AB 与AG 在同一直线上.(1)小明发现DG ⊥BE ,请你帮他说明理由;(2)如图2,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时BE 的长;(3)如图3,小明将正方形ABCD 绕点A 继续逆时针旋转,使线段DG 与线段BE 相交,交点为H ,写出△GHE与△BHD 面积之和的最大值,并简要说明理由.解:(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB.延长EB交DG于点H.在△ADG中,∵∠AGD+∠ADG =90°,∴∠AEB+∠ADG=90°,∴∠DHE=90°,∴DG⊥BE.(2)∵AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG =∠BAE,∴△ADG≌△ABE(SAS),∴DG=BE.过点A作AM⊥DG交DG于点M,则∠AMD=∠AMG =90°.∵BD为正方形ABCD的对角线,∴∠MDA=45°.在Rt△AMD中,∵∠MDA=45°,AD=2,∴DM=AM= 2.在Rt△AMG中,根据勾股定理,得GM=AG2-AM2=6,∴DG=DM+GM=2+6,∴BE=DG=2+ 6.(3)△GHE和△BHD面积之和的最大值为6.理由如下:∵对于△GHE,点H在以EG为直径的圆上,∴当点H与点A重合时,△GHE的面积最大.∵对于△BHD,点H在以BD为直径的圆上,∴当点H与点A重合时,△BHD的面积最大,∴△GHE和△BHD面积之和的最大值为2+4=6.《三角形》综合检测卷(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列长度的三条线段,可以组成三角形的是(B)A.10、5、4B.3、4、2C.1、11、8D.5、3、82.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是(C)A.10B.9C.8D.63.如图,已知∠ABC=∠BAD.下列条件中,不能作为判定△ABC≌△BAD的条件的是(D)A.∠C=∠D B.∠BAC=∠ABDC.BC=AD D.AC=BD。
⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数第一讲 实数一.知识梳理: 1.实数的基本概念 (1)正数和负数定义:大于0的数叫做正数。
在正数前加上符号“-”(负)的数叫做负数。
0既不是正数,也不是负数。
(2)有理数分类:正整数、0、负整数统称整数。
正分数、负分数统称分数。
整数和分数统称为有理数。
即:(3)无理数:无限不循环小数叫做无理数。
常见的无理数,归纳起来有四类: a.开方开不尽的数,如32,7等;b.有特定结构的数,如0.1010010001…等;c.有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; d.某些三角函数值,如sin60o等 注:小数是分数。
(4)实数:有理数和无理数统称为实数,即:正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2.数轴:规定了原点、正方向和单位长度的直线叫做数轴。
(画数轴时,原点,正方向,单位长度三要素缺一不可)注意:实数与数轴的点是一一对应的。
3.相反数:代数定义:只有符号不同的两个数叫做互为相反数。
几何定义:从数轴上看,互为相反数的两个数所对应的点关于原点对称,若a+b=0⇔a 、b 互为相反数,反之亦成立.注意:零的相反数是零一般地,如果a 、b 互为相反数,则a+b=0. 4.绝对值定义:在数轴上,一个数所对应的点与原点的距离做该数的绝对值,记作|a|。
①正数的绝对值是它本身;②负数的绝对值是它的相反数;③0的绝对值是0。
即:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a ⎩⎨⎧<-≥=)0()0(||a a a a a ①a =|a|所表示的意义是:一个数和它的绝对值相等。
很显然,a ≥0。
北师大版初中数学各升中考总复习题HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】有理数测试题1.(2012年广东珠海)2的倒数是( ) A.2 B.-2 C.12D.-122.(2012年广东肇庆)计算-3+2 的结果是( )A.1 B.-1 C. 5 D. -5 3.计算(-1)2 012的结果是( ) A.-1 B.1 C.-2 012 D. 2 0124.|-3|的相反数是( ) A.3 B.-3 C.13D.-135.下列各式,运算结果为负数的是( )A.-(-2)-(-3) B.(-2)×(-3) C.(-2)2 D.(-3)-3 6.(2010年广东广州)如果+10%表示“增加10%”,那么“减少8%”可以记作( ) A.-18% B.-8% C.+2% D.+8%7.(2011年贵州安顺)-4的倒数的相反数是( ) A.-4 B.4 C.-1 4D.1 48.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.9.如果x-y<0,那么x与y的大小关系是x______y(填“<”或“>”).10.实数a,b在数轴上的位置如图1-1-3,则:图1-1-3(1)a +b ______0; (2)|a |______|b |.11.计算:711516×(-8). 12.计算: (-2)2-(3-5)-4+2×(-3). 13.若|m -3|+(n +2)2=0,则m +2n 的值为( ) A .-4B .- 1C .0D .4 14.