函数的应用测试题
- 格式:doc
- 大小:1.06 MB
- 文档页数:4
一、选择题1.已知()f x 是定义在R 上的奇函数,且当0x <时,|2|()12x f x +=-,若关于x 的方程2()|1|f x a f -+2()0x a +=恰好有四个不同的根1x ,2x ,3x ,4x ,则()()()()12341111f x f x f x f x ----⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦的取值范围是( )A .160,81⎛⎫⎪⎝⎭B .10,16⎛⎫⎪⎝⎭C .116,1681⎡⎫⎪⎢⎣⎭ D .11,164⎡⎫⎪⎢⎣⎭ 2.设函数()243,023,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x 、2x 、3x ,满足()()()123f x f x f x ==,则123x x x ++的取值范围是( )A .5,62⎛⎫ ⎪⎝⎭B .5,42⎛⎤⎥⎝⎦C .()2,4D .()2,63.已知函数给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-.其中,所有正确结论的个数是( ) A .0B .1C .2D .34.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为( )A .4.25米B .4.5米C .3.9米D .4.05米5.激光多普勒测速仪(LaserDopplerVelocimetry ,LDV )的工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚后反射,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同;当横向速度不为零时,反射光相对探测光发生频移,频移()2sin 1/h p v f ϕλ=,其中v 为被测物体的横向速度,ϕ为两束探测光线夹角的一半,λ为激光波长.如图,用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,激光测速仪安装在距离高铁1m 处,发出的激光波长为()91560nm 1nm 10m -=,测得这时刻的频移为()98.72101/h ⨯,则该时刻高铁的速度约为( )A .320km/hB .330km/hC .340km/hD .350km/h6.设函数()f x 是定义在R 上的偶函数,对任意x ∈R ,都有()()4f x f x +=,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,10-内关于x 的方程()()()log 201a f x x a -+=>至少有4个不同的实数根,至多有5个不同的实数根,则a的取值范围是( )A .312⎡⎣B .()2,+∞C .()1,2D .(3127.若函数32232,01()5,1x x m x f x mx x ⎧-+<≤=⎨->⎩,恰有2个零点,则m 的取值范围是( )A .()5,0-B .()0,5C .1[,5)2D .1(0,]28.已知关于x 的方程|2|1x m -=有两个不等实根,则实数m 的取值范围是( ) A .(-∞,1]-B .(,1)-∞-C .[1,)+∞D .(1,)+∞9.已知函数,0()ln ,0x e x f x x x ⎧≤=⎨>⎩,若函数g (x )=f (x )+2x +ln a (a >0)有2个零点,则数a 的最小值是( ) A .1eB .12C .1D .e10.用d (A )表示集合A 中的元素个数,若集合A ={0,1},B ={x |(x 2-ax )(x 2-ax +1)=0},且|d (A )-d (B )|=1.设实数a 的所有可能取值构成集合M ,则d (M )=( ) A .3B .2C .1D .411.已知()f x 是奇函数且是R 上的单调函数,若函数()()221y f x f x λ=++-只有一个零点,则实数λ的值是( ) A .14B .18C .78-D .38-12.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的( )倍.(当||x 较小时,2101 2.3 2.7x x x ≈++)A .1.27B .1.26C .1.23D .1.22二、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元. 14.对于函数()f x ,若在定义域存在实数x ,满足()()f x f x -=-,则称()f x 为“局部奇函数”.若函数()423xxf x m =-⋅-是定义在R 上的“局部奇函数”,则实数m 的取值范围为______.15.M 是所有同时满足下列条件的函数()y f x =的集合:①()y f x =的定义域为(0,)+∞;②对任意00x >,001()22f x x =+或0001()f x x x =+;若对一切()f x M ∈,关于x 的方程()f x a =恒有解,则实数a 的取值集合是___________16.定义在R 上的函数()f x ,满足()()f x f x -=-且()(2)f x f x =-,当01x <≤时,2()log f x x =,则方程()f x x =-在()2,2-上的实数根之和为___________.17.某汽车厂商生产销售一款电动汽车,每辆车的成本为4万元,销售价格为6万元,平均每月销量为800辆,今年该厂商对这款汽车进行升级换代,成本维持不变,但为了提高利润,准备提高销售价格,经过市场分析后发现,如果每辆车价格上涨0.1万元,月销量就会减少20辆,为了获取最大利润,每辆车的销售价格应定为__________万元. 18.方程()2332log log 30x x +-=的解是______.19.已知函数()21f x ax =-+有两个零点,则实数a 的取值范围是________.20.已知函数24()ln(1)x f x e -=+,()2g x x a =+-.若存在[](),1a n n n Z ∈+∈,使得关于x 的方程()()f x g x =有四个不相等的实数解,则n 的最大值为_______.三、解答题21.已知函数2()29f x x ax =-+.(I)当0a ≤时,设()(2)x g x f =,证明:函数()g x 在R 上单调递增; (II)若[1,2]x ∀∈,(2)0x f ≤成立,求实数a 的取值范围; (III)若函数()f x 在(3,9)-有两个零点,求实数a 的取值范围.22.中国“一带一路”倡议提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为500万元,每生产x 台需要另投入成本()C x (万元).当年产量不足80台时,21()402C x x x =+(万元),当年产量不小于80台时,8100()1012180C x x x=+-(万元),若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式.(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?并求出这个最大利润.23.已知函数()()22()1,20f x ax x g x x bx x =-+=+->,()()()5101x h x f x x x -=-<-. (1)()()1,3,0x f x ∀∈>恒成立,求实数a 的取值范围;(2)当1a =时,若函数()g x 的图象上存在,A B 两个不同的点与()h x 图象上的'',A B 两点关于y 轴对称,求实数b 的取值范围.24.某制造商为拓展业务,引进了一种生产体育器材的新型设备.通过市场分析发现,每月需投入固定成本3000元,生产x 台需另投入成本C (x )元,且210400040()100001004980040100x x x C x x x x ⎧+<<⎪=⎨+-≤≤⎪⎩,,,,若每台售价1000元,且每月生产的体育器材月内能全部售完.(1)求制造商所获月利润L (x )(元)关于月产量x (台)的函数关系式;(2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.25.已知函数5()log ,(01)5ax f x a a x -=>≠+,. (1)判断()f x 的奇偶性,并加以证明;(2)设()log (3)a g x x =-,若方程()1()f x g x -=有实根,求a 的取值范围;26.已知函数()y f x =为二次函数,()04f =,且关于x 的不等式()20f x -<的解集为{}12x x <<(1)求函数()f x 的解析式(2)若关于x 的方程()0f x m -=有一实根大于1,一实根小于1,求实数m 的取值范围 (3)已知()1g x x =+,若存在x 使()y f x =的图象在()y g x =图象的上方,求满足条件的实数x 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由奇函数得出()f x 的性质,作出函数图象,可知()f x t =的解的个数,令()t f x =,原方程变为2210t a t a -++=,根据()f x t =的解的情形,可得2210t a t a -++=有两不等实根且实根12,t t 都在(0,3)上,由二次方程根的分布可得a 的范围,应用韦达定理得1212,t t t t +,这样()()()()12341111f x f x f x f x ----⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦就可能用a 表示,并根据a 的求得结论.【详解】由题意(0)0f =,0x >时,2()()21x f x f x -+=--=-,作出函数()f x 的图象,如图,若0a =,则方程2()|1|f x a f -+2()0x a +=为2()()0f x f x -=,()0f x =或()1f x =()0f x =三个解,()1f x =有两个解,原方程共有5个解,不合题意,设()t f x =,因此关于t 方程2210t a t a -++=必有两个不等实根,又12212100t t a t t a ⎧+=+>⎨=>⎩,所以120,0t t >>,从而103t <<,203t <<且12t t ≠.若其中一根为1,则由2110a a -++=,1a ≤-时,2110a a +++=无实数解,1a >-,2110a a --+=,0a =或1a =,不合题意.因此121,1t t ≠≠,由2222103209310140a a a a a a ⎧+<<⎪⎪⎪>⎨⎪-++>⎪∆=+->⎪⎩,解得113-<<a 且0a ≠.不妨设121()()f x f x t ==,342()()f x f x t ==, 则()()()()222212341212121111[(1)(1)][1()][11]f x f x f x f x t t t t t t a a ----=--=-++=-++⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦22()a a =-,∵113-<<a 且0a ≠.∴21449a a -≤-<且20a a -≠,∴2160,81a a ⎛⎫-∈ ⎪⎝⎭. 故选:A .【点睛】关键点点睛:本题考查方程根的分布问题,解题关键是两个:一是研究函数()f x 的性质,二是换元后得出二次方程,问题转化为二次方程根的分布,求出参数a 的范围.2.C解析:C 【分析】设123x x x <<,作出函数()f x 的图象,结合图象可得出1x 的取值范围,结合二次函数图象的对称性可得出234x x +=,进而可求得123x x x ++的取值范围. 【详解】设123x x x <<,作出函数()f x 的图象如下图所示:设()()()123f x f x f x m ===,当0x ≥时,()()2243211f x x x x =-+=--≥-,由图象可知,13m -<<,则()()11231,3f x x =+∈-,可得120x -<<, 由于二次函数243y xx =-+的图象的对称轴为直线2x =,所以,234x x +=,因此,12324x x x <++<. 故选:C. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(或取值范围),常用方法如下: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数的取值范围; (2)分离常数法:先将参数分离,转化为求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.C解析:C 【分析】①画出函数的图象,直接判断函数的单调性;②分0,0,0a a a >=<三种情况讨论函数的图象,分析函数是否有最小值,得到实数a 的取值范围;③首先令()f x b =,解出三个零点,进而判断结论. 【详解】①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数在(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值;当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0;当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =, 不妨设1230x x x ≤<<,110b x a-=≤,2b x e -=,3b x e =, 则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-, 当01a <<时,011b a <=-<,则三个零点1231x x x =-. 综上可知③正确; 故选:C【点睛】思路点睛:本题考查分段函数,函数性质和函数图象的综合应用,本题的关键是对a 的讨论,画出函数的图象,比较容易判断前两个命题,最后一个命题的关键是解出3个零点,并能判断231x x =,从而只需验证是否11x =-即可.4.D解析:D 【分析】可设抛物线的方程为2(0)x ny n =<,将(5,5)-代入可得n ,可得抛物线的方程,再令3.5x =,求得y ,计算70.5y --,可得所求值.【详解】解:如右图,设抛物线的方程为2(0)x ny n =<,将点(5,5)-代入抛物线的方程可得,255n =-,解得5n =-, 即抛物线的方程为25x y =-,令 3.5x =,可得23.55y =-,解得 2.45y =-,则通过隧道的车辆限制高度为7 2.450.5 4.05--=(米). 故选:D .【点睛】利用坐标法思想,建立适当的直角坐标系,得到抛物线的方程,从而解决问题.5.C解析:C 【分析】先根据图象,求出sin ϕ的值,再根据公式即可计算出v 的值. 【详解】 解:332sin 1.00041(2010)ϕ--==+⨯,92 1.00048.7210v ⋅∴⨯=,即8.721560 1.0004=⋅,8.7215601.0004340148.009v ⨯⨯∴=≈米/小时340/km h ≈,故该时刻高铁的速度约为340/km h .故选:C . 【点评】本题主要考查了函数的实际应用,考查了三角函数的实际应用,也考查了学生的计算能力,关键在于将生活中的数据转化为数学公式中的数据,属于中档题.6.A解析:A 【分析】作出函数()y f x =和函数()()log 21a y x a =+>在区间(]2,10-上的图象,根据题意可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】对任意x ∈R ,都有()()4f x f x +=,则函数()f x 是周期为4的周期函数,当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭, 作出函数()y f x =和函数()()log 21a y x a =+>在区间(]2,10-上的图象如下图所示:由于在区间(]2,10-内关于x 的方程()()()log 201a f x x a -+=>至少有4个不同的实数根,至多有5个不同的实数根,则()()log 623log 10231a a a ⎧+≤⎪+>⎨⎪>⎩,解得3212a ≤< 因此,实数a 的取值范围是312⎡⎣.故选:A. 【点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.7.D解析:D 【分析】先求出()g x 的单调性,然后根据题意,得到满足条件时有(0)0(1)0g g >⎧⎨≤⎩,求出m 的范围,然后再根据m 的范围,求出满足前述条件时,()5h x mx =-有零点的情况,进而可求解【详解】令32()232g x x x m =-+,'()6(1)g x x x =-,故()g x 在(]0,1处单调递减,所以,()g x 在(]0,1上至多有一个零点,而对于()5h x mx =-,在(1,)+∞上至多有一个零点,由题意得,()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,故有(0)0(1)0g g >⎧⎨≤⎩,求出102m ≥>,此时,()5h x mx =-,在(1,)+∞上单调递增,所以,(1)0h <即可满足题意,解得5m <,根据125m m ⎧≥>⎪⎨⎪>⎩,得102m ≥>故选:D 【点睛】关键点睛:解题关键在于先求出32()232g x x x m =-+的单调性,并根据()g x 的单调性得出()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,然后进行求解,难度属于中档题8.D解析:D 【分析】分离参数,再根据指数函数性质求出. 【详解】解:21x m -=或21x m -=-,即21x m =-,或者21x m =+, 当211x m =->-时,有一个解, 当211x m =+>时,有一个解,所以1m 时,方程|2|1x m -=有两个不等实根, 故选:D . 【点睛】考查方程根的个数问题,利用了分类讨论法,分离参数法,属于中档题.9.A解析:A【分析】令()0g x =,将问题转化为函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点来求解. 【详解】令()0g x =得()2ln f x x a =--,若()g x 有两个零点,则函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点.画出函数()f x 与函数()2ln 0y x a a =-->的图象如下图所示,当直线过点()0,1时,两个函数图象有两个交点,此时1120ln a a e=-⨯-⇒=.由图可知,当直线向下平移时,可使两个函数图象有两个交点,所以1ln 1a a e -≤⇒≥,所以a 的最小值为1e. 故选:A【点睛】本小题主要考查函数零点问题的求解,考查数形结合的数学思想方法,属于中档题.10.A解析:A 【分析】根据题设条件,可判断出d (B )的值为1或3,然后研究(x 2﹣ax )(x 2﹣ax +1)=0的根的情况,分类讨论出a 可能的取值. 【详解】解:由题意,|d (A )-d (B )|=1,d (A )=2,可得d (B )的值为1或3若d (B )=1,则x 2-ax=0仅有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,符合题意 若d (B )=3,则x 2-ax=0有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,不合题意 故x 2-ax=0有二根,一根是0,另一根是a ,所以x 2-ax+1=0必仅有一根,所以△=a 2-4=0,解得a=±2此时x 2-ax+1=0为1或-1,符合题意综上实数a 的所有可能取值构成集合M={0,-2,2},故d (M )=3. 故选:A . 【点睛】本题考查方程的根的个数的判断以及集合中元素个数,综合性较强,考查了分类讨论的思想及一元二次方程根的个数的研究方法,难度中等.11.C解析:C 【分析】令()()2210y f x f x λ=++-=,结合()f x 为奇函数进行化简,利用一元二次方程判别式列方程,解方程求得λ的值. 【详解】令()()2210y f x f x λ=++-=,则()()()221f x f x f x λλ+=--=-,因为()f x 是R 上的单调函数,所以221x x λ+=-,即2210x x λ++=-.依题意可知2210x x λ++=-有且只有一个实数根,所以()1810λ∆=-+=,解得78λ=-. 故选:C 【点睛】本小题主要考查函数的奇偶性、单调性、零点,属于中档题.12.B解析:B 【分析】把已知数据代入公式计算12E E . 【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg 0.1E E =, ∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈. 故选:B . 【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.二、填空题13.1120【分析】明确折扣金额y 元与购物总金额x 元之间的解析式结合y =30>25代入可得某人在此商场购物总金额减去折扣可得答案【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式y ∵y =30>2解析:1120 【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案. 【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25 ∴x >1100∴0.1(x ﹣1100)+25=30 解得,x =1150, 1150﹣30=1120,故此人购物实际所付金额为1120元. 