用科学记数法把0.00 009 608表示成9.608×10n ,那么n =________.15.已知-3的相反数是a ,-2的倒数是b ,-1的绝对值是c ,则a +2b +3c =________.16.观察下列一组数:23,45,67,89,1011,…,它们是按一定规律排列的,那么这一组数的第k 个数是________.实数测试题1.||-9的平方根是( )A .81 B .±3 C.3 D .-32.(2011年广东中山)下列各式中,运算正确的是( ) A.4=±2 B .-||-9=-()-9 C.()x 32=x 6 D.()2-π2=2-π 3.计算:()-12+()-13=( )A .-2 B .-1 C .0 D .24.由四舍五入法得到的近似数8.8×103,下列说法正确的是( )A .精确到十分位B .精确到个位C .精确到百位D .精确到千位5.下列计算正确的是( ) A.20=2 10 B.2·3= 6 C.4-2= 2 D.32=-36.计算13-12的结果( )A .-73 3 B.33 C. 3 D .-533 7.(2012年广东珠海)使x -2有意义的x 的取值范围是______.8.(2012年广东肇庆)计算20·15的结果是______. 9.(2012年广东)若x ,y 为实数,且满足||x -3+y -3=0,则⎝ ⎛⎭⎪⎫x y 2 012的值是______.10. (2012年广东珠海)计算:()-22-||-1+()2 012-π0-⎝ ⎛⎭⎪⎫12-1. 11.(2011年湖南湘潭)规定一种新的运算:ab =1a +1b,则12=________. 12.使12n 是整数的最小正整数n =__________.13. (2012年广东深圳)计算:||4+⎝ ⎛⎭⎪⎫12-1-(3-1)0-8cos45°. 代数式测试题1.某省参加初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有( )A.(15+a)万人 B.(15-a)万人 C.15a万人 D.a万人2.(2010年湖南怀化)若x=1,y=12,则x2+4xy+4y2的值是( ) A.2 B.4C.32D.123.(2011年湖北襄阳)若x,y为实数,且||x+1+y-1=0,则⎝⎛⎭⎪⎫xy2 011的值是( )A.0 B.1 C.-1 D.-2 0114.(2011年江苏盐城)已知a-b=1,则代数式2a-2b-3的值是( ) A.-1 B.1 C.-5 D.55.(2010年浙江嘉兴)用代数式表示“a,b两数的平方和”,结果为__________.6.一筐苹果的总重量为x千克,筐本身的重量为2千克,若将苹果平均分成5份,则每份苹果的重量为________千克.7.(2011年山东枣庄)若m2-n2=6,且m-n=2,则m+n=________.8.(2011年浙江丽水)已知2x-1=3,求代数式(x-3)2+2x(3+x)-7的值.代数式测试题1.某省参加初中毕业学业考试的学生约有15万人,其中男生约有a万人,则女生约有( )A.(15+a)万人 B.(15-a)万人 C.15a万人 D.a万人2.(2010年湖南怀化)若x=1,y=12,则x2+4xy+4y2的值是( ) A.2 B.4C.32D.123.(2011年湖北襄阳)若x,y为实数,且||x+1+y-1=0,则⎝⎛⎭⎪⎫xy2 011的值是( )A.0 B.1 C.-1 D.-2 0114.(2011年江苏盐城)已知a-b=1,则代数式2a-2b-3的值是( ) A.-1 B.1 C.-5 D.55.(2010年浙江嘉兴)用代数式表示“a,b两数的平方和”,结果为__________.6.一筐苹果的总重量为x千克,筐本身的重量为2千克,若将苹果平均分成5份,则每份苹果的重量为________千克.7.(2010年江苏苏州)若代数式2x+5的值为-2,则x=__________.8.已知代数式2a3b n+1与-3a m+2b2是同类项,2m+3n=________.9.(2011年广东湛江)多项式2x2-3x+5是________次__________项式.10.(2011年广东广州)定义新运算“”,规定:ab=13a-4b,则12 (-1)=______. 11.(2011年浙江宁波)先化简,再求值:(a+2)(a-2)+a(1-a),其中a=5.12.如图1-3-5,点A,B在数轴上对应的实数分别为m,n,则A,B两点间的距离是________(用含m,n的式子表示).图1-3-513.(2011年山东枣庄)若m2-n2=6,且m-n=2,则m+n=________.14.(2011年浙江丽水)已知2x-1=3,求代数式(x-3)2+2x(3+x)-7的值.整式测试题1.(2012年安徽)计算(-2x2)3的结果是( )A.-2x5 B.-8x6 C.-2x6 D.-8x52.(2011年广东清远)下列选项中,与xy2是同类项的是( )A.-2xy2 B.2x2y C.xy D.x2y23.(2012年广东深圳)下列运算正确的是( )A.2a+3b=5ab B.a2·a3=a5C.(2a)3=6a3 D.a÷a2=a34.(2010年广东佛山)多项式1+xy-xy2的次数及最高次数的系数是( )A.2,1 B.2,-1 C.3,-1 D.5,-15.(2011年浙江金华)下列各式能用完全平方式进行分解因式的是( )A .x 2+1B .x 2+2x -1C .x 2+x +1D .x 2+4x +46.(2011年湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+47.计算: (1)(3+1)(3-1)=____________; (2)(a 2b )2÷a =________;(3)(-2a )·⎝ ⎛⎭⎪⎫14a 3-1=________. 8.(2012年江苏南通)单项式3x 2y 的系数为______.9.(2012年广东梅州)若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为______.10. (2010年湖南益阳)已知x -1=3,求代数式(x +1)2-4(x +1)+4的值.11.(2011年安徽芜湖)如图1-4-1,从边长为(a +4) cm 的正方形纸片中剪去一个边长为()a +1 cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )图1-4-1A .(2a 2+5a ) cm 2B .(3a +15) cm 2C .(6a +9) cm 2D .(6a +15) cm 212.先化简,再求值:(a +b )2+(a -b )(2a +b )-3a 2,其中a =-2-3,b =3-2.13.(2011年江苏南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b ) (2a -b ),其中a =2,b =1.14.(2010年四川巴中)若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x的值.因式分解练习题1.(2012年云南)分解因式:3x2-6x+3=____________.2.(2011年安徽)因式分解:a2b+2ab+b=______________.3.(2011年安徽芜湖)因式分解:x3-2x2y+xy2=___________.4.(2011年山东潍坊)分解因式:a3+a2-a-1=________________.5.若非零实数a,b满足4a2+b2=4ab,则ba=______.6.把a3-4ab2因式分解,结果正确的是( )A.a(a+4b)(a-4b) B.a(a2-4b2) C.a(a+2b)(a-2b) D.a(a-2b)2 7.(2011年河北)下列分解因式正确的是( )A.-a+a3=-a(1+a2) B.2a-4b+2=2(a-2b)C.a2-4=(a-2)2 D.a2-2a+1=(a-1)212.分解因式:(x+y)2-(x-y)2.8.(2011年四川凉山州)分解因式:-a3+a2b-14ab2=______________.9.对于任意自然数n,(n+11)2-n2是否能被11整除为什么10.已知实数x,y满足xy=5,x+y=7,求代数式x2y+xy2的值.11.已知a,b,c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.分式练习题1.若分式x-1x-1x-2有意义,则x应满足的条件是( )A.x≠1 B.x≠2 C.x≠1,且x≠2 D.以上结果都不对2.(2012年安徽)化简x2x-1+x1-x的结果是( ) A.x+1 B.x-1 C.-xD.x3.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.4.已知a-ba+b=15,则ab=________.5.当x=_______时,分式x2-2x-3x-3的值为零. 6.(2012年广东湛江)计算:1x-1-xx2-1.7.(2012年广东肇庆)先化简,再求值:⎝⎛⎭⎪⎫1+1x-1÷xx2-1,其中x=-4. 8.(2011年湖南邵阳)已知1x-1=1,求2x-1+x-1的值.9.(2012年广东珠海)先化简,再求值:⎝ ⎛⎭⎪⎫x x -1-1x 2-x ÷(x +1),其中x = 2. 10.(2011年广东肇庆)先化简,再求值:a 2-4a -3·⎝ ⎛⎭⎪⎫1-1a -2,其中a =-3. 11.(2011年湖南常德)先化简,再求值:⎝ ⎛⎭⎪⎫1x +1+x 2-2x +1x 2-1÷x -1x +1,其中x =2. 12.已知x 2-3x -1=0,求x 2+1x 2的值. 13.先化简,再求值:⎝ ⎛⎭⎪⎫x -1x-x -2x +1÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0. 一元一次方程及其应用1. “五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为 2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ·30%·80%=2 080C .2 080×30%×80%=xD .x ·30%=2 080×80%2.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118元3.动物园的门票售价:成人票每张50元,儿童票每张30元.某日动物园售出门票700张,共得29 000元.设儿童票售出x 张,依题意可列出方程( ) A .30x +50(700-x )=29 000 B .50x +30(700-x )=29 000C .30x +50(700+x )=29 000D .50x +30(700+x )=29 0004.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.5.某市在端午节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上的人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x 人,那么可列出一元一次方程为______________.6.(1)解方程:0.1x -0.20.02-x +10.5=3. (2) 解方程:3x -35=2x +x +32. 7.