【点睛】本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.14.【分析】根据局部奇函数的定义便知若函数是定义在上的局部奇函数只需方程有解可设从而得出方程在时有解从而设由二次函数的性质分析可得答案【详解】根据题意由局部奇函数的定义可知:若函数是定义在上的局部奇函数 解析:[)2,-+∞【分析】根据“局部奇函数”的定义便知,若函数()f x 是定义在R 上的“局部奇函数”,只需方程()()2222280xx x x m --+-+-=有解.可设()222x xt t -+=≥,从而得出方程280t mt --=在2t ≥时有解,从而设()28g x t mt =--,由二次函数的性质分析可得答案. 【详解】根据题意,由“局部奇函数”的定义可知:若函数()423xxf x m =-⋅-是定义在R 上的“局部奇函数”,则方程()()f x f x -=-有解,即()423423xx x x m m ---⋅-=--⋅-有解;变形可得()442260x x x xm --+-+-=, 即()()2222280xx x x m --+-+-=有解即可.设22x x t -+=,则222x x t -=+≥=,当且仅当0x =时,等号成立. 则方程()()f x f x -=-等价为280t mt --=在2t ≥时有解.设()28g t t mt =--,若方程280t mt --=的两根分别为1t 、2t ,则1280t t =-<,所以,()2428240g m m =--=--≤, 解可得:2m ≥-,即m 的取值范围为[)2,-+∞. 故答案为:[)2,-+∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.15.【分析】根据条件可知当且仅当时对一切关于的方程恒有解由此求的取值范围【详解】对任意或当且仅当时对一切关于的方程恒有解此时则实数的取值集合是故答案为:【点睛】关键点点睛:本题考查方程有解求参数的取值范解析:{3±【分析】根据条件可知当且仅当000112=2x x x ++时,对一切()f x M ∈,关于x 的方程()f x a =恒有解,,由此求a 的取值范围. 【详解】对任意00x >,001()22f x x =+或0001()f x x x =+当且仅当000112=2x x x ++时,对一切()f x M ∈,关于x 的方程()f x a =恒有解,此时0=2x0()3f x =±,则实数a的取值集合是{3±故答案为:{3± 【点睛】关键点点睛:本题考查方程有解,求参数的取值范围,关键是利用题意,正确求解0x >时,000112=2x x x ++时满足题意. 16.0【分析】首先由条件求出函数周期为再利用当时作出和的图象方程在上的实数根之和为由图象结合奇函数的性质即可求解【详解】因为函数满足且所以即所以所以函数周期为由可得所以对称轴为当时作函数和图象如图所示:解析:0 【分析】首先由条件求出函数()f x 周期为4,再利用当01x <≤时,2()log f x x =,作出和y x =-的图象,方程()f x x =-在()2,2-上的实数根之和为1234x x x x +++,由图象结合奇函数的性质即可求解. 【详解】因为函数()f x 满足()()f x f x -=-且()(2)f x f x =-, 所以[](2)2(2)()f x f x f x +=-+=-,即(2)()f x f x +=-, 所以(4)(2)()f x f x f x +=-+=, 所以函数()f x 周期为4,由()(2)f x f x =-可得(1)(1)f x f x +=-,所以()f x 对称轴为1x =, 当01x <≤时,2()log f x x =, 作函数()y f x =和y x =-图象如图所示:其中()y f x =时奇函数,y x =-也是奇函数, 设两个函数图象交点的横坐标分别为1x 、2x 、3x 、4x 方程()f x x =-在()2,2-上的实数根之和为1234x x x x +++, 由图象结合奇函数的性质可得:14230x x x x +=+=,O 所以12340x x x x +++=,方程()f x x =-在()2,2-上的实数根之和为0, 故答案为:0 【点睛】关键点点睛:本题的关键点是利用已知条件求出()f x 周期为4,方程()f x x =-在()2,2-上的实数根之和等价于()y f x =和y x =-图象交点的横坐标之和,关键点是作出()y f x =在()2,2-的图象,数形结合即可求解.17.7【分析】设每辆车的销售价格为万元求出每月的销售数量乘以每一辆的获利可得每月的利润再由二次函数求最值【详解】解:设每辆车的销售价格为万元则月销售为辆由解得获利当时取得最大值为1800万元为了获取最大解析:7 【分析】设每辆车的销售价格为x 万元,求出每月的销售数量,乘以每一辆的获利可得每月的利润,再由二次函数求最值. 【详解】解:设每辆车的销售价格为x 万元,则月销售为68002020002000.1x x --⨯=-辆, 由20002000x ->,解得10x <,∴获利2(2000200)(4)20028008000(010)y x x x x x =--=-+-<<,当28007400x ==时,y 取得最大值为1800万元. ∴为了获取最大利润,每辆车的销售价格应定为7万元.故答案为:7. 【点睛】本题考查函数模型的选择及应用,二次函数最值的求法,是基础题.18.或【分析】设原方程等价转化为由此能求出原方程的解【详解】设则原方程转化为解得当即解得当即解得所以原方程的解为或故答案为:或【点睛】本题考查方程的解的求法解题时要认真审题注意换元法的合理运用属于基础题3 【分析】设3log x t =,原方程等价转化为2230t t +-=,由此能求出原方程的解. 【详解】设3log x t =,则原方程转化为2230t t +-=,解得132t =-,21t =,当132t =-,即33log 2x =-,解得x = 当21t =,即3log 1x =,解得3x =,3.3. 【点睛】本题考查方程的解的求法,解题时要认真审题,注意换元法的合理运用,属于基础题.19.【分析】由函数有两个零点等价于且再求解即可【详解】解:令两边平方整理可得又由已知有且则解得或又方程有两不等实根则解得即综上可得实数a 的取值范围是故答案为:【点睛】本题考查了二次方程的解的个数问题重点解析:11,43⎛⎫⎪⎝⎭【分析】由函数()21f x ax =+有两个零点等价于240a a ->且2244(4)0a a a ∆=-->,再求解即可.【详解】21ax =-,两边平方整理可得22(4)210a a x ax --+=, 又由已知有210ax -≥且2(4)0a a -≠, 则240a a ->,解得14a >或0a <, 又方程22(4)210a a x ax --+=有两不等实根, 则2244(4)0a a a ∆=-->,解得103a <<, 即1143a <<, 综上可得实数a 的取值范围是11,43⎛⎫⎪⎝⎭, 故答案为:11,43⎛⎫⎪⎝⎭.【点睛】本题考查了二次方程的解的个数问题,重点考查了运算能力,属中档题.20.2【分析】由题意得令显然为偶函数则方程有四个实根函数x >0有两个零点令x >0则关于t 的方程即在内有两个不相等的实根结合函数的图象可得由此可求出答案【详解】解:方程令则显然为偶函数∴方程有四个实根函数解析:2 【分析】由题意得242()()10x x a f x g x e e -+-=⇔+-=,令242()1x x a h x e e -+-=+-,x ∈R ,显然()h x 为偶函数,则方程()()f x g x =有四个实根⇔函数242()1x x a h x e e -+-=+-,x >0有两个零点,令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根,结合函数1y t t =+的图象可得4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,由此可求出答案. 【详解】解:方程()()f x g x =⇔24ln(1)2x e x a -+=+-24210x x a e e -+-⇔+-=,令242()1x x a h x e e -+-=+-,x ∈R ,则显然()h x 为偶函数,∴方程()()f x g x =有四个实根⇔函数242()1x x a h x e e -+-=+-,x >0有两个零点, 令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根, 结合函数1y t t=+,2t e ->的图象,得222a e e e -<<+, 即4ln 2ln(1)2a e <<+-,∵存在[],1a n n ∈+,使得4ln 2ln(1)2a e <<+-,∴4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,结合n Z ∈,得max 2n =,故答案为:2. 【点睛】本题主要考查函数与方程,考查方程的实数解个数问题,考查转化与化归思想,属于中档题.三、解答题21.(I)证明见解析 ;(II) 134a ≥;(III) 35a << . 【分析】(I)根据函数单调性定义法证明即可; (II) 设2(12)x t x =<<,则24t <<则 92t a t +≤,令9()h t t t=+,求()h t 最大值即可; (III)根据零点分布列出等价不等式求解即可. 【详解】(Ⅰ)()(2)4229x x x g x f a ==-⋅+,设21x x R >∈,221121()()4229(4229)x x x x g x g x a a -=-⋅+--⋅+2121442(22)x x x x a =---212121(22)(22)2(22)x x x x x x a =-+-- 2121(22)[(22)2]x x x x a =-+-因为函数2x y =在R 上单调递增, 所以2122x x >,所以21220x x ->,又21(22)0,0x x a +>≤,所以21(22)20x x a +->,2121(22)[(22)2]0x x x x a -+->,所以21()()g x g x >,所以函数()g x 在R 上单调递增. (Ⅱ)设2(12)x t x =<<, 则24t <<,都有2290t at -+≤,92t a t +≤,令9()h t t t=+, 易证()h t 在(2,3)单调递减,在(3,4)单调递增, 又1325(2)(4)24h h ==,,()h t 最大值为132, 13132,24a a ≥≥. (III)因为函数()f x 在(3,9)-有两个零点且对称轴为x a =,所以2394360(3)0(9)0a a f f -<<⎧⎪->⎪⎨->⎪⎪>⎩,解得35a <<. 【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.22.(1)2160500,080281001680,80x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩;(2)当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元. 【分析】(1)分别求080x <<和80x ≥时函数的解析式可得答案;(2)当080x <<时,21(60)13002y x =--+,配方法求最值、;当80x ≥时, 利用基本不等式求最值,然后再做比较.【详解】(1)当080x <<时,2211100405006050022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭, 当80x ≥时,8100810010010121805001680y x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭, 于是2160500,080281001680,80x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩. (2)由(1)可知当080x <<时,21(60)13002y x =--+, 此时当60x =时y 取得最大值为1300(万元),当80x ≥时,8100168016801500y x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当8100x x=即90x =时y 取最大值为1500(万元), 综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.23.(1)14a >;(2)51b <<. 【分析】(1)讨论0a =、0a >、0a <满足恒成立情况下a 的取值范围,取并集;(2)由题意知()g x 关于y 轴对称的函数为()k x 必与()h x 在0x <上有两个不同的交点,利用二次函数的性质求b 的取值范围.【详解】(1)当0a =时,()1f x x =-,在()1,3x ∈上有()(2,0)f x ∈-,故不符题意; 若0a ≠有()f x 对称轴为12x a=,14a ∆=-,要使()()1,3,0x f x ∀∈>恒成立,当0a >时,102a >且(1)0f a => ,即∆<0或112a ≤或132(3)0a f ⎧≥⎪⎨⎪≥⎩,解得14a >; 当0a <时,102a<,即仅需(3)0f ≥即可,无解; 综上,有14a >; (2)0x <时,()g x 关于y 轴对称的函数为2()2k x x bx =--,由题意知()h x 与()k x 有两个不同的交点.由1a =时,()25111x h x x x x -=-+--,令()()k x h x =,整理得2(1)(1)20b x b x --+-=,∴令2()(1)(1)2t x b x b x =--+-,即()t x 在0x <上有两个不同的零点,而(0)20t =-<,∴()()()2101{0211810b b x b b b -<+=<-∆=++->,解得51b <<,【点睛】思路点睛:()g x 存在两点关于y 轴对称点在()h x 上,将其转化为函数交点问题. 确定()g x 关于y 轴对称的函数解析式()k x .有()h x 、()k x 有两个不同交点.结合二次函数的性质求参数的范围. 24.(1)2106003000040()100006800(4)40100.x x x L x x x x ⎧-+-<<⎪=⎨-+≤≤⎪⎩,,,;(2)月产量为50台时,所获的月利润最大,最大月利润为6400元.【分析】(1)分040x <<和40100x ≤≤时两种情况,利用利润=销售额-成本列式即可; (2)利用二次函数求040x <<时的最大值,利用基本不等式求40100x ≤≤时的最大值,取最大即可.【详解】(1)当0<x <40时,L (x )=1000x -10x 2-400x -3000=-10x 2+600x -3000; 当40≤x ≤100时,L (x )=100001000100498003000x x x--+-10000=6800(4)x x-+. 所以2106003000040()100006800(4)40100.x x x L x x x x ⎧-+-<<⎪=⎨-+≤≤⎪⎩,,, (2)①当0<x <40时,L (x )=-10(x -30)2+6000,所以当x =30时,L (x )max =L (30)=6000.②当40≤x ≤100时,10000()6800(4)L x x x =-+68006400-=≤, 当且仅当100004x x=,即x =50时取等号. 因为6400>6000,所以x =50时,L (x )最大.答:月产量为50台时,所获的月利润最大,最大月利润为6400元.【点睛】本题主要考查了分段函数的实际应用,涉及二次函数求最值和基本不等式求最值,属于基础题.25.(1)奇函数,证明见解析;(2)30,16a ⎛∈ ⎝⎦. 【分析】(1)先求定义域,再利用函数奇偶性的定义即可判断(2)通过()log (3)a g x x =-,将()1()f x g x -=化简,求出方程中a 的表达式,通过变形,利用基本不等式即可求解.【详解】(1)()f x 为奇函数 由505x x ->+解得定义域为{|5x x >或5}x <-关于原点对称, 55()log log ()55a a x x f x f x x x ----==-=--++,所以()f x 为奇函数 ; (2) 由题意知log log ()aa x 51x 3x 5--=-+,即5log log (3)5a a x a x x -=-+, 所以()535x a x x -=-+, 即5(5)(3)x a x x -=+-在(5,)+∞有解, 设5x t -=,则(0,)t ∈+∞设(10)(2)t y t t =++,。
二次函数的应用测试题(含答案)一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米B.3米C.5米D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2 +10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x 轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y= (x+3)2B.y= (x+3)2C.y= (x﹣3)2D.y= (x﹣3)25.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.2sB.4sC.6sD.8s6一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A.2米B.5米C.6米D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A.3sB.4sC.5sD.6s8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40 m/sB.20 m/sC.10 m/sD.5 m/s二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________元.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是_________.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________件(用含x的代数式表示).三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.22.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx ﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?26.3.3二次函数的应用参考答案与试题解析一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A. 1米B.3米C.5米D. 6米考点:二次函数的应用.分析:直接利用配方法求出二次函数最值进而求出答案.解答:解:h=﹣5t2+10t+1=﹣5(t2﹣2t)+1=﹣5(t﹣1)2+6,故小球到达最高点时距离地面的高度是:6m.故选:D.点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A. 30万元B.40万元C.45万元D. 46万元考点:二次函数的应用.分析:首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.解答:解:设在甲地销售x辆,则在乙地销售(15﹣x)量,根据题意得出:W=y1+y2=﹣x2+10x+2(15﹣x)=﹣x2+8x+30,∴最大利润为:= =46(万元),故选:D.点评:此题主要考查了二次函数的应用,得出函数关系式进而利用最值公式求出是解题关键.3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒考点:二次函数的应用.分析:根据题意,x=7时和x=14时y值相等,因此得到关于a,b的关系式,代入到x=﹣中求x的值.解答:解:当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=﹣21a,根据二次函数的对称性及抛物线的开口向下,当x=﹣=10.5时,y最大即高度最高.因为10最接近10.5.故选:C.点评:此题主要考查了二次函数的应用,根据对称性看备选项中哪个与之最近得出结论是解题关键.4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x 轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A. y= (x+3)2B.y= (x+3)2C.y= (x﹣3)2D. y= (x﹣3)2考点:二次函数的应用.专题:应用题.分析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(﹣3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.解答:解:∵高CH=1cm,BD=2cm,而B、D关于y轴对称,∴D点坐标为(1,1),∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为(﹣3,0),∴右边抛物线的顶点C的坐标为(3,0),设右边抛物线的解析式为y=a(x﹣3)2,把D(1,1)代入得1=a×(1﹣3)2,解得a= ,故右边抛物线的解析式为y= (x﹣3)2.故选C.点评:本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A. 2sB.4sC.6sD. 8s考点:二次函数的应用.分析:礼炮在点火升空到最高点处引爆,故求h的最大值.解答:解:由题意知礼炮的升空高度h(m)与飞行时间t(s)的关系式是:,∵<0∴当t=4s时,h最大为40m,故选B.点评:本题考查二次函数的实际应用,借助二次函数解决实际问题.6.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A. 2米B.5米C.6米D. 14米考点:二次函数的应用.分析:把二次函数的解析式化成顶点式,即可得出小球距离地面的最大高度.解答:解:h=﹣5t2+20t﹣14=﹣5(t2﹣4t)﹣14=﹣5(t2﹣4t+4)+20﹣14=﹣5(t﹣2)2+6,﹣5<0,则抛物线的开口向下,有最大值,当t=2时,h有最大值是6米.故选:C.点评:本题考查了二次函数的应用以及配方法求二次函数最值,把函数式化成顶点式是解题关键.7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A. 3sB.4sC.5sD. 6s考点:二次函数的应用.专题:计算题;应用题.分析:到最高点爆炸,那么所需时间为﹣.解答:解:∵礼炮在点火升空到最高点引爆,∴t=﹣=﹣=4s.故选B.点评:考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A. 40 m/sB.20 m/sC.10 m/sD. 5 m/s考点:二次函数的应用.专题:应用题.分析:本题实际是告知函数值求自变量的值,代入求解即可,另外实际问题中,负值舍去.解答:解:当刹车距离为5m时,即可得y=5,代入二次函数解析式得:5= x2.解得x=±10,(x=﹣10舍),故开始刹车时的速度为10m/s.故选C.点评:本题考查了二次函数的应用,明确x、y代表的实际意义,刹车距离为5m,即是y=5,难度一般.二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x= ,所以水面宽度增加到米,故答案为:米.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4.考点:二次函数的应用.专题:数形结合.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25元.考点:二次函数的应用.专题:销售问题.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是(,5).考点:二次函数的应用.专题:压轴题.分析:分别求得线段AB、线段AC、线段BC的解析式,分析每一条线段上横、纵坐标的乘积的最大值,再进一步比较.解答:解:线段AB的解析式是y= x+1(0≤x≤4),此时w=x(x+1)= +x,则x=4时,w最大=8;线段AC的解析式是y= x+1(0≤x≤2),此时w=x(x+1)= +x,此时x=2时,w最大=12;线段BC的解析式是y=﹣2x+10(2≤x≤4),此时w=x(﹣2x+10 )=﹣2x2+10x,此时x= 时,w最大=12.5 .综上所述,当w=xy取得最大值时,点P的坐标是(,5).点评:此题综合考查了二次函数的一次函数,能够熟练分析二次函数的最值.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为2米.考点:二次函数的应用.分析:直接利用公式法求出函数的最值即可得出最高点离地面的距离.解答:解:∵函数解析式为:,∴y最值= = =2.故答案为:2.点评:此题主要考查了二次函数的应用,正确记忆最值公式是解题关键.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为(60+x)件(用含x的代数式表示).考点:二次函数的应用.分析:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,设销售量为a,代入函数的解析式,即可得到a和x的关系.解答:解:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,∴,解得:,∴w=﹣x2+3600,设销售量为a,则a(60﹣x)=w,即a(60﹣x)=﹣x2+3600,解得:a=(60+x ),故答案为:(60+x).点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题,用的知识点为:因式分解,题目设计比较新颖,同时也考查了学生的逆向思维思考问题.三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?考点:二次函数的应用.分析:(1)由原来的销量﹣每天减少的销量就可以得出现在每天的销量而得出结论; (2)由每件的利润×数量=总利润建立方程求出其解即可.解答:解:(1)由题意,得32﹣×4=80﹣2x.答:每天的现售价为x元时则每天销售量为(80﹣2x)件;(2)由题意,得(x﹣20)(80﹣2x)=150,解得:x1=25,x2=35.∵x≤28,∴x=25.答:想要每天获得150元的销售利润,销售价应当为25元.点评:本题考查了销售问题的数量关系每件的利润×数量=总利润的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据销售问题的等量关系建立方程是关键.16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)根据销售量=240﹣(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价;(3)设一个月内获得的利润为w元,根据利润=1套球服所获得的利润×销售量列式整理,再根据二次函数的最值问题解答.解答:解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.点评:本题考查了二次函数的应用以及一元二次方程的应用,并涉及到了根据二次函数的最值公式,熟练记忆公式是解题关键.17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?考点:二次函数的应用.专题:销售问题.分析:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量×每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.解答:解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是19 2元.(3)由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.点评:本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合实际情况利用二次函数的性质解决问题.18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B 两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?考点:二次函数的应用.专题:应用题;数形结合.分析:(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA﹣yB的函数关系式,进而求出最值即可.解答:解:(1)由题意可得出:yB= (x﹣60)2+m经过(0,1000),则1000= (0﹣60)2+m,解得:m=100,∴yB= (x﹣60)2+100,当x=40时,yB= ×(40﹣60)2+100,解得:yB=200,yA=kx+b,经过(0,1000),(40,200),则,解得:,∴yA=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,yB= (44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,yA﹣yB=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x﹣20) 2+100,∴当x=20时,两组材料温差最大为100℃.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值求法等知识,得出两种材料的函数关系式是解题关键.19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得方程求解即可;(2)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得函数关系式,进而求出最值.解答:解:(1)设每箱应涨价x元,则每天可售出(50﹣2x)箱,每箱盈利(10+x)元,依题意得方程:(50﹣2x)(10+x)=600,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10,∵要使顾客得到实惠,∴应取x=5,答:每箱产品应涨价5元.(2)设利润为y元,则y=(50﹣2x)(10+x),整理得:y=﹣2x2+30x+500,配方得:y=﹣2(x﹣7.5)2+612.5,当x=7.5元,y可以取得最大值,∴每箱产品应涨价7.5元才能获利最高.点评:此题考查了一元二次方程的应用以及二次函数应用,解答此题的关键是熟知等量关系是:盈利额=每箱盈利×日销售量.20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.专题:销售问题.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;。
专题6:人教A 版第三章函数的应用综合测试题(解析版)一、单选题1.设()ln 2f x x x =+-,则函数()f x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)1.B【分析】根据()f x 的单调性,结合零点存在性定理,即可得出结论.【详解】 ()ln 2f x x x =+-在(0,)+∞单调递增,且(1)10,(2)ln20f f =-<=>,根据零点存在性定理,得()f x 存在唯一的零点在区间(1,2)上.故选:B【点睛】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题. 2.若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则燃烧剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图象表示为( )A .B .C .D . 2.B【解析】依题设可知,蜡烛高度h 与燃烧时间t 之间构成一次函数关系,又∵函数图象必过点(0,20)、(4,0)两点,且该图象应为一条线段.∴选B.3.利用二分法求方程3log 5x x =-的近似解,可以取得一个区间( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.D【分析】根据零点存在定理判断.【详解】设3()log 5f x x x =-+,则函数单调递增由于3(3)log 35310f =-+=-<,33(4)log 454log 410f =-+=->,∴()f x 在(3,4)上有零点.故选:D.【点睛】本题考查方程的解与函数零点问题.掌握零点存在定理是解题关键.4.若函数()27x f x x =+-的零点所在的区间为(,1)()k k k +∈Z ,则k =( )A .3B .4C .1D .24.D【分析】结合零点存在性定理和函数()f x 的单调性,求得k 的值.【详解】 ∵(2)4270,(3)8370,f f =+-<⎧⎨=+->⎩且()f x 单调递增,∴()f x 的零点所在的区间为(2,3),∴2k =. 故选:D【点睛】本小题主要考查零点存在性定理的运用,考查函数的单调性,属于基础题.5.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( )A .x 1B .x 2C .x 3D .x 45.C【解析】 观察图象可知:点x 3的附近两旁的函数值都为负值,∴点x 3不能用二分法求,故选C.6.函数21()f x x x =+,(0,)x ∈+∞的零点个数是( ). A .0B .1C .2D .36.A【分析】 根据函数定义域,结合零点定义,即可容易判断和求解.【详解】由于20x >,10x>, 因此不存在(0,)x ∈+∞使得21()0f x x x=+=, 因此函数没有零点.故选:A .【点睛】本题考查函数零点的求解,属简单题. 7.用二分法求函数()f x 的一个正实数零点时,经计算:()()0.640,0.720f f <>,()0.680f <,()0.740f >,则函数()f x 的一个精确度为0.1的正实数零点的近似值为A .0.64B .0.8C .0.7D .0.67.C【分析】由题意根据函数零点的判定定理可得,函数零点所在的区间为(0.68,0.72),从而得出结论.【详解】因为()0.680f <,()0.720f >,即()()0.680.720f f ⋅<,所以函数()f x 的零点在区间()0.68,0.72内.又0.720.680.040.1-=<,观察各选项可知函数()f x 的一个精确度为0.1的正实数零点的近似值为0.7.故选C .【点睛】本题主要考查函数零点的判定定理的应用,属于基础题.8.已知函数()221,11,1x x f x log x x ⎧-=⎨+>⎩,则函数()f x 的零点为( )A .1,02B .2-,0C .12D .08.D【分析】函数()f x 的零点,即令()0f x =分段求解即可.【详解】函数221,1()1,1x x f x log x x ⎧-=⎨+>⎩当1x 时,令()210x f x =-=,解得0x =当1x >时,令2()1log 0f x x =+=,解得12x =(舍去) 综上函数的零点为0故选:D .【点睛】本题考查函数的零点个数,考查分段函数的知识,属于基础题.9.设f (x )=3x +3x –8,用二分法求方程3x +3x –8在x ∈(1,2)内方程的近似解,则方程的根落在区间(参考数据31.25≈3.95)A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定9.B【分析】显然函数单调递增,然后利用二分法求(1,2)的中间值f (1.5)0>,再将范围限制(1,1.5),再利用二分法继续下次知道和选项逼近即可【详解】显然函数单调递增,f (1)<0,f (2)>0,f (1.5)=31.5+3×1.5–8=323 4.58+-=4.58->4.580->,f (1.25)=31.25+3×1.25–8<0,∴f (1.25)•f (1.5)<0,∴方程的根落在区间(1.25,1.5),故选B .【点睛】利用二分法判断函数零点的区间,首先确保函数在所给区间内连续,然后利用二分法算出所给区间的中间值,进而一步步将区间范围缩小10.已知碳14是一种放射性元素,在放射过程中,质量会不断减少.已知1克碳14经过5730年,质量经过放射消耗到0.5克,则再经过多少年,质量可放射消耗到0.125克( ) A .5730B .11460C .17190D .22920 10.B【分析】根据由题意可知再经过2个半衰期可消耗到0.125克.【详解】由题意可得:碳14的半衰期为5730年,则再过5730年后,质量从0.5克消耗到0.25克,过11460年后,质量可消耗到0.125克.故选:B.【点睛】本题考查指数函数的应用,属于基础题.11.已知二次函数22()(5)6(0)f x ax a x a a =+-+-≠的图象与x 轴交于()1,0M x ,()2,0N x 两点,且12112x x -<<<<,则a 的取值范围是( )A .(2,1+B .()1C .()1++∞D .(,2-∞- 11.B【分析】讨论0a >、0a <,根据零点的范围,结合二次函数的性质列不等式组求解即可得a 的取值范围.【详解】若0a >,则(1)0(1)0(2)0f f f ->⎧⎪<⎨⎪>⎩,即2221021106160a a a a a ⎧->⎪+-<⎨⎪+->⎩,解得21a <<;若0a <,则(1)0(1)0(2)0f f f -<⎧⎪>⎨⎪<⎩,即2221021106160a a a a a ⎧-<⎪+->⎨⎪+-<⎩,不等式组无解.故a的取值范围是()1.故选:B 12.已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩若函数()()2y f x f x m =+--()m R ∈恰有2个零点,则m 的取值范围是( )A .()2,+∞B .7,24⎛⎫ ⎪⎝⎭C .()0,2D .(),2-∞12.A【分析】求得函数()()2y f x f x =+-的解析式,画出()()2y f x f x =+-的图象,由此求得m 的取值范围.【详解】 由()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩得()()()2,02,0x x f x x x ⎧≥⎪-=⎨<⎪⎩, 所以()()()()()222,022,0234,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩,所以函数()()2y f x f x m =+--恰有2个零点等价于函数y m =与函数()()2y f x f x =+-的图象有2个公共点,由图象可知2m >.故选:A二、填空题13.在平面直角坐标系xOy 中,若直线y a =与函数2y x a a =-+-的图象有且只有一个公共点,则实数a 的值为______.13.1【分析】在同一坐标系中作出函数y a =与函数2y x a a=-+-的图象,根据只有一个公共点,利用数形结合法求解.【详解】在同一坐标系中作出函数y a =与函数2y x a a =-+-的图象,如图所示:因为只有一个公共点,所以2a a -=,解得1a =.故答案为:114.已知函数()1,2,x x x a f x x a+≤⎧=⎨>⎩,若存在两个不相等的实数12,x x ,使得()()12f x f x =,则实数a 的取值范围是__________.14.01a <<【分析】根据1y x =+与2xy =交于(0,1)和(1,2)点,即可求解结论.【详解】解:因为存在两个不相等的实数1x ,2x ,使得12()()f x f x =,故函数不是单调函数,又因为1y x =+与2x y =交于(0,1)和(1,2)点,故须01a <<.故答案为:(0,1).15.方程243x x m -+-=有四个互不相等的实数根,则实数m 的取值范围为_________. 15.()3,1-【分析】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点,作出函数图象可得实数m 的取值范围.【详解】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点 作出22243,04343,0x x x y x x x x x ⎧-+>=-+=⎨++≤⎩的函数图象如图所示:当2x =时,1y =-;0x =时,3y =,∴13m -<-<,()3,1m ∈-故答案为:()3,1-16.已知1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1,则实数k 的取值范围是___________.16.02k <<【分析】根据二次函数的零点分布情况,得到()10f >,求解对应不等式,即可得出结果.【详解】因为1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1, 二次函数()()2221f x x k x k =-++开口向上, 所以只需()()2211012f k k -++<=,即220k k -<, 解得02k <<.故答案为:02k <<.三、解答题17.已知函数32()2()3x f x x ax a R =--∈.(1)若()y f x =在()3,+∞上为增函数,求实数a 的取值范围; (2)若12a =-,设()ln(1)()g x x f x =-+,且方程3(1)(1)3xb g x x --=+有实根,求实数b 的最大值.17.(1)32a ≤(2)0 【解析】试题分析:(1)求导()'2220fx x x a =--≥在区间(3,+∞)上恒成立,从而转化为最值问题求解即可;(2)化简方程可得2ln b x x x x+-=,从而化为2(ln )b x x x x =+-在(0,+∞)上有解,从而讨论函数2()(ln )p x x x x x =+-的值域即可试题解析:(1)∵()f x 在区间()3,+∞上为增函数, ∴2'()220f x x x a =--≥即222a x x ≤-在区间()3,+∞上恒成立. ∵在()3,+∞内223x x -< ∴23a ≤即32a ≤(2)方程3(1)(1)3x b g x x --=+可化为2ln b x x x x +-=. ∴条件转化为2(ln )b x x x x =+-在()0,+∞上有解, 令2()(ln )p x x x x x =+-,∴即求函数2()(ln )p x x x x x =+-在()0,+∞上的值域. 令2()ln h x x x x =+-, 则1(21)(1)'()12x x h x x x x +-=+-=,∴当01x <<时'()0h x >,从而()h x 在()0,1上为增函数, 当1x >时'()0h x <,从而()h x 在()1,+∞上为减函数, 因此()(1)0h x h ≤=.又∵0x >,故()()0p x x h x =⋅≤,∴0b ≤因此当1x =时,b 取得最大值0.考点:根的存在性及根的个数判断;利用导数研究函数的单调性18.已知函数()lg f x kx =,()()lg 1g x x =+.(Ⅰ)当=1k 时,求函数()()y f x g x =+的单调区间;(Ⅱ)若方程()2()f x g x =仅有一个实根,求实数k 的取值集合.18.(1)单调递增区间为(0,)+∞,不存在单调递减区间;(2)0k <或4k =;【解析】试题分析:(1)由题可知,将=1k 代入,可得()()lg lg(1)lg (1)y f x g x x x x x =+=++=+,由于真数x (x+1)>0,可知x (x+1)在定义域上始终递增,外层对数函数始终递增,即单调递增区间为(0,)+∞,不存在单调递减区间;(2)由题可知,由()2()f x g x =,即lg 2lg(1)kx x =+,根据真数大于0,真数相等,可列出不等式组,对k 进行讨论,即可得出k 的取值; 试题解析:(Ⅰ)当=1k 时,()()lg lg(1)lg (1)y f x g x x x x x =+=++=+ (其中0x >),由复合函数单调性可知内层函数x (x+1)在定义域上始终递增,外层对数函数始终递增,所以,()()y f x g x =+的单调递增区间为(0,)+∞,不存在单调递减区间;(Ⅱ)由()2()f x g x =,即lg 2lg(1)kx x =+.该方程可化为不等式组 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩(1)若0k >时,则0x >,原问题即为:方程2(1)kx x =+在(0,)+∞上有根,解得4k =;(2)若0k <时,则10x -<<,原问题即为:方程2(1)kx x =+在(1,0)-上有根,解得0k <.综上可得0k <或4k =为所求.考点:①复合函数的单调性②对数函数单调性的应用19.已知函数221()11x m f x x x x x -=----- (Ⅰ)若函数()f x 无零点,求实数m 的取值范围;(Ⅱ)若函数()f x 在(2,2)-有且仅有一个零点,求实数m 的取值范围.19.(Ⅰ) 47|{<m m 或2}m =;(Ⅱ)7{|4m m =或48}m ≤<。