(2012年广东肇庆)顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,求到两地旅游的人数各是多少人?8.(2010年广东湛江)学校组织一次有关世博的知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小时最终得76分,那么他答对__________题.9.若y 1=5x -16,y 2=x 3,那么当x =__________时,y 1与 y 2互为相反数. 10.南生态食品加工厂收购了一批质量为10 000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2 000千克.求粗加工的该种山货质量.二元一次方程组解法及应用1.(2011年安徽芜湖)方程组⎩⎨⎧ 2x +3y =7,x -3y =8的解为________________.2.(2012年湖南长沙)若实数a ,b 满足||3a -1+b 2=0,则a b 的值为______.3.(2011年福建泉州)已知x ,y 满足方程组⎩⎨⎧ 2x +y =5,x +2y =4,则x -y 的值为_____________. 4.(2011年山东潍坊)方程组⎩⎨⎧ 5x -2y -4=0,x +y -5=0的解是__________.5.(2012年江苏南通)甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.6.若关于x ,y 的二元一次方程组⎩⎨⎧ x +y =5k ,x -y =9k的解也是二元一次方程2x +3y =6的解,则k 的值为( ) A .-34 B.34 C.43 D .-437.(2012年山东临沂)关于x ,y 的方程组⎩⎨⎧ 3x -y =m ,x +my =n 的解是⎩⎨⎧ x =1,y =1,则||m -n 的值是( )A .5B .3C .2D .18.(2010年山东日照)解方程组:⎩⎨⎧ x -2y =3,3x -8y =13.9.已知⎩⎨⎧ x =1,y =-2是关于x ,y 的二元一次方程组⎩⎨⎧ ax +by =1,x -by =3的解,求a ,b 的值.10. (2011年湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18 000元,其中甲种蔬菜每亩获利2 000元,乙种蔬菜每亩获利1 500元,李大叔去年甲、乙两种蔬菜各种植了多少亩(注:亩为面积单位)一元二次方程1.(2011年江苏泰州)一元二次方程x2=2x的根是( )A.x=2 B.x=0 C.x1=0, x2=2 D.x1=0, x2=-22.(2012年贵州安顺)已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是( )A.1 B.-1 C.0 D.无法确定3.(2012年湖北荆门)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是( )A.(x-1)2=4 B.(x+1)2=4 C.(x-1)2=16 D.(x+1)2=164.(2012年湖北武汉)若x1,x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是( )A.-2 B.2 C.3 D.15.(2011年福建福州)一元二次方程x(x-2)=0根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根6.(2012年湖南常德)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是( )A.m≤-1 B.m≤1 C.m≤4 D.m≤1 27.当m满足__________时,关于x的方程x2-4x+m-12=0有两个不相等的实数根.8.(2012年贵州铜仁)一元二次方程x2-2x-3=0的解是______________.9.(2011年江苏镇江)已知关于x的方程x2+mx-6=0的一个根为2,则m=________,另一根是_____________________________________________________________________.10.(2011年四川宜宾)某城市居民最低生活保障在2009年是240元,经过连续两年的增加,到2011年提高到345.6元,则该城市两年来最低生活保障的平均年增长率是________.11. (2011年四川宜宾)已知一元二次方程x2-6x-5=0的两根为a,b,则1a+1b的值是__________.12、解方程:1)、 (x-3)2+4x(x-3)=0. 2)、 8(3 -x)2–72=014.(2010年广东茂名)已知关于x 的一元二次方程x 2-6x -k 2=0(k 为常数).(1)求证:方程有两个不相等的实数根; (2)设x 1,x 2为方程的两个实数根,且x 1+2x 2=14,试求出方程的两个实数根和k 的值.一元一次方程及其应用1.解方程x +12-x -14=1有下列四步,其中开始出现错误的一步是( )A .去分母,得2(x +1)-(x -1)=4B .去括号,得2x +2-x -1=4C .移项,得2x -x =4-2+1D .合并同类项,得x =32.“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ·30%·80%=2 080C .2 080×30%×80%=xD .x ·30%=2 080×80%3.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118元4.动物园的门票售价:成人票每张50元,儿童票每张30元.