人教版高一上学期数学(必修二)《4.6函数的应用》同步测试题及答案1.某研究小组在一项实验中获得一组关于y,t的数据,将其整理得到如图所示的图形.下列函数中,最能近似刻画y与t之间关系的是()A.y=2tB.y=2t2C.y=t3D.y=log2t2.某种产品今年的产量是a,如果保持5%的年增长率,那么经过x年(x∈N*),该产品的产量y满足()A.y=a(1+5%x)B.y=a+5%C.y=a(1+5%)x-1D.y=a(1+5%)x3.中国茶文化博大精深.茶水的口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85℃的水泡制,再等到茶水温度降至60℃时饮用,可以产生最佳口感.为分析泡制一杯最佳口感茶水所需的时间,某研究人员每隔1min测量一次茶水的温度,根据所得数据作出如图所示的散点图.观察散点图的分布情况,下列哪个函数模型可以近似地刻画茶水温度y随时间x变化的规律()A.y=mx2+n(m>0)B.y=mx+n(m>0)C.y=ma x+n(m>0,a>0,a≠1)D.y=m log a x+n(m>0,a>0,a≠1)4.大西洋鲑鱼每年都要逆流而上,洄游到产卵地产卵.科学家发现鲑鱼的游速v(单位:m/s)与鲑鱼的耗氧量的单位数P的关系为v=12log3P100,则鲑鱼静止时耗氧量的单位数为()A.1B.100C.200D.3005.国内首个百万千瓦级海上风电场—三峡阳江沙扒海上风电项目宣布实现全容量并网发电,为粤港澳大湾区建设提供清洁能源动力.风速预测是风电出力大小评估的重要工作,通常采用威布尔分布模型,有学者根据某地气象数据得到该地的威布尔分布模型:F(x)=1-e−(x2)k,其中k为形状参数,x为风速.已知风速为1m/s时,F≈0.221,则当风速为4m/s时,F约为(参考数据:ln0.779≈-0.25,e-4≈0.018)() A.0.920B.0.964C.0.975D.0.9826.(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少1,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,3lg3≈0.477)()A.6B.9C.8D.77.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),日销售量Q(x)(单位:件)与时间x(单位:天)的部分数据如表所示:x 10 15 20 25 30Q(x) 50 55 60 55 50给出以下四个函数模型:①Q(x)=ax+b;②Q(x)=a|x-m|+b;③Q(x)=a·b x;④Q(x)=a log b x.根据表中的数据,最适合用来描述日销售量Q(x)与时间x的变化关系的函数模型是.8.某种放射性元素的原子数N随时间t的变化规律是N=N0e-λt,其中N0,λ为正常数.由放射性元素的这种性质,可以制造高精度的时钟,用原子数表示时间t为.9.(10分)据观测统计,某湿地公园某种珍稀鸟类的现有个数约1000只,并以平均每年8%的速度增加.(1)求两年后这种珍稀鸟类的大约个数;(3分)(2)写出y(珍稀鸟类的个数)关于x(经过的年数)的函数关系式;(3分)(3)约经过多少年以后,这种鸟类的个数达到现有个数的3倍或以上?(结果为整数)(参考数据:lg2≈0.3010,lg 3≈0.4771)(4分)10.(12分)芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位:元/10kg)与上市时间t(单位:天)的数据情况如表:t 50 110 250Q 150 108 150(1)根据表中数据,从下列函数中选取一个最能反映芦荟种植成本Q 与上市时间t 的变化关系的函数:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a log b t ;(6分)(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.(6分)11.白细胞是一类无色、球形、有核的血细胞,正常成人白细胞计数为(4.0~10.0)×109/L ,可因每日不同时间和机体不同的功能状态而在一定范围内变化.若白细胞计数因为感染产生病理性持续升高,则需进一步探查原因,进行药物干预.研究人员在对某种药物的研究过程中发现,在特定实验环境下的某段时间内,可以用对数模型W (m )=-W 0ln(Km )描述白细胞计数W (m )(单位:109/L)与随用药量m (单位:mg)的变化规律,其中W 0为初始白细胞计数对应值,K 为参数.已知W 0=20,用药量m =50时,在规定时间后测得白细胞计数W =14,要使白细胞计数达到正常值,则需将用药量至少提高到(参考数据:e 15≈1.221)( ) A.58B.59 C.60D.6212.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e 为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192 h ,在22 ℃的保鲜时间是48 h ,则该食品在33 ℃的保鲜时间是( ) A.16 hB.20 h C.24 hD.26 h13.某工厂生产过程中产生的废气必须经过过滤后才能排放,已知在过滤过程中,废气中的污染物含量p (单位:毫克/升)与过滤时间t (单位:小时)之间的关系为p (t )=p 0e -kt (e 为自然对数的底数,p 0为污染物的初始含量).过滤1小时后,检测发现污染物的含量减少了15,要使污染物的含量不超过初始值的110 000,至少还需过滤 小时(参考数据:lg 2≈0.301 0)( ) A.40B.38 C.44D.4214.光线通过一块玻璃,其强度要失掉原来的110,要使通过玻璃的光线强度为原来的12以下,至少需要这样的玻璃板的块数为 .(lg 2≈0.301 0,lg 3≈0.477 1)15.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为y ={0.1t,0≤t ≤10,(12)t10−a ,t >10,函数的图象如图所示.如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是( )A.9:00B.8:40C.8:30D.8:0016.(12分)科学家发现某种特殊物质的温度y (单位:摄氏度)随时间x (单位:分钟)的变化规律满足关系式:y =m ·2x +21-x (0≤x ≤4,m >0).(1)若m =2,求经过多少分钟,该物质的温度为5摄氏度;(5分) (2)如果该物质温度总不低于2摄氏度,求m 的取值范围.(7分)参考答案1.D 2.D 3.C 4.B5.D [因为F (1)≈0.221 所以e−12k≈0.779,12k ≈-ln 0.779,2k ≈4,得k ≈2所以F (4)=1-e −2k≈1-e -4≈0.982.]6.BC [设经过n 次过滤,产品达到市场要求,则 2100×⎝⎛⎭⎫23n ≤11 000即⎝⎛⎭⎫23n ≤120,由n lg 23≤-lg 20即n (lg 2-lg 3)≤-(1+lg 2) 得n ≥1+lg 2lg 3-lg 2≈7.4.]7.② 8.t =-1λln NN 09.解 (1)依题意,得一年后这种鸟类的个数为 1 000+1 000×8%=1 080(只)两年后这种鸟类的个数为 1 080+1 080×8%≈1 166(只).(2)由题意可知珍稀鸟类的现有个数约1 000只,并以平均每年8%的速度增加 则所求的函数关系式为 y =1 000×1.08x ,x ∈N .(3)令1 000×1.08x ≥3×1 000,得1.08x ≥3,两边取常用对数得 lg 1.08x ≥lg 3,即x lg 1.08≥lg 3 因为lg 1.08>0,所以x ≥lg 3lg 1.08所以x ≥lg 3lg 108100=lg 3lg 108-2因为lg 108=lg(33×22)=3lg 3+2lg 2 所以x ≥lg 33lg 3+2lg 2-2≈0.477 13×0.477 1+2×0.301 0-2≈14.3故约经过15年以后,这种鸟类的个数达到现有个数的3倍或以上.10.解 (1)由所提供的数据可知,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数不可能是常函数,若用函数Q =at +b ,Q =a ·b t ,Q =a log b t 中的任意一个来反映时都应有a ≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q =at 2+bt +c 进行描述,将表格所提供的三组数据分别代入函数Q =at 2+bt +c可得⎩⎨⎧150=2 500a +50b +c ,108=12 100a +110b +c ,150=62 500a +250b +c .解得a =1200,b =-32,c =4252.所以刻画芦荟种植成本Q 与上市时间t 的变化关系的函数为 Q =1200t 2-32t +4252.(2)由(1)可得,函数Q 为图象开口向上,对称轴为t =--322×1200=150的抛物线所以当t =150天时,芦荟种植成本最低为Q =1200×1502-32×150+4252=100(元/10 kg). 11.D [由已知W 0=20,m =50,W (50)=14,代入W (m )=-W 0ln(Km ) 则14=-20ln(50K ),解得K =e−71050则W (m )=-20ln (me −71050)因为用药量m =50时,在规定时间后测得白细胞计数W =14,白细胞计数值偏高 所以令W (m )=-20ln (me −71050)≤10 即ln (me−71050)≥-12解得m ≥50e 15≈50×1.221=61.05.所以要使白细胞计数达到正常值,则需将用药量至少提高到62.] 12.C [由题意可知,当x =0时,y =192;当x =22时,y =48 ∴⎩⎨⎧e b=192,e 22k +b =48,解得⎩⎪⎨⎪⎧e b=192,e 11k =12,则当x =33时 y =e 33k +b =(e 11k )3·e b =⎝⎛⎭⎫123×192=24.]13.D [根据题设,得45p 0=p 0e -k ∴e -k =45,所以p (t )=p 0⎝⎛⎭⎫45t ;由p (t )=p 0⎝⎛⎭⎫45t ≤110 000p 0,得⎝⎛⎭⎫45t ≤10-4,两边分别取以10为底的对数 并整理得t (1-3lg 2)≥4 ∴t ≥41-3lg 2≈41.2因此,至少还需过滤42小时.] 14.7解析 设至少需要x 块玻璃板由题意知⎝⎛⎭⎫1-110x <12即⎝⎛⎭⎫910x <12两边取对数lg ⎝⎛⎭⎫910x <lg 12即x ·(lg 9-lg 10)<-lg 2 即x ·(1-2lg 3)>lg 2 x >lg 21-2lg 3≈6.57 ∴x =7.15.A [根据函数的图象,可得函数的图象过点(10,1)代入函数的解析式,可得(12)1−a=1,解得a =1,所以y ={0.1t,0≤t ≤10,(12)t 10−1,t >10,令y ≤0.25,可得0.1t ≤0.25或(12)t10−1≤0.25解得0<t ≤2.5或t ≥30所以如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是9:00.] 16.解 (1)由题意,得m =2 令y =2·2x +21-x =2·2x +22x =5解得x =1(负值舍去)因此,经过1分钟,该物质的温度为5摄氏度. (2)由题意得m ·2x +21-x ≥2对一切0≤x ≤4恒成立 则由m ·2x +21-x ≥2,得m ≥22x -222x 令t =2-x ,则116≤t ≤1且m ≥2t -2t 2构造函数f (t )=2t -2t 2 =-2⎝⎛⎭⎫t -122+12所以当t =12时,函数y =f (t )取得最大值12 则m ≥12.因此,实数m 的取值范围是⎣⎡⎭⎫12,+∞.。
高中数学必修一第三章《函数的应用》单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .02.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.某企业2010年12月份的产值是这年1月份产值的P 倍,则该企业2010年度产值的月平均增长率为( )A .P P -1 B .11P -1C .11PD .P -1114.如图所示的函数图象与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④5.如图1,直角梯形OABC 中,AB∥OC,AB =1,OC =BC =2,直线l∶x=t 截此梯形所得位于l 左方图形面积为S ,则函数S =f(t)的图象大致为图中的( )图16.已知在x 克a%的盐水中,加入y 克b%的盐水,浓度变为c%,将y 表示成x 的函数关系式为( )A .y =c -ac -b x B .y =c -ab -c x C .y =c -bc -axD .y =b -cc -ax 7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( ) (下列数据仅供参考:2=1.41,3=1.73,33=1.44,66=1.38)A .38%B .41%C .44%D .73%8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是单位产量Q 的函数:R(Q)=4Q -1200Q 2,则总利润L(Q)的最大值是________万元,这时产品的生产数量为________.(总利润=总收入-成本)( )A .250 300B .200 300C .250 350D .200 3509.在一次数学实验中,运用图形计算器采集到如下一组数据:x -2.0 -1.0 0 1.00 2.00 3.00 y0.240.5112.023.988.02则x 、y )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x10.根据统计资料,我国能源生产自1986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?( )A .一次函数B .二次函数C .指数函数D .对数函数11.用二分法判断方程2x 3+3x -3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421875,0.6253=0.24414)( )A .0.25B .0.375C .0.635D .0.82512.有浓度为90%的溶液100g ,从中倒出10g 后再倒入10g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.3010,lg 3=0.4771)( )A .19B .20C .21D .22二、填空题(本大题共4小题,每小题5分,共20分)13.用二分法研究函数f(x)=x 3+2x -1的零点,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈________,第二次计算的f(x)的值为f(________).14.若函数f(x)=a x-x -a(a>0,且a≠1)有两个零点,则实数a 的取值范围为________.15.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为________________万元.16.函数f(x)=x 2-2x +b 的零点均是正数,则实数b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.(1)写出国庆这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出x 的取值范围.(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y.(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.4771)19.(12分)某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线AB 是函数y =ka t(t≥1,a>0,且k ,a 是常数)的图象.(1)写出服药后y 关于t 的函数关系式;(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克)?20.(12分)已知一次函数f(x)满足:f(1)=2,f(2)=3, (1)求f(x)的解析式;(2)判断函数g(x)=-1+lg f 2(x)在区间[0,9]上零点的个数.21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x 年后,我国人口为y 亿.(1)求y 与x 的函数关系式y =f(x);(2)求函数y =f(x)的定义域;(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)答案1.B [由1+1x =0,得1x=-1,∴x =-1.]2.B [由题意x 0为方程x 3=(12)x -2的根,令f (x )=x 3-22-x,∵f (0)=-4<0,f (1)=-1<0,f (2)=7>0, ∴x 0∈(1,2).]3.B [设1月份产值为a ,增长率为x ,则aP =a (1+x )11, ∴x =11P -1.]4.A [对于①③在函数零点两侧函数值的符号相同,故不能用二分法求.] 5.C [解析式为S =f (t ) =⎩⎪⎨⎪⎧12t ·2t 0≤t ≤112×1×2+t -1×21<t ≤2=⎩⎪⎨⎪⎧t 20≤t ≤12t -11<t ≤2∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]6.B [根据配制前后溶质不变,有等式a %x +b %y =c %(x +y ),即ax +by =cx +cy ,故y =c -a b -cx .] 7.B [设职工原工资为p ,平均增长率为x , 则p (1+x )6=8p ,x =68-1=2-1=41%.]8.A [L (Q )=4Q -1200Q 2-Q -200=-1200(Q -300)2+250,故总利润L (Q )的最大值是250万元,这时产品的生产数量为300.]9.B [∵x =0时,b x无意义,∴D 不成立. 由对应数据显示该函数是增函数,且增幅越来越快, ∴A 不成立. ∵C 是偶函数,∴x =±1的值应该相等,故C 不成立. 对于B ,当x =0时,y =1, ∴a +1=1,a =0;当x =1时,y =b =2.02,经验证它与各数据比较接近.]10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]11.C [令f (x )=2x 3+3x -3,f (0)<0,f (1)>0,f (0.5)<0,f (0.75)>0,f (0.625)<0,∴方程2x 3+3x -3=0的根在区间(0.625,0.75)内, ∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.]12.C [操作次数为n 时的浓度为(910)n +1,由(910)n +1<10%,得n +1>-1lg 910=-12lg3-1≈21.8,∴n ≥21.] 13.(0,0.5) 0.25解析 根据函数零点的存在性定理. ∵f (0)<0,f (0.5)>0,∴在(0,0.5)存在一个零点,第二次计算找中点,即0+0.52=0.25. 14.(1,+∞)解析 函数f (x )的零点的个数就是函数y =a x与函数y =x +a 交点的个数,如下图,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.15.a (1-b %)n解析 第一年后这批设备的价值为a (1-b %);第二年后这批设备的价值为a (1-b %)-a (1-b %)·b %=a (1-b %)2; 故第n 年后这批设备的价值为a (1-b %)n. 16.(0,1]解析 设x 1,x 2是函数f (x )的零点,则x 1,x 2为方程x 2-2x +b =0的两正根,则有⎩⎪⎨⎪⎧Δ≥0x 1+x 2=2>0x 1x 2=b >0,即⎩⎪⎨⎪⎧4-4b ≥0b >0.解得0<b ≤1.17.解 (1)依题意得y =5x +10(1200-x ) =-5x +12000,0≤x ≤1200. (2)∵1200×65%≤x ≤1200×85%, 解得780≤x ≤1020,而y =-5x +12000在[780,1 020]上为减函数, ∴-5×1020+12000≤y ≤-5×780+12000. 即6900≤y ≤8100,∴国庆这天停车场收费的金额范围为[6 900,8 100]. 18.解 (1)依题意:y =a ·0.9x,x ∈N *. (2)依题意:y ≤13a ,即:a ·0.9x≤a3,0.9x≤13=0.91log 30.9,得x ≥log 0.913=-lg32lg3-1≈-0.47710.9542-1≈10.42.答 通过至少11块玻璃后,光线强度减弱到原来的13以下.19.解 (1)当0≤t <1时,y =8t ;当t ≥1时,⎩⎪⎨⎪⎧ka =8,ka 7=1.∴⎩⎪⎨⎪⎧a =22,k =8 2.∴y =⎩⎪⎨⎪⎧8t , 0≤t <1,8222t,t ≥1.(2)令82·(22)t≥2,解得t ≤5. ∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药. (3)第二次服药后3小时,每毫升血液中含第一次所服药的药量为y 1=82×(22)8=22(微克);含第二次服药后药量为y 2=82×(22)3=4(微克),y 1+y 2=22+4≈4.7(微克). 故第二次服药再过3小时,该病人每毫升血液中含药量为4.7微克. 20.解 (1)令f (x )=ax +b ,由已知条件得⎩⎪⎨⎪⎧a +b =22a +b =3,解得a =b =1,所以f (x )=x +1(x ∈R ).(2)∵g (x )=-1+lg f 2(x )=-1+lg (x +1)2在区间[0,9]上为增函数,且g (0)=-1<0,g (9)=-1+lg102=1>0,∴函数g (x )在区间[0,9]上零点的个数为1个. 21.解 (1)2009年底人口数:13.56亿. 经过1年,2010年底人口数:13.56+13.56×1%=13.56×(1+1%)(亿). 经过2年,2011年底人口数:13.56×(1+1%)+13.56×(1+1%)×1% =13.56×(1+1%)2(亿). 经过3年,2012年底人口数:13.56×(1+1%)2+13.56×(1+1%)2×1% =13.56×(1+1%)3(亿).∴经过的年数与(1+1%)的指数相同.∴经过x年后人口数为13.56×(1+1%)x(亿).∴y=f(x)=13.56×(1+1%)x.(2)理论上指数函数定义域为R.∵此问题以年作为时间单位.∴此函数的定义域是{x|x∈N*}.(3)y=f(x)=13.56×(1+1%)x.∵1+1%>1,13.56>0,∴y=f(x)=13.56×(1+1%)x是增函数,即只要递增率为正数,随着时间的推移,人口的总数总在增长.22.解(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则x0=100+60-510.02=550.因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当0<x≤100时,P=60;当100<x<550时,P=60-0.02·(x-100)=62-x50;当x≥550时,P=51.所以P=f(x)=⎩⎪⎨⎪⎧60,0<x≤10062-x50,100<x<550,51,x≥550(x∈N).(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则L=(P-40)x=⎩⎪⎨⎪⎧20x,0<x≤10022x-x250,100<x<550,11x,x≥550(x∈N).当x=500时,L=6000;当x=1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.测试卷二(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .42.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为( )A .每个110元B .每个105元C .每个100元D .每个95元3.今有一组实验数据如下表,现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )A .y =log 2tB .y =12C .y =t 2-12D .y =2t -24.某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他去一次购买上述同样的商品,则应付款是( )A .413.7元B .513.7元C .548.7元D .546.6元5.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( )A .(-235,+∞) B .(1,+∞) C .[-235,1]D .(-∞,-235]6.设f(x)是区间[a ,b]上的单调函数,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一实根7.方程x 2-(2-a)x +5-a =0的两根都大于2,则实数a 的取值范围是( )A .a<-2B .-5<a<-2C .-5<a≤-4D .a>4或a<-48.四人赛跑,其跑过的路程f(x)和时间x 的关系分别是:f 1(x)=12x ,f 2(x)=14x ,f 3(x)=log 2(x +1),f 4(x)=log 8(x +1),如果他们一直跑下去,最终跑到最前面的人所具有的函数关系是( )A .f 1(x)=12xB .f 2(x)=14xC .f 3(x)=log 2(x +1)D .f 4(x)=log 8(x +1)9.函数f(x)=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)10.已知f(x)=(x -a)(x -b)-2的两个零点分别为α,β,则( )A .a<α<b<βB .α<a<b<βC .a<α<β<bD .α<a<β<b11.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=f(x +1x +4)的所有x之和为( )A .-92B .-72C .-8D .812.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如图所示.现给出下面说法:①前5分钟温度增加的速度越来越快; ②前5分钟温度增加的速度越来越慢; ③5分钟以后温度保持匀速增加; ④5分钟以后温度保持不变. 其中正确的说法是( )A .①④B .②④C .②③D .①③二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=⎩⎪⎨⎪⎧log 2x x>03xx≤0,且关于x 的方程f(x)+x -a =0有且只有一个实根,则实数a 的取值范围是______________.14.要建造一个长方体形状的仓库,其内部的高为3m ,长与宽的和为20m ,则仓库容积的最大值为________.15.已知函数f(x)=⎩⎪⎨⎪⎧2x-1, x>0,-x 2-2x ,x≤0.若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围为________.16.若曲线|y|=2x+1与直线y =b 没有公共点,则b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)讨论方程4x 3+x -15=0在[1,2]内实数解的存在性,并说明理由.18.(12分)(1)已知f(x)=23x-1+m 是奇函数,求常数m 的值; (2)画出函数y =|3x-1|的图象,并利用图象回答:k 为何值时,方程|3x-1|=k 无解?有一解?有两解?19.(12分)某出版公司为一本畅销书定价如下: C(n)=⎩⎪⎨⎪⎧12n ,1≤n≤24,n ∈N *,11n ,25≤n ≤48,n ∈N *,10n ,n ≥49,n ∈N *,这里n 表示定购书的数量,C (n )是定购n 本书所付的钱数(单位:元).若一本书的成本价是5元,现有甲、乙两人来买书,每人至少买1本,两人共买60本,问出版公司最少能赚多少钱?最多能赚多少钱?20.(12分)是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.21.(12分)已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求实数a的取值范围.22.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;③每户每月的定额损耗费a不超过5元.(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系式;(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:m,n,a的值.答案1.A [在同一坐标系中分别画出函数y1=|x2-3|和y2=a的图象,如图所示.可知方程解的个数为0,2,3或4,不可能有1个解.] 2.D [设售价为x 元,则利润y =[400-20(x -90)](x -80)=20(110-x )(x -80)=-20(x 2-190x +8800) =-20(x -95)2+4500.∴当x =95时,y 最大为4500元.]3.C [当t =4时,y =log 24=2,y =12log 4=-2,y =42-12=7.5,y =2×4-2=6.所以y =t 2-12适合,当t =1.99代入A 、B 、C 、D4个选项,y =t 2-12的值与表中的1.5接近,故选C.]4.D [购物超过200元,至少付款200×0.9=180(元),超过500元,至少付款500×0.9=450(元),可知此人第一次购物不超过200元,第二次购物不超过500元,则此人两次购物总金额是168+4230.9=168+470=638(元).若一次购物,应付500×0.9+138×0.7=546.6(元).]5.C [令f (x )=x 2+ax -2,则f (0)=-2<0, ∴要使f (x )在[1,5]上与x 轴有交点,则需要⎩⎪⎨⎪⎧f 1≤0f 5≥0,即⎩⎪⎨⎪⎧a -1≤023+5a ≥0,解得-235≤a ≤1.]6.D [∵f (a )·f (b )<0,∴f (x )在区间[a ,b ]上存在零点,又∵f (x )在[a ,b ]上是单调函数,∴f (x )在区间[a ,b ]上的零点唯一,即f (x )=0在[a ,b ]上必有唯一实根.]7.C [由题意知⎩⎪⎨⎪⎧Δ≥02-a2>2f 2>0,解得-5<a ≤-4.]8.B [在同一坐标系下画出四个函数的图象,由图象可知f 2(x )=14x 增长的最快.]9.B [f (2)=ln2-22=ln2-1<1-1=0,f (3)=ln3-23>1-23=13>0.故零点所在区间为(2,3).]10.B [设g (x )=(x -a )(x -b ),则f (x )是由g (x )的图象向下平移2个单位得到的,而g (x )的两个零点为a ,b ,f (x )的两个零点为α,β,结合图象可得α<a <b <β.]11.C [∵x >0时f (x )单调且为偶函数, ∴|2x |=|x +1x +4|,即2x (x +4)=±(x +1). ∴2x 2+9x +1=0或2x 2+7x -1=0. ∴共有四根.∵x 1+x 2=-92,x 3+x 4=-72,∴所有x 之和为-92+(-72)=-8.]12.B [因为温度y 关于时间t 的图象是先凸后平行直线,即5分钟前每当t 增加一个单位增量Δt ,则y 随相应的增量Δy 越来越小,而5分钟后y 关于t 的增量保持为0.故选B.]13.(1,+∞)解析 由f (x )+x -a =0, 得f (x )=a -x ,令y =f (x ),y =a -x ,如图,当a >1时,y =f (x )与y =a -x 有且只有一个交点, ∴a >1. 14.300m 3解析 设长为x m ,则宽为(20-x )m ,仓库的容积为V , 则V =x (20-x )·3=-3x 2+60x,0<x <20,由二次函数的图象知,顶点的纵坐标为V 的最大值. ∴x =10时,V 最大=300(m 3). 15.(0,1)解析 函数f (x )=⎩⎪⎨⎪⎧2x-1, x >0,-x 2-2x ,x ≤0的图象如图所示,该函数的图象与直线y =m 有三个交点时m ∈(0,1),此时函数g (x )=f (x )-m 有3个零点.16.[-1,1]解析 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件为b ∈[-1,1].17.解 令f (x )=4x 3+x -15, ∵y =4x 3和y =x 在[1,2]上都为增函数. ∴f (x )=4x 3+x -15在[1,2]上为增函数,∵f (1)=4+1-15=-10<0,f (2)=4×8+2-15=19>0, ∴f (x )=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解. 18.解 (1)∵f (x )=23x -1+m 是奇函数,∴f (-x )=-f (x ),∴23-x -1+m =-23x -1-m .∴2·3x1-3x +m =21-3x -m , ∴23x -11-3x+2m =0. ∴-2+2m =0,∴m =1.(2)作出直线y =k 与函数y =|3x-1|的图象,如图.①当k <0时,直线y =k 与函数y =|3x-1|的图象无交点,即方程无解;②当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解;③当0<k <1时,直线y =k 与函数y =|3x-1|的图象有两个不同的交点,所以方程有两解.19.解 设甲买n 本书,则乙买(60-n )本(不妨设甲买的书少于或等于乙买的书),则n ≤30,n ∈N *.①当1≤n ≤11且n ∈N *时,49≤60-n ≤59,出版公司赚的钱数f (n )=12n +10(60-n )-5×60=2n +300; ②当12≤n ≤24且n ∈N *时,36≤60-n ≤48, 出版公司赚的钱数f (n )=12n +11(60-n )-5×60=n +360;③当25≤n ≤30且n ∈N *时,30≤60-n ≤35, 出版公司赚的钱数f (n )=11×60-5×60=360. ∴f (n )=⎩⎪⎨⎪⎧2n +300, 1≤n ≤11,n ∈N *,n +360,12≤n ≤24,n ∈N *,360,25≤n ≤30,n ∈N *.∴当1≤n ≤11时,302≤f (n )≤322; 当12≤n ≤24时,372≤f (n )≤384; 当25≤n ≤30时,f (n )=360.故出版公司最少能赚302元,最多能赚384元. 20.解 若实数a 满足条件, 则只需f (-1)f (3)≤0即可.f (-1)f (3)=(1-3a +2+a -1)(9+9a -6+a -1)=4(1-a )(5a +1)≤0,所以a ≤-15或a ≥1.检验:(1)当f (-1)=0时a =1, 所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a ≠1. (2)当f (3)=0时a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).21.解 当a =0时,函数为f (x )=2x -3,其零点x =32不在区间[-1,1]上.当a ≠0时,函数f (x )在区间[-1,1]分为两种情况: ①函数在区间[-1,1]上只有一个零点,此时:⎩⎪⎨⎪⎧Δ=4-8a -3-a ≥0f -1·f 1=a -5a -1≤0或⎩⎪⎨⎪⎧Δ=4-8a -3-a =0-1≤-12a ≤1,解得1≤a ≤5或a =-3-72.②函数在区间[-1,1]上有两个零点,此时⎩⎪⎨⎪⎧Δ>0-1<-12a <1f -1f 1≥0,即⎩⎪⎨⎪⎧8a 2+24a +4>0-1<-12a<1a -5a -1≥0.解得a ≥5或a <-3-72.综上所述,如果函数在区间[-1,1]上有零点,那么实数a 的取值范围为(-∞,-3-72]∪[1,+∞). 22.解 (1)依题意,得y =⎩⎪⎨⎪⎧9+a ,0<x ≤m , ①9+n x -m +a ,x >m .②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②,得⎩⎪⎨⎪⎧17=9+n 4-m +a , ③23=9+n 5-m +a .④③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16. 又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13,这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量.将⎩⎪⎨⎪⎧x =2.5,y =11代入①,得11=9+a ,由⎩⎪⎨⎪⎧a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.。
数学函数应用测试题(含答案)数学函数应用测试题(含答案)1. 题目一:利用函数解决实际问题小明骑自行车从家出发,以每小时20公里的速度向东骑行。
在骑行的过程中,小明感到口渴,于是决定在每行驶2小时后停下来喝水。
如果他从家到学校需要骑行6个小时,那么他停下来喝水的次数是多少次?解答:设小明停下来喝水的次数为n,根据题意可知:2n = 6 - 2解得 n = 2因此,小明需要停下来喝水的次数为2次。
2. 题目二:函数的图像分析已知函数 f(x) = x^2 - 2x - 3 的图像在直角坐标系中的顶点坐标为(1,-4),请回答以下问题:a) 函数的对称轴方程是什么?b) 函数在什么区间上是递增的?c) 函数的最小值是多少?解答:a) 函数的对称轴方程为 x = 1。
由已知条件可知,函数的顶点坐标为(1,-4),因此对称轴与 x 轴平行,其方程为 x = 1。
b) 函数在区间 (-∞, 1) 上是递减的,在区间(1, +∞) 上是递增的。
根据函数的对称轴方程 x = 1,可知对称轴将函数的图像分成两个部分。
在左半部分,即 x < 1 的区间上,函数递减;在右半部分,即 x >1 的区间上,函数递增。
c) 函数的最小值是 -4。
由已知条件可知,函数的顶点坐标为(1,-4),因此函数的最小值为 -4。
3. 题目三:函数的复合运算已知函数 f(x) = x^2 + 1 和 g(x) = 2x - 3,求函数 h(x) = f(g(x)) 的表达式并化简。
解答:由已知条件可得:h(x) = f(g(x))= f(2x - 3)= (2x - 3)^2 + 1= 4x^2 - 12x + 9 + 1= 4x^2 - 12x + 10因此,函数 h(x) 的表达式为 4x^2 - 12x + 10。
4. 题目四:函数的反函数已知函数 f(x) = 2x + 1,求它的反函数 f^{-1}(x) 的表达式。