某日动物园售出门票700张,共得29 000元.设儿童票售出x 张,依题意可列出方程( )A .30x +50(700-x )=29 000B .50x +30(700-x )=29 000C .30x +50(700+x )=29 000D .50x +30(700+x )=29 0005.已知关于x的方程3x-2m=4的解是x=m,则m的值是________.6.某市在端午节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上的人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出一元一次方程为______________.7.(1)解方程:0.1x-0.20.02-x+10.5=3. (2)解方程:3x-35=2x+x+32.8.(2012年广东肇庆)顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,求到两地旅游的人数各是多少人?9.(2010年广东湛江)学校组织一次有关世博的知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小时最终得76分,那么他答对__________题.10.若y1=5x-16,y2=x3,那么当x=__________时,y1与y2互为相反数.11.已知关于x的方程9x-3=kx+4有整数解,求满足条件的所有整数k.13.江南生态食品加工厂收购了一批质量为10 000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多 2 000千克.求粗加工的该种山货质量.分式方程1.(2012年浙江丽水)把分式方程2x+4=1x转化为一元一次方程时,方程两边需同时乘以( )A .xB .2xC .x +4D .x (x +4)2.(2012年四川成都)分式方程32x =1x -1的解为( ) A .x =1 B .x =2 C .x =3 D .x =43.解分式方程:1-x x -2+2=12-x,可知方程的( ) A .解为x =2 B .解为x =4 C .解为x =3 D .无解4.解关于x 的方程x -3x -1=m x -1会产生增根,则常数m 的值等于( ) A .-2 B .-1 C .1 D .2 5.(2012年江苏无锡)方程4x -3x -2=0的解为________. 6.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为______________.7.解方程:3-x x -4+14-x =1. 8.解方程:1x 2-x =2x 2-2x +1. 8.在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800千米,南线的路程约80千米,走南线的车队在西线车队出发18小时后立刻启程,结果两车队同时到达.已知两车队的行驶速度相同,求车队走南线所用的时间.12.已知||a -1+b +2=0,求方程a x+bx =1的解. 13.(2011年广东茂名)解分式方程:3x 2-12x +2=2x . 15.(2012年贵州安顺)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?不等式与不等式组解法及应用测试题1.(2012年广东广州)已知a >b ,c 为任意实数,则下列不等式中总是成立的是( )A .a +c <b +cB .a -c >b -cC .ac <bcD .ac >bc2.(2012年四川攀枝花)下列说法中,错误的是( )A .不等式x <2的正整数解中有一个B .-2是不等式2x -1<1的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个3.(2012年贵州六盘水)已知不等式x -1≥0,此不等式的解集在数轴上表示为( )4.(2012年湖北荆州)已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )5.(2012年山东滨州)不等式⎩⎨⎧ 2x -1≥x +1,x +8≤4x -1的解集是( )A .x ≥3 B.x ≥2 C.2≤x ≤3 D.空集6.(2012年湖北咸宁)不等式组⎩⎨⎧ x -1≥0,4-2x >0的解集在数轴上表示为( )7.(2012年湖南益阳)如图2-2-2,数轴上表示的是下列哪个不等式组的解集( )图2-2-2A.⎩⎨⎧ x ≥-5,x >-3B.⎩⎨⎧ x >-5,x ≥-3C.⎩⎨⎧ x <5,x <-3D.⎩⎨⎧ x <5,x >-38.(2012年山东日照)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )A .29人B .30人C .31人D .32人9.(2012年四川南充)不等式x +2>6的解集为______.10.(2012年浙江衢州)不等式2x -1>12x 的解是______. 11.(2012年贵州毕节)不等式组⎩⎨⎧ x +12≤1,1-2x <4的整数解是______.12.(2012年陕西)小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买______瓶甲饮料.13.解不等式组,并把解集在如图所示的数轴上表示出来.14.(2010年湖北荆门)试确定实数a 的取值范围,使不等式组⎩⎪⎨⎪⎧ x 2+x +13>0,x +5a +43>43x +1+a 恰有两个整数解.15.若不等式组⎩⎨⎧ 2x -a <1,x -2b >3的解集为-1<x <1,求代数式(a +1)(b -1)的值。