专题5:人教A 版第三章函数的应用基础测试题(解析版)一、单选题1.已知函数()2f x ax bx c =++满足()20f <且()30f >,则()f x 在()2,3上的零点( ). A .至多有一个 B .有1个或2个 C .有且仅有一个 D .一个也没有1.C 【分析】由零点存在定理可判定出结果. 【详解】由题意知:()f x 在R 上至多有两个零点.由零点存在定理知:若()()230f f ⋅<,则()f x 在()2,3上有且仅有一个零点. 故选:C .2.函数()ln 4f x x x =+-的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,52.B 【分析】计算区间端点处的函数值,根据零点存在定理判断. 【详解】(1)30f =-<,(2)ln 220f =-<,(3)ln 310f =->,∴零点在区间(2,3)上. 故选:B .3.函数()6ln f x x x =-+的零点所在区间应是( ) A .()2,3 B .()3,4C .()4,5D .()5,63.C 【分析】分别计算()2f ,()3f ,()4f ,()5f ,()6f ,根据零点存在性定理,即可得出结果. 【详解】因为()6ln f x x x =-+,所以()226ln 24ln 20f =-+=-+<,()336ln33ln30f =-+=-+<,()446ln 422ln 20f =-+=-+<, ()556ln51ln50f =-+=-+>,()666ln6ln60f =-+=>,由零点存在性定理,可得函数()6ln f x x x =-+的零点所在区间应是()4,5, 即C 正确,ABD 错误. 故选:C.4.下列函数中,没有零点的是( )A .2()log 7f x x =-B .()1f xC .()1f x x= D .()2f x x x =+4.C 【分析】分别解函数对应的方程,逐项判断,即可得出结果. 【详解】A 选项,由2()log 70f x x =-=可得72x =,即函数2()log 7f x x =-有零点;B 选项,由()10f x =得1x =,即函数()1f x 有零点;C 选项,由()10f x x ==解得,x 不存在,即函数()1f x x=没有零点; D 选项,由()20f x x x =+=解得1x =-或0,即函数()2f x x x =+有零点. 故选:C.5.函数()228f x x x =--零点是( )A .2和4-B .2-和4C .()2,0和()4,0-D .()2,0-和()4,05.B 【分析】解方程()0f x =,即可得出函数()f x 的零点. 【详解】解方程()0f x =,即2280x x --=,解得2x =-或4x =.因此,函数()228f x x x =--的零点是2-和4.故选:B.6.为了求函数()237x f x x =+-的一个零点,某同学利用计算器得到自变量x 和函数()f x 的部分对应值,如表所示:x1.25 1.3125 1.375 1.4375 1.5 1.5625 ()f x-0.8716-0.5788-0.28130.21010.328430.64115则方程237x x +=的近似解(精确到0.1)可取为( ) A .1.2 B .1.3C .1.4D .1.56.C 【分析】根据二分法结合零点存在定理求解. 【详解】因为(1.375)0,(1.4375)0f f <>, 所以方程的解在区间()1.375,1.4375内, 又精确到0.1, 所以可取1.4 故选:C7.把函数2()log f x x =的图像向左平移1个单位,再向下平移2个单位后得到函数()g x 的图像,则函数()g x 的零点是( )A .3B .5C .34-D .547.A 【分析】根据平移变换得到()g x ,令()g x 0=,解方程可得结果. 【详解】依题意得2()log (1)2g x x =+-,由()0g x =得2log (1)2x +=,得14x +=,得3x =. 故选:A【点睛】关键点点睛:掌握函数零点的概念是本题解题关键.8.“道高一尺,魔高一丈”出于《西游记》第五十回“道高一尺魔高丈,性乱情昏错认家,可恨法身无坐位,当时行动念头差,”用来比喻取得一定成就后遇到的障碍会更大或正义终将战胜邪恶,若用下列函数中的一个来表示这句话的含义,则最合适的是( )A .10y x =,0x >B .110y x =,0x > C .10y x =+,0x > D .=9y x +,0x >8.A 【分析】根据一丈等于十尺,即可得出结果. 【详解】因为一丈等于十尺,所以“道高一尺魔高一丈”更适合用10y x =,0x >来表示; 故选:A.9.若32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,数据如下表:那么方程32220x x x +--=的一个近似根(精确到0.1)为( ) A .1.2 B .1.3C .1.41D .1.59.C 【分析】利用零点存在性定理,判断根的较小区间,即可求得近似解. 【详解】因为(1.438)0.1650f =>,(1.4065)0.0520f =-<,(1.438)(1.4065)0f f ⨯<,所以方程的近似根在()1.4065,1.438,则近似根为1.41 故选:C10.已知函数()351f x x x =-+,则下列区间中一定包含()f x 零点的区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,210.C 【分析】计算出各端点的函数值,利用零点存在性定理即可判断. 【详解】()351f x x x =-+,()32252130f ∴-=-+⨯+=>,()31151150f -=-+⨯+=>,()010f => ()31151130f =-⨯+=-<,()32252110f =-⨯+=-<,根据零点存在性定理可得一定包含()f x 零点的区间是()0,1. 故选:C.11.已知函数()25xf x ex --=-的零点位于区间(),1m m +,m ∈Z 上,则42log m m +=( )A .14-B .14C .12D .3411.D 【分析】利用零点存在定理求得整数m 的值,进而可求得42log mm +的值. 【详解】易知函数()f x 单调递减,又因为()2210f e -=->,()130f e -=-<,由零点存在定理可知,函数()f x 的零点在区间()2,1--内,则2m =-. 所以2441132log 2log 2424mm -+=+=+=. 故选:D. 【点睛】本题考查利用零点存在定理求参数值,同时也考查指数式与对数式的计算,考查计算能力,属于基础题.12.我们知道,人们对声音有不同的感觉,这与声音的强度有关系.声音的强度常用I (单位:瓦/米2,即2/m W )表示,但在实际测量时,声音的强度水平常用L (单位:分贝)表示,它们满足换算公式:010lgI L I =(0L ≥,其中1220110/m I W -=⨯是人们平均能听到的声音的最小强度).若使某小区内公共场所声音的强度水平降低10分贝,则声音的强度应变为原来的( ) A .15B .1100C .110D .12012.C 【分析】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I ,代入可得选项. 【详解】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I , 由题意,得1210L L -=,即120010lg 10lg 10I II I -=, 解得21110I I =. 故选:C. 【点睛】本题考查函数模型的应用,关键在于理解生活中的数据在数学应用中的表达,属于基础题.二、填空题13.函数()22f x x x =+-的零点为______________.13.2-和1 【分析】解方程220x x +-=,即可得出函数()y f x =的零点. 【详解】令()0f x =,得220x x +-=,解得1x =或2x =-. 因此,函数()22f x x x =+-的零点为2-和1.故答案为:2-和1.【点睛】本题考查函数零点的求解,熟悉函数零点的定义是解题的关键,考查运算求解能力,属于基础题.14.若二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则实数k =_____________. 14.4 【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入9y kx =-中,求得k 的值. 【详解】解37231x y x y -=⎧⎨+=⎩得21x y =⎧⎨=-⎩,代入9y kx =-得129k -=-, 解得4k =. 故答案为:4 【点睛】本题主要考查解二元一次方程组,意在考查学生对该知识的理解掌握水平. 15.燕子每年秋天都要从北方飞向南方过冬,专家发现,两岁燕子的飞行速度可以表示为函数25log 10Ov =,单位是m/s ,其中O 表示燕子的耗氧量.则当燕子静止时的耗氧量是______个单位. 15.10 【分析】当燕子静止时,速度为0,由此列方程,解方程求得O 的值. 【详解】若燕子静止,则0v =,即25log 0,11010O O==,所以10O =. 故填:10. 【点睛】本小题主要考查阅读理解能力,考查已知函数值以及函数解析式求自变量的值,属于基础题.16.已知函数3,0()1,0x x x f x x a x x ⎧+≤⎪=⎨-->⎪⎩有4个不同的零点,则实数a 的取值范围为_______. 16.()2,+∞ 【分析】当0x ≤时,即()f x 恒有1个零点;当0x >时,得到相切时a 的值,即可求解。
一、选择题1.已知1,0()1,0ax x f x x x x +≤⎧⎪=⎨->⎪⎩,则下列关于[()]1y f f x =+的零点的判断正确的是( ) A .当0a >时,有4个零点,当0a <时,有1个零点; B .当0a >时,有3个零点,当0a <时,有2个零点; C .无论a 为何值,均有2个零点; D .无论a 为何值,均有4个零点.2.已知函数,01()11,10(1)x x f x x f x ≤<⎧⎪=⎨--<<⎪+⎩,()()4g x f x mx m =--,其中m 是非零的实数,若函数()g x 在区间(1,1)-内有且仅有两个零点,则实数m 的取值范围是( ) A .1,(0,1)5⎛⎫-∞-⋃ ⎪⎝⎭B .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭D .1,(1,)5⎛⎫-∞-⋃+∞ ⎪⎝⎭3.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意R x ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点()1,0-的直线l 与函数()()4f x 的图象在[]0,2x ∈上恰有8个交点,在直线l 斜率k 的取值范围是( )A .80,11⎛⎫⎪⎝⎭B .110,8⎛⎫⎪⎝⎭C .80,19⎛⎫⎪⎝⎭D .190,8⎛⎫⎪⎝⎭4.流行病学基本参数:基本再生数0R 指一个感染者传染的平均人数,世代间隔T 指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可用模型:0()rtI t N e =(其中0N 是开始确诊病例数)描述累计感染病例()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 满足01R rT =+,有学者估计出0 3.4,6R T ==.据此,在新冠肺炎疫情初始阶段,当0()2I t N =时,t 的值为(ln 20.69≈)( ) A .1.2B .1.7C .2.0D .2.55.已知函数()223,021,0x x x f x x -+≤⎧⎪=⎨->⎪⎩,若存在三个实数m n q ≠≠,使得()()()f m f n f q ==成立,则111222m n q ++的取值范围是( )A .[]0,1B .51,22⎛+⎝ C .(2,D .()0,16.对于定义域为R 的函数()f x ,若存在非零实数0x ,使函数()f x 在()0,x -∞和()0,x +∞上与 x 轴都有交点,则称0x 为函数()f x 的一个“界点”.则下列四个函数中,不存在“界点”的是( ) A .()22xf x x =-B .()()22f x x bx b R =+-∈C .()12f x x =--D .()sin x x x f -=7.用二分法求方程x 2–2=0在(1,2)内近似解,设f (x )=x 2–2,得f (1)<0,f (1.5)>0, f (1.25)<0,则方程的根在区间( ) A .(1.25,1.5)B .(1,1.25)C .(1, 1.5)D .不能确定8.蔬菜价格随着季节的变化而有所变化.根据对农贸市场蔬菜价格的调查得知,购买2千克甲种蔬菜与1千克乙种蔬菜所需费用之和大于8元,而购买4千克甲种蔬菜与5千克乙种蔬菜所需费用之和小于22元.设购买2千克甲种蔬菜所需费用为A 元,购买3千克乙种蔬菜所需费用为B 元,则( ). A .A B < B .A B =C .A B >D .A ,B 大小不确定9.已知()11xf x e =-+,若函数2()[()](2)()2g x f x a f x a =+--有三个零点,则实数a 的取值范围是( ) A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)10.把物体放在冷空气中冷却,如果物体原来的温度为1θC ,空气的温度是0θC ,那么t 分钟后物体的温度θ(单位C )可由公式:()010kt e θθθθ-=+-求得,其中k 是一个随着物体与空气的接触状况而定的正常数.现有100℃的物体,放在20C 的空气中冷却,4分钟后物体的温度是60C ,则再经过( )分钟,物体的温度是40C (假设空气的温度保持不变). A .2B .4C .6D .811.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的( )倍.(当||x 较小时,2101 2.3 2.7x x x ≈++)A .1.27B .1.26C .1.23D .1.2212.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k的取值范围是()A.1,(22,)2⎛⎫-∞-+∞⎪⎝⎭B.1,(0,22)2⎛⎫-∞-⎪⎝⎭C.(,0)(0,22)-∞D.(,0)(22,)-∞+∞二、填空题13.定义在R上的函数()f x,满足()()f x f x-=-且()(2)f x f x=-,当01x<≤时,2()logf x x=,则方程()f x x=-在()2,2-上的实数根之和为___________.14.已知函数2()log(2)f x x=+与2()()1g x x a=-+,若对任意的1[2,6)x∈,都存在2[0,2]x∈,使得()()12f xg x=,则实数a的取值范围是______.15.若关于x的方程24x x m-=+有两个不同实数解,则m的取值范围是______. 16.小菲在学校选修课中了解到艾宾浩斯记忆曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制散点图,拟合了记忆保持量与时间(天)之间的函数关系:()1271012019130.520x xf xx x,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩某同学根据小菲拟合后的信息得到以下结论:①随着时间的增加,小菲的单词记忆保持量降低;②9天后,小菲的单词记忆保持量低于40%;③26天后,小菲的单词记忆保持量不足20%.其中正确的结论序号有______.(注:请写出所有正确结论的序号)17.已知函数()y f x=是定义域为R的偶函数,当0x≥时,()21,02413,224xx xf xx⎧-≤≤⎪⎪=⎨⎛⎫⎪-->⎪⎪⎝⎭⎩,若关于x的方程()()27016af x af x++=⎡⎤⎣⎦,a R∈有且仅有8个不同实数根,则实数a的取值范围是__________.18.已知函数241,0()3,0xx x xf xx⎧--+≤=⎨>⎩,则函数(())3f f x=的零点的个数是________.19.规定[]t 为不超过t 的最大整数,如[]3.33=,[]2.43-=-.若函数()[][]()2f x x x x =-∈R ,则方程()()22f x f x -=的解集是______.20.(文)已知函数2cos ,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩,则关于x 的方程2()3()20f x f x -+=的实根的个数是________个.三、解答题21.新冠肺炎疫情发生后,某公司生产A 型抗疫商品,第一个月是为国内生产,当地政府决定对该型商品免税,该型商品出厂价为每件20元,月销售量为12万件;后来国内疫情得到有效控制,从第二个月开始,该公司为国外生产该型抗疫商品,当地政府开始对该型抗疫商品征收税率为%p (0100p <<,即销售1元要征收100p元)的税,于是该型抗疫商品出厂价就上升到每件100202p-元,预计月销售量将减少2p 万件.(1)将第二个月政府对该商品征收的税y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二个月该公司缴纳的税额不少于1万元的前提下,又要让该公司当月获得最大销售金额,p 应为多少? 22.已知函数()((1,1))1||xf x x x =∈--,有下列结论: ①(1,1)x ∀∈-,等式()()0f x f x 恒成立;②[)0,m ∀∈+∞,方程|()|f x m =有两个不等的实根; ③12,,(11)x x ∀∈-,若12x x ≠,则一定有12()()f x f x ≠;④存在无数多个实数k ,使得函数()()g x f x kx =-在(1,1)-上有三个零点 则其中正确结论的序号为?23.2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()202C x x x =+(万元).当年产量不小于80千件时,10000()51600C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少? 24.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式3C x =+,每日的销售额S (单位:万元)与日产量x 的函数关系式35,07819,7kx xS xx⎧++<<⎪=-⎨⎪≥⎩.已知每日的利润L S C=-,且当2x=时,143L=.(1)求k的值,并将该产品每日的利润L万元表示为日产量x吨的函数;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.25.对于函数()f x,若在定义域内存在实数x,满足()()f x f x-=-,则称()f x为“局部奇函数”.(1)二次函数()224f x ax x a=-+(a R∈且0a≠).①若[)0,x∀∈+∞,有()0f x>恒成立,求a的取值范围;②判断()f x是否为“局部奇函数”?并说明理由;(2)若()1423x xg x m m+=-⋅+-为R上的“局部奇函数”,求实数m的取值范围. 26.如图所示,ABCD是一个矩形花坛,其中6AB=米,4=AD米.现将矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求:B在AM上,D在AN上,对角线MN过C点,且矩形AMPN的面积小于150平方米.(1)设AN长为x米,矩形AMPN的面积为S平方米,试用解析式将S表示成x的函数,并确定函数的定义域;(2)当AN的长度是多少时,矩形AMPN的面积最小?并求最小面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】按0a>和0a<分类讨论[()]1y f f x=+的零点个数,即确定[()]10f f x+=的解的个数,可得正确选项.【详解】x>时,1()f x xx=-是增函数,()(,)f x∈-∞+∞,此时()f x m=对任意m R∈均有一解.0x ≤时,若0a >,()1f x ax =+是增函数,()(,1]f x ∈-∞,此时()f x m =在1m 时有一解,1m 时无解,若0a <,()1f x ax =+是减函数,()[1,)f x ∈+∞,此时()f x m =在m 1≥时有一解,1m <时无解,由[())10f f x +=得[()]1f f x =-,设()1f t =-,则0a >时,()1f t =-的解为2t a =-和12t =, 20a-<,1012<<,因此2()f x a =-有两解,1()2f x =有两解,共4解. 0a <时,()1f t =-只有一解1t =<,()f x = ∴函数[()]1y f f x =+在0a >时,有4个零点,当0a <时,有1个零点. 故选:A . 【点睛】关键点点睛:本题考查函数的零点,解题方法是转化与化归思想,转化为方程[()]10f f x +=的解.通过换元法,先求得()1f t =-的解,若0t 是其解,再求0()f x t =的解,从而得出结论.2.C解析:C 【分析】先求得分段函数的解析式,函数()g x 零点等价于函数()y f x =的图象与直线4y mx m =+公共点,做出图像,数形结合,即可求得答案.【详解】当10x -<<时,011x <+<,满足上支范围,所以()11f x x +=+,所以,01()11,101x x f x x x ≤<⎧⎪=⎨--<<⎪+⎩,作函数()y f x =的图象,如图所示.函数()g x 零点的个数等价于函数()y f x =的图象与直线4y mx m =+公共点的个数. 当直线4y mx m =+过点(1,1)时,15m =, 所以当105m <<时, 直线4y mx m =+与函数()y f x =图象有两个公共点.当直线4y mx m =+与曲线111y x =-+(10x -<<)相交时, 联立4111y mx m y x =+⎧⎪⎨=-⎪+⎩消去y 得,24(51)0mx m x m -++=, 因此22(51)160m m ∆=+->且510m +<时,解得1m <-.综上知,实数m 的取值范围是1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭. 故选:C 【点睛】本题的关键是根据x 的范围,先求得函数解析式,做出图像,再将零点问题转化为图像交点问题,易错点为,4y mx m =+可以与函数两支都有交点,也可以与函数111y x =-+单支产生交点,需分别检验和计算,属中档题.3.A解析:A 【分析】先由条件①②,得到函数()f x 是周期为4的周期函数;根据③求出函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,根据④得到()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象,结合图象,即可求出结果. 【详解】因为函数()f x 是偶函数,由()()220f x f x +--=得()()()222f x f x f x +=-=-,即()()4f x f x +=,所以函数()f x 是周期为4的周期函数; 若[]2,0x ∈-,则[]0,2x ∈;因为当[]0,2x ∈时,()f x x =, 所以[]0,2x -∈时,()f x x -=-,因为函数()f x 是偶函数,所以()()f x x f x -=-=, 即()f x x =-,[]2,0x ∈-,则函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩, 因为()()()12n n f x f x -=⋅,*n N ∈,所以函数()()()48f x f x =,*n N ∈,故()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象如图:易知过()1,0M -的直线l 斜率存在,设过点()1,0-的直线l 的方程为()1y k x =+, 则要使直线l 与()()4f x 的图象在[]0,2x ∈上恰有8个交点,则0MA k k <<,因为7,24A ⎛⎫⎪⎝⎭,所以20871114MA k -==+,故8011k <<. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于,根据条件,由函数基本性质,得到()()4f x 的图象,再由函数交点个数,利用数形结合的方法,即可求解.4.B解析:B 【分析】根据所给模型求得0.4r =,代入已知模型,再由0()2I t N =,得002rtN e N =,求解t 值得答案 【详解】解:把0 3.4,6R T ==代入01R rT =+,得3.416r =+,解得0.4r =,所以0.40()tI t N e =,由0()2I t N =,得0.4002tN eN =,则0.42t e =,两边取对数得,0.4ln 2t =,得ln 20.691.70.40.4t =≈≈, 故选:B 【点睛】关键点点睛:此题考查函数模型的实际应用,考查计算能力,解题的关键是准确理解题意,弄清函数模型中各个量的关系,属于中档题5.B解析:B 【分析】作出函数()f x 的示意图,令()()()f m f n f q t ===,m n q <<,由图象及指数运算得到1222nq --+=和3(,1)2m ∈--,再利用不等式的性质即可得到答案. 【详解】令()()()f m f n f q t ===,不妨设m n q <<,作出函数()f x 的图象如图所示,则(0,1)t ∈,23m t +=,所以33(,1)22t m -=∈--,2m -∈ 又22|21||21|nq ---=-,所以222112n q ---=-,即1222n q --+=所以1111512(,222222mm n q -++=+∈+ 故选:B【点睛】关键点睛:本题解题关键是准确作出函数图象,令()()()f m f n f q t ===,m n q <<得到1222nq --+=以及m 及2m -的范围,从而使问题得到解决. 6.D解析:D 【分析】由“界点”定义可知,存在“界点”要求函数至少有2个零点.通过对四个函数零点个数的判断,得到最终结果. 【详解】A 选项:令3na n nb a =,即22x x =,根据2x y =与2y x =图像如图所示:可知当0x >时,有2x =与4x =两个交点 当0x <时,有1个交点因此两函数共有3个交点,故()f x 必有“界点”;B 选项:令220x bx +-=,可知280b ∆=+>,方程恒有2个不等式根,即()f x 必有2个零点,故()f x 必有“界点”;C 选项:令120x --=,解得3x =或1x =,即()f x 有2个零点,故()f x 必有“界点”;D 选项:令sin 0x x -=,令()sin g x x x =-,则()1cos g x x =-'又cos 1≤x ,所以()0g x '≥()g x ∴在(),-∞+∞上单调递增又()00g =,即()g x 只有0x =一个零点,故()f x 不存在“界点”. 本题正确选项:D 【点睛】本题属于新定义问题,考查转化化归的数学思想.解题关键在于明确“界点”的定义,从而转化为零点个数问题.7.A解析:A 【分析】根据零点存在定理,结合条件,即可得出结论. 【详解】已知(1)0,(1.5)0,(1.25)0f f f <><, 所以(1,25)(1.5)0f f ⋅<,可得方程的根落在区间(1.25,1.5)内, 故选A. 【点睛】该题考查的是有关判断函数零点所在区间的问题,涉及到的知识点有二分法,函数零点存在性定理,属于简单题目.8.C解析:C 【解析】设甲、乙两种蔬菜的价格分别为x ,y 元,则284522x y x y +>⎧⎨+<⎩,2A x =,3B y =,两式分别乘以22,8, 整理得12180x y ->,即230x y ->, 所以A B >. 故选C .9.A解析:A 【分析】利用十字相乘法解()0g x =,得()2f x =或()f x a =-,利用函数与方程之间的关系转化为两个图象的交点个数问题进行求解即可. 【详解】解:若2()[()](2)()2[()2][()]g x f x a f x a f x f x a =+--=-+有三个零点, 即()[()2][()]0g x f x f x a =-+=有三个根,即()2f x =或()f x a =-.当()2f x =时,由|1|12x e -+=,即|1|1x e -=,则11x e -=或11x e -=-, 即2x e =或0x e =,则2x ln =或x 无解,此时方程只有一个解, 则()f x a =-.有两个不同的根, 作出()f x 的图象如图:由图象知,则12a <-<,即21a -<<-, 即实数a 的取值范围是(2,1)--, 故选:A .【点睛】本题主要考查函数零点个数的应用,利用数形结合转化为两个函数图象的交点个数问题是解决本题的关键.10.B解析:B 【分析】根据题意将数据120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-,可得1412k e -⎛⎫= ⎪⎝⎭,再将40θ代入即可得8t =,即可得答案.【详解】由题意知:120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-得:()4602010020ke-=+-,解得1412k e -⎛⎫= ⎪⎝⎭所以当40θ时,()1440201002012t ⎛⎫ -⎪⎭=+⎝,解得:124114212t ⎛⎫== ⎛⎫ ⎝⎪⎭⎪⎭⎝,所以8t =,所以再经过4分钟物体的温度是40C , 故选:B 【点睛】本题主要考查了指数函数的综合题,关键是弄清楚每个字母的含义,属于中档题.11.B解析:B 【分析】把已知数据代入公式计算12E E .【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg 0.1E E =, ∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈. 故选:B . 【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.12.D解析:D 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.二、填空题13.0【分析】首先由条件求出函数周期为再利用当时作出和的图象方程在上的实数根之和为由图象结合奇函数的性质即可求解【详解】因为函数满足且所以即所以所以函数周期为由可得所以对称轴为当时作函数和图象如图所示:解析:0 【分析】首先由条件求出函数()f x 周期为4,再利用当01x <≤时,2()log f x x =,作出和y x =-的图象,方程()f x x =-在()2,2-上的实数根之和为1234x x x x +++,由图象结合奇函数的性质即可求解. 【详解】因为函数()f x 满足()()f x f x -=-且()(2)f x f x =-, 所以[](2)2(2)()f x f x f x +=-+=-,即(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=, 所以函数()f x 周期为4,由()(2)f x f x =-可得(1)(1)f x f x +=-,所以()f x 对称轴为1x =, 当01x <≤时,2()log f x x =, 作函数()y f x =和y x =-图象如图所示:其中()y f x =时奇函数,y x =-也是奇函数, 设两个函数图象交点的横坐标分别为1x 、2x 、3x 、4x 方程()f x x =-在()2,2-上的实数根之和为1234x x x x +++, 由图象结合奇函数的性质可得:14230x x x x +=+=,O 所以12340x x x x +++=,方程()f x x =-在()2,2-上的实数根之和为0, 故答案为:0 【点睛】关键点点睛:本题的关键点是利用已知条件求出()f x 周期为4,方程()f x x =-在()2,2-上的实数根之和等价于()y f x =和y x =-图象交点的横坐标之和,关键点是作出()y f x =在()2,2-的图象,数形结合即可求解.14.【分析】由对数函数的性质可得转化条件为由二次函数的图象与性质即可得解【详解】因为所以即函数的图象开口朝上对称轴为①当函数在上单调递增所以即所以解得;②当时函数在上单调递减所以即所以解得;③当时所以解解析:1,222,3⎡⎡⎤-⎣⎣⎦由对数函数的性质可得()123f x ≤<,转化条件为()2max 3g x ≥、()2min 2g x ≤,由二次函数的图象与性质即可得解. 【详解】因为1[2,6)x ∈,所以()()()126f f x f ≤<即()123f x ≤<,函数2()()1g x x a =-+的图象开口朝上,对称轴为x a =,①当0a ≤,函数()g x 在[0,2]上单调递增,所以()()()202g g x g ≤≤, 即()2221,45g x a a a ⎡⎤∈+-+⎣⎦,所以22124530a a a a ⎧+≤⎪-+≥⎨⎪≤⎩,解得10a -≤≤;②当2a ≥时,函数()g x 在[0,2]上单调递减,所以()()()220g g x g ≤≤, 即()22245,1g x a a a ⎡⎤∈-++⎣⎦,所以22452132a a a a ⎧-+≤⎪+≥⎨⎪≥⎩,解得23a ≤≤;③当01a <≤时,()()22max 245g x g a a ==-+,()()2min 12g x g a ==<,所以245301a a a ⎧-+≥⎨<≤⎩,解得02a <≤④当12a <<时,()()22max 01g x g a ==+,()()2min 12g x g a ==<,所以21312a a ⎧+≥⎨<<⎩2a ≤<;综上,实数a的取值范围是1,22,3⎡⎡⎤-⎣⎣⎦.故答案为:1,22,3⎡⎡⎤-⎣⎣⎦.【点睛】解决本题的关键是将条件转化为()2max 3g x ≥、()2min 2g x ≤,结合二次函数的图象与性质讨论即可得解.15.【分析】先由题中条件得到方程在上有两个不同实数解且对任意恒成立分别求出的范围进而可得出结果【详解】由得且即且因为关于的方程有两个不同实数解所以方程在上有两个不同实数解且对任意恒成立令则函数在区间上有 解析:2,⎡⎣先由题中条件,得到方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,分别求出m 的范围,进而可得出结果.【详解】x m =+得()224x x m -=+且240x -≥, 即222240x mx m ++-=且22x -≤≤,因为关于xx m =+有两个不同实数解,所以方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,令()22224f x x mx m =++-,[]2,2x ∈-,则函数()f x 在区间[]22-,上有两不同零点, 因为函数()22224f x x mx m =++-是开口向上,对称轴为x m =-的二次函数,因此只需()()()2220204840f f m m ⎧-≥⎪⎪≥⎨⎪∆=-->⎪⎩,解得m -<<又0x m +≥对任意[]2,2x ∈-恒成立,所以m x ≥-对任意[]2,2x ∈-恒成立, 因此只需2m ≥综上,2m ≤<故答案为:2,⎡⎣. 【点睛】 关键点点睛:求解本题的关键在于根据题中条件,得到方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,(一定要注意0x m +≥),转化为一元二次方程根的分布问题求解即可.16.①②【分析】由分段函数可得函数的单调性可判断①;由的值可判断②;由的值可判断③【详解】可得随着的增加而减少故①正确;当时9天后小菲的单词记忆保持量低于故②正确;故③错误故答案为①②【点睛】本题考查分解析:①② 【分析】由分段函数可得函数的单调性,可判断①;由()9f 的值可判断②;由()26f 的值可判断③.()1271012019130.520x x f x x x ,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩, 可得()f x 随着x 的增加而减少,故①正确;当130x <≤时,()1219520f x x -+=,()1219990.35520f -=+⋅=,9天后,小菲的单词记忆保持量低于40%,故②正确;()1219126265205f -=+⋅>,故③错误,故答案为①②.【点睛】本题考查分段函数的图象和性质,主要是单调性和函数的取值范围的求法,考查判断能力和运算能力,属于基础题.17.【分析】判断出函数的单调性求出函数的最值可得要使关于的方程有且仅有个不同实数根转化为的两根均在区间由二次函数的零点分布列出不等式组解得即可【详解】当时递减当时递增由于函数是定义域为的偶函数则函数在和解析:716,49⎛⎫⎪⎝⎭【分析】判断出函数()y f x =的单调性,求出函数的最值,可得要使关于x 的方程()()27016a f x af x ++=⎡⎤⎣⎦,a R ∈有且仅有8个不同实数根,转化为27016a t at ++=的两根均在区间31,4⎛⎫-- ⎪⎝⎭,由二次函数的零点分布列出不等式组,解得即可. 【详解】当02x ≤≤时,214y x =-递减,当2x >时,1324xy ⎛⎫=-- ⎪⎝⎭递增,由于函数()y f x =是定义域为R 的偶函数,则函数()y f x =在(),2-∞-和()0,2上递减,在()2,0-和()2,+∞上递增,当0x =时,函数()y f x =取得最大值0;当2x =±时,函数()y f x =取得最小值1-.当02x ≤≤时,[]211,04y x =-∈-;当2x >时,1331,244xy ⎛⎫⎛⎫=--∈-- ⎪ ⎪⎝⎭⎝⎭. 要使关于x 的方程()()27016af x af x ++=⎡⎤⎣⎦,a R ∈,有且仅有8个不同实数根,设()t f x =,则27016at at ++=的两根均在区间31,4⎛⎫--⎪⎝⎭. 则有2704312471016937016416a a a a a a a ⎧∆=->⎪⎪⎪-<-<-⎪⎨⎪-+>⎪⎪⎪-+>⎩,即为70432216995a a a a a ⎧><⎪⎪⎪<<⎪⎨⎪<⎪⎪⎪<⎩或,解得71649a <<.因此,实数a 的取值范围是716,49⎛⎫⎪⎝⎭.故答案为:716,49⎛⎫⎪⎝⎭.【点睛】本题考查函数的单调性和奇偶性的运用,主要考查方程与函数的零点的关系,掌握二次函数的零点分布是解题的关键,属于中档题.18.4【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查了分段函数解析:4 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得22x =-±0x >时,()31xf x =>,1x =,做出函数()f x ,1,22,22y y y ==-=--.【详解】241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=,解得22x =-±,1220,4223,-<-+<-<--<-0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.19.【分析】先计算出的取值再结合题目中的规定计算出结果【详解】由方程可得或若则故或由题目中的规定为不超过的最大整数当时可得当时可得;若则无解综上方程的解集是故答案为:【点睛】本题考查了新定义内容结合函数 解析:[)[)1,02,3-【分析】先计算出()f x 的取值,再结合题目中的规定计算出结果. 【详解】 由方程()()22fx f x -=,可得()2f x =或()1f x =-,若()2f x =,则[][]()22x x x -=∈R ,故[]2x =或[]1x =-,由题目中的规定[]t 为不超过t 的最大整数, 当[]2x =时,可得23x ≤<, 当[]1x =-时,可得10x -≤<;若()1f x =-,则[][]()21x x x -=-∈R 无解,综上方程()()22fx f x -=的解集是[)[)1,02,3-.故答案为:[)[)1,02,3-【点睛】本题考查了新定义内容,结合函数思想来解题,需要理清题意,抓住题目的核心,通常考查函数的性质、零点等问题.20.5【分析】先解方程再根据图象确定实根个数【详解】或图象如图:则由图可知实根的个数是5个故答案为:5【点睛】本题考查函数与方程考查综合分析求解能力属中档题解析:5 【分析】先解方程2()3()20f x f x -+=,再根据()f x 图象确定实根个数.【详解】2()3()20()1f x f x f x -+=∴=或()2f x =,2cos,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩图象如图:则由图可知,实根的个数是5个 故答案为:5 【点睛】本题考查函数与方程,考查综合分析求解能力,属中档题.三、解答题21.(1)2610p p y p-=-,定义域为()0,6;(2)2p =时,公司销售金额最大.【分析】(1)由题可得第二个月该商品销量为()122p -万件,月销售收入为100(122)202p p-⋅-万元,则可得出对该商品征收的税; (2)由1y ≥可得25p ≤≤,销售收入()100(6)()2510p g p p p-=≤≤-单调递减,即可求出最值. 【详解】解:(1)依题意,第二个月该商品销量为()122p -万件, 月销售收入为100(122)202p p-⋅-万元,当地政府对该商品征收的税为100(122)(6)20210010p py p p p p=-⋅⋅=-⋅--(万元).所以所求函数为2610p p y p-=-. 由60p ->及0p >得,所求函数的定义域为()0,6.(2)由1y ≥得26110p p p-≥-化简得27100p p -+≤, 即(2)(5)0p p --≤,解得25p ≤≤, 所以当25p ≤≤,税收不少于1万元;第二个月,当税收不少于1万元时,公司的销售收入为()100(6)()2510p g p p p-=≤≤-,因为100(6)400()1001010p g p p p -==+--在区间[]2,5上是减函数,所以max ()(2)50g p g ==(万元). 所以当2p =时,公司销售金额最大. 【点睛】本题考查函数的实际应用,解题的关键是正确理解题目,建立正确的函数关系式,根据函数的单调性求最值. 22.①③④ 【分析】根据()f x 与()f x -的解析式代入运算可知①正确;取0m =可知②错误;分析函数()f x 的单调性可知③正确,由(0)0g =,当1k >时,()g x 在(0,1)和(1,0)-内都必有一个零点,可知④正确. 【详解】对于①,(1,1)x ∀∈-,()()01||1||1||1||x xx x f x f x x x x x ,①正确;对于②,当0m =时,|()|0f x =,即||01||xx =-只有一个实根0,错误; 对于③,任取1201x x ≤<<,则12()()f x f x -=12121||1||x x x x ---121211x xx x =--- 122112(1)(1)(1)(1)x x x x x x ---=--1212(1)(1)x x x x -=--, 因为1201x x ≤<<,所以120x x -<,12(1)(1)0x x -->,所以12()()f x f x <,所以()f x 在[0,1)上为增函数,又由①知,()f x 为奇函数, 所以()f x 在(1,1)-上为增函数,所以③正确; 对于④,1()()1||1||x g x kx x k x x =-=---,因为(0)0g =,所以0恒是()g x 的一个零点,当1k >,01x <<时,101k x -=-必有一个解, 当1,10k x >-<<时,11k x-+0=也必有一解, 所以④正确,综上所述:正确结论的序号为①③④. 【点睛】关键点点睛:对于③,判断出函数的单调性是解题关键;对于④,分01x <<和(1,0)-两种情况判断零点是解题关键.23.(1)2130200,0802()10000400(),80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩;(2)当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元. 【分析】(1)可得销售额为0.051000x ⨯万元,分080x <<和80x ≥即可求出;(2)当080x <<时,利用二次函数性质求出最大值,当80x ≥,利用基本不等式求出最值,再比较即可得出. 【详解】解:(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元, 依题意得:当080x <<时,2211()(0.051000)(20)2003020022L x x x x x x =⨯-+-=-+-, 当80x ≥时,1000010000()(0.051000)(51600)200400()L x x x x x x=⨯-+--=-+,所以2130200,0802()10000400(),80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩;(2)当080x <<时,21()(30)2502L x x =--+, 此时,当30x =时,即()(30)250L x L ≤=万元.当80x ≥时,10000()400()400400200200L x x x =-+≤-=-=, 此时10000,100x x x==,即()(100)200L x L ≤=万元, 由于250200>,所以当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元. 【点睛】关键点睛:本题考查函数模型的应用,解题的关键是理解清楚题意,正确的建立函数关系,再求最值时,需要利用函数性质分段讨论比较得出.24.(1)8k ,822(07)816(7)x x L x xx ⎧++<<⎪=-⎨⎪-⎩(2)当日产量为6吨时,日利润达到最大10万元. 【分析】(1)利用每日的利润L S C =-,且当2x =时,3L =,可求k 的值; (2)利用分段函数,分别求出相应的最值,即可得出函数的最大值. 【详解】解:由题意,每日利润L 与日产量x 的函数关系式为22(07)816(7)k x x L x xx ⎧++<<⎪=-⎨⎪-⎩ (1)当2x =时,143L =,即:14222283k ⨯++=- 8k ∴=所以822(07)816(7)x x L x xx ⎧++<<⎪=-⎨⎪-⎩(2)当7x 时,16L x =-为单调递减函数, 故当7x =时,9max L = 当07x <<时,888222(8)182(8)18888L x x x x x x ⎡⎤=++=-++=--+-⎣-+⎢⎥-⎦1810≤-= 当且仅当82(8)(07)8x x x-=<<-, 即6x =时,10max L =综合上述情况,当日产量为6吨时,日利润达到最大10万元. 【点睛】本题考查函数解析式的确定,考查函数的最值,确定函数的解析式是关键,属于中档题. 25.(1)①1,2⎛⎫+∞ ⎪⎝⎭;②()f x 不是“局部奇函数”,答案见解析;(2)[)2,-+∞. 【分析】(1)①由()00f >可得0a >;由0x >且()0f x >结合参变量分离法可得出24a x x>+,利用基本不等式求得24x x +的最大值,由此可得出实数a 的取值范围; ②利用“局部奇函数”的定义得出240ax a +=,判断该方程是否有解即可得出结论;(2)利用“局部奇函数”的定义可得出4462221x x x xm --+-=+-,换元222x xt -=+≥,求得函数281t y t -=-在区间[)2,+∞上的值域,由此可解得实数m 的取值范围. 【详解】(1)①由题意可得()040f a =>,解得0a >; 当0x >时,由()0f x >,可得()242axx +>,则22244x a x x x>=++,由基本不等式可得2142x x≤=+,当且仅当2x =时,等号成立,12a ∴>.综上所述,实数a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭;②若函数()224f x ax x a =-+为局部奇函数,则存在x ∈R 使得()()f x f x -=-,即()()222424a x x a ax x a ⋅-++=--+,可得出240ax a +=,0a ≠,240x +>,则等式240ax a +=不成立.因此,函数()f x 不是“局部奇函数”; (2)()14234223x x x x g x m m m m +=-⋅+-=-⋅+-为“局部奇函数”,则存在x ∈R 使得()()g x g x -=-,即()()0g x g x -+=,可得()()44222260xx x x m m --+-++-=,可得出()2221446x x x x m --+-=+-,4462221x x x xm --+-∴=+-,令222x x t -=+≥=,当且仅当0x =时,等号成立,则()2222442xx xxt --=+=++,()22178721111t t m t t t t ---∴===+----, 由于函数1y t =+和71y t =--在[)2,t ∈+∞上都为增函数,所以,函数711y t t =+--在[)2,t ∈+∞上为增函数,713741t t ∴+-≥-=--, 24m ∴≥-,解得2m ≥-. 因此,实数m 的取值范围是[)2,-+∞. 【点睛】求解二次方程在区间上有解的问题,一般利用分类讨论法与参变量分离法求解,利用分类讨论法求解时要分析二次函数的对称轴与定义域的位置关系,结合端点函数值符号以及判别式求解,本题利用参变量分离法得出2m 的取值范围即为函数711y t t =+--在区间[)2,+∞上值域问题,极大地简化了分析步骤.26.(1)264x S x =-,()5,20x ∈;(2)8AN =,96.【详解】(1)由NDC NAM ∆~∆可得,466,4x x AM x AM x -=⇒=-,∴264x S x =-. 由4x >,且261504x S x =<-,解得520x <<,∴函数的定义域为()5,20. (2)令4x t -=,则()1,16t ∈,()22646166868964t x S t x t t ⎛⎫+⎛⎫===++≥= ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当且仅当4t =时,S 取最小值96,故当AN 的长度为8米时,矩形花坛AMPN 的面积最小,最小面积为96平方米. 考点:1.分式不等式;2.均值不等式.。
高一数学函数的应用测试题(含答案)高一数学函数的应用测试题(含答案)数学是研究现实世界空间形式和数量关系的一门科学。
小编准备了高一数学函数的应用测试题,具体请看以下内容。
一、选择题:本大题共12小题,每小题5分,共60分.1.函数的定义域是( )A.[1,+)B.45,+C.45,1D.45,1解析:要使函数有意义,只要得01,即45答案:D2.设a=20.3,b=0.32,c=logx(x2+0.3)(x1),则a,b,c的大小关系是()A.aC.c解析:∵a=20.321=2,且a=20.320=1,1∵x1,c=logx(x2+0.3)logxx2=2. cb.答案:B3.已知函数f(x)=ln(x+x2+1),若实数a,b满足f(a)+f(b-1)=0,则a+b等于()A.-1B.0C.1D.不确定解析:观察得f(x)在定义域内是增函数,而f(-x)=ln(-x+x2+1)=ln1x+x2+1=-f(x),f(x)是奇函数,则f(a)=-f(b-1)=f(1-b).a=1-b,即a+b=1.答案:C4.已知函数f(x)=-log2x (x0),1-x2 (x0),则不等式f(x)0的解集为()A.{x|0C.{x|-1-1}解析:当x0时,由-log2x0,得log2x0,即0当x0时,由1-x20,得-1答案:C5.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是()A.f(x)=-x|x|B.f(x)=x3C.f(x)=sinxD.f(x)=lnxx解析:为奇函数的是A、B、C,排除D. A、B、C中在定义域内为减函数的只有A.答案:A6.函数f(x)=12x与函数g(x)= 在区间(-,0)上的单调性为()A.都是增函数B.都是减函数C.f(x)是增函数,g(x)是减函数D.f(x)是减函数,g(x)是增函数解析:f(x)=12x在x(-,0)上为减函数,g(x)= 在(-,0)上为增函数.答案:D7.若x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()A.aC.b解析:a=lnx,b=2lnx=lnx2,c=ln3x.∵x(e-1,1),xx2.故ab,排除A、B.∵e-1lnx答案:C8.已知f(x)是定义在(-,+)上的偶函数,且在(-,0]上是增函数,若a=f(log47),,c=f(0.2-0.6) ,则a、b、c的大小关系是()A.cC.c解析:函数f(x)为偶函数,b=f(log123)=f(log23),c=f(0.2-0.6)=f(50.6).∵50.6log23=log49log47,f(x)在(0,+)上为减函数,f(50.6)答案:A9.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.46.8万元D.46.806万元解析:设在甲地销售x辆,则在乙地销售(15-x)辆,总利润L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30,当x=3.0620.15=10.2时,L最大.但由于x取整数,当x=10时,能获得最大利润,最大利润L=-0.15102+3.0610+30=45.6(万元).答案:B10.若f(x)是定义在R上的偶函数,且满足f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2解析:f(5)=f(2+3)=f(2)=0,又∵f(-2)=f(2)=0,f(4)=f(1)=f(-2)=0,在(0,6)内x=1,2,4,5是方程f(x)=0的根.答案:B11.函数f(x)=x+log2x的零点所在区间为()A.[0,18]B.[18,14]C.[14,12]D.[12,1]解析:因为f(x)在定义域内为单调递增函数,而在四个选项中,只有f14f120,所以零点所在区间为14,12.答案:C12.定义在R上的函数f(x)满足f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,则当x[-4,-2]时,f(x)的最小值是()A.-19B.-13C.19D.-1解析:f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,当x=1时,f(x)取得最小值.所以当x[-4,-2]时,x+4[0,2],所以当x+4=1时,f(x)有最小值,即f(-3)=13f(-3+2)=13f(-1)=19f(1)=-19.答案:A第Ⅱ卷(非选择共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若函数f(x)=ax2+x+1的值域为R,则函数g(x)=x2+ax+1的值域为__________.解析:要使f(x)的值域为R,必有a=0.于是g(x)=x2+1,值域为[1,+).答案:[1,+)14.若f(x)是幂函数,且满足f(4)f(2)=3,则f12=__________. 解析:设f(x)=x,则有42=3,解得2=3,=log23,答案:1315.若方程x2+(k-2)x+2 k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是__________. 解析:设函数f(x)=x2+(k-2)x+2k-1,结合图像可知,f(0)0,f(1)0,f(2)0.即2k-10,1+(k-2)+2k-10,4+2(k-2)+2k-10,解得k12,k23,即1214,我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
一、选择题1.设,m n R ∈,定义在区间[],m n 上的函数()()2log 4f x x =-的值域是[]0,2,若关于t的方程||1102t m ⎛⎫++= ⎪⎝⎭()t R ∈有实数解,则m n +的取值范围是( )A .[]0,3B .(]3,2--C .[]3,1--D .[)1,22.设函数()f x 是定义在R 上的偶函数,对任意x ∈R ,都有()()4f x f x +=,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,10-内关于x 的方程()()()log 201a f x x a -+=>至少有4个不同的实数根,至多有5个不同的实数根,则a的取值范围是( )A .)32,12⎡⎣B .()2,+∞C .()1,2D .()31,123.对于函数()f x 和()g x ,设(){}0x R f x α∈∈=,(){}0x R g x β∈∈=,若存在α、β,使得1αβ-≤,则称()f x 与()g x 互为“零点关联函数”.若函数()12x f x e x -=+-与()23g x x ax a =--+互为“零点关联函数”,则实数a 的取值范围为( ) A .7,33⎡⎤⎢⎥⎣⎦B .72,3⎡⎤⎢⎥⎣⎦C .[]2,3D .[]2,44.若函数32232,01()5,1x x m x f x mx x ⎧-+<≤=⎨->⎩,恰有2个零点,则m 的取值范围是( )A .()5,0-B .()0,5C .1[,5)2D .1(0,]25.函数2cos ()x xx xf x e e-=-的图象大致是( ) A . B .C .D .6.设函数3,()log ,x x a f x x x a⎧≤=⎨>⎩()0a >, 若函数()2y f x =-有且仅有两个零点,则a的取值范围是( ) A .. ()0,2B .()0,9C .()9,+∞D .()()0,29,⋃+∞7.设函数11,(,2)(){1(2),[2,)2x x f x f x x --∈-∞=-∈+∞,则函数()()1F x xf x =-的零点的个数为( ) A .4 B .5 C .6 D .78.已知一元二次方程210x mx ++=的两根都在()0,2内,则实数m 的取值范围是( ) A .5,22⎛⎤-- ⎥⎝⎦[)2,⋃+∞ B .5,22⎛⎫-- ⎪⎝⎭()2,⋃+∞ C .5,22⎛⎤-- ⎥⎝⎦D .5,22⎛⎫-- ⎪⎝⎭9.已知函数()21,04,0x x f x x x ⎧+≤=⎨>⎩,若函数()y f x a =-有3个不同的零点1x ,2x ,3x (123x x x <<),则123ax x x ++的取值范围是( ) A .()2,0-B .[]2,0-C .[]2,0-D .(]2,0-10.已知()11xf x e =-+,若函数2()[()](2)()2g x f x a f x a =+--有三个零点,则实数a 的取值范围是( ) A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)11.已知定义在R 上的奇函数()f x 满足()()20f x f x +--=,且当[]0,1x ∈时,()()2log 1f x x =+,则下列结论正确的是( )①()f x 的图象关于直线1x =对称;②()f x 是周期函数,且2是其一个周期;③16132f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;④关于x 的方程()0f x t -=(01t <<)在区间()2,7-上的所有实根之和是12. A .①④B .①②④C .③④D .①②③12.下列方程在区间()1,1-内存在实数解的是( ) A .230x x +-=B .10x e x --=C .()3ln 10x x -++=D .2lg 0x x -=二、填空题13.若关于xx m =+有两个不同实数解,则m 的取值范围是______. 14.小菲在学校选修课中了解到艾宾浩斯记忆曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制散点图,拟合了记忆保持量与时间(天)之间的函数关系:()1271012019130.520x xf xx x,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩某同学根据小菲拟合后的信息得到以下结论:①随着时间的增加,小菲的单词记忆保持量降低;②9天后,小菲的单词记忆保持量低于40%;③26天后,小菲的单词记忆保持量不足20%.其中正确的结论序号有______.(注:请写出所有正确结论的序号)15.已知f(x)=23,123,1x xx x x+≤⎧⎨-++>⎩,则函数g(x)=f(x)-e x的零点个数为________.16.若函数2,1()4()(2),1x a xf xx a x a x⎧-<=⎨--≥⎩恰有两个零点,则实数a的范围是________ 17.若关于x的方程2220x x m---=有三个不相等的实数根,则实数m的值为_______.18.函数()()23xf x x e=-,关于x的方程()()210f x mf x-+=恰有四个不同的实数解,则正数m的取值范围为______.19.设函数31()(2)()2xf x x=+-的零点在区间(,1)n n+(n Z∈)上,则n=______. 20.如果关于x的方程x2+(m-1)x-m=0有两个大于12的正根,则实数m的取值范围为____________.三、解答题21.某地为开拓当地的一种农产品销售市场,将该农产品进行网上销售.该地统计了一个月的网上销售情况,在30天内每斤的交易价格P(元)与时间t(天)组成有序数对(),t P,点(),t P恰好落在如图中的两条线段上;该农产品在30天内(包括第30天)的日交易量Q(万斤)与时间t(天)满足30Q at=+,且已知第十天的交易量为20万斤.(1)根据提供的图象,写出该农产品每斤交易价格P(元)与时间t(天)所满足的函数关系式;(2)用y (万元)表示该农产品日交易额(日交易额=每斤交易价格×日交易量),求y 关于t 的函数关系式,并求这30天中第几天的日交易额最大,最大值为多少? 22.已知函数()f x 是定义在是R 上的偶函数,且当0x ≥时2()2.f x x x =- (1)求(0)f 及[](1)f f 的值;(2)求函数()f x 在()-0∞,上的解析式; (3)若关于x 的方程()0f x m -=有四个不同的实数根,求实数m 的取值范围 . 23.如图所示,河(阴影部分)的两岸分别有生活小区ABC 和DEF ,其中AB BC ⊥,EF DF ⊥,DF AB ⊥,C ,E ,F 三点共线,FD 与BA 的延长线交于点O ,测得3AB FE ==千米,74OD =千米,94DF =千米,32EC =千米,若以OA ,OD 所在直线分别为x ,y 轴建立平面直角坐标系xOy ,则河岸DE 可看成是函数1by x a=--(其中a ,b 是常数)图象的一部分,河岸AC 可看成是函数y kx m =+(其中k ,m 为常数)图象的一部分.(1)写出点A 和点C 的坐标,并求k ,m ,a ,b 的值.(2)现准备建一座桥MN ,其中M 在曲线段DE 上,N 在AC 上,且MN AC ⊥.记M 的横坐标为t .①写出桥MN 的长l 关于t 的函数关系式()l f t =,并标明定义域;(注:若点M 的坐标为0(,)t y ,则桥MN 的长l 可用公式021lk 计算)②当t 为何值时,l 取到最小值?最小值是多少? 24.设函数2()(,)f x ax x b a b R =-+∈.(1)当0b =时,若不等式()2f x x ≤在[0,2]x ∈上恒成立,求实数a 的取值范围; (2)若a 为常数,且函数()f x 在区间[0,2]上存在零点,求实数b 的取值范围. 25.已知定义在R 上的奇函数()f x 满足,当(,0)x ∈-∞时,1()1f x x x=++. (1)求函数()f x 的解析式;(2)若函数()()224g x f x x x =+-,证明:函数()g x 的图像在区间1,内与x 轴恰有一个交点.26.已知函数5()log ,(01)5ax f x a a x -=>≠+,. (1)判断()f x 的奇偶性,并加以证明;(2)设()log (3)a g x x =-,若方程()1()f x g x -=有实根,求a 的取值范围;【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先利用函数值域确定自变量范围,再初步确定m ,n 的关系,然后结合指数函数的性质整理计算即可求得最终结果. 【详解】函数2()log (4||)f x x =-的值域是[0,2],14||4x ∴-, 0||3x ∴,3m ∴=-,03n ,或30m -,3n =;又关于t 的方程||1()10()2t m t R ++=∈ 有实数解,∴||1()12t m =--有解,||11()122t <+,21m ∴-<-,则3n =, 则12m n +<, 故选:D 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解2.A解析:A 【分析】作出函数()y f x =和函数()()log 21a y x a =+>在区间(]2,10-上的图象,根据题意可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】对任意x ∈R ,都有()()4f x f x +=,则函数()f x 是周期为4的周期函数,当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭, 作出函数()y f x =和函数()()log 21a y x a =+>在区间(]2,10-上的图象如下图所示:由于在区间(]2,10-内关于x 的方程()()()log 201a f x x a -+=>至少有4个不同的实数根,至多有5个不同的实数根,则()()log 623log 10231a a a ⎧+≤⎪+>⎨⎪>⎩,解得3212a ≤< 因此,实数a 的取值范围是312⎡⎣.故选:A. 【点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.3.C解析:C 【分析】先求得函数()f x 的零点为1x =,进而可得()g x 的零点β满足02β≤≤,由二次函数的图象与性质即可得解. 【详解】由题意,函数()12x f x ex -=+-单调递增,且()10f =,所以函数()f x 的零点为1x =, 设()23g x x ax a =--+的零点为β,则11β-≤,则02β≤≤,由于()23g x x ax a =--+必过点()1,4A -,故要使其零点在区间[]0,2上,则()()020g g ⋅≤或()()00200022g g a ⎧>⎪>⎪⎪⎨∆≥⎪⎪≤≤⎪⎩,即()()3730a a -+-≤或()230370430022a a a a a -+>⎧⎪-+>⎪⎪⎨--+≥⎪⎪≤≤⎪⎩,所以23a ≤≤,故选:C. 【点睛】关键点点睛:解决本题的关键是将题目条件转化为函数()g x 零点的范围,再由二次函数的图象与性质即可得解.4.D解析:D 【分析】先求出()g x 的单调性,然后根据题意,得到满足条件时有(0)0(1)0g g >⎧⎨≤⎩,求出m 的范围,然后再根据m 的范围,求出满足前述条件时,()5h x mx =-有零点的情况,进而可求解【详解】令32()232g x x x m =-+,'()6(1)g x x x =-,故()g x 在(]0,1处单调递减,所以,()g x 在(]0,1上至多有一个零点,而对于()5h x mx =-,在(1,)+∞上至多有一个零点,由题意得,()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,故有(0)0(1)0g g >⎧⎨≤⎩,求出102m ≥>,此时,()5h x mx =-,在(1,)+∞上单调递增,所以,(1)0h <即可满足题意,解得5m <,根据125m m ⎧≥>⎪⎨⎪>⎩,得102m ≥>故选:D 【点睛】关键点睛:解题关键在于先求出32()232g x x x m =-+的单调性,并根据()g x 的单调性得出()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,然后进行求解,难度属于中档题5.A解析:A 【分析】利用函数的奇偶性,排除选项,再根据102x <<,时()0f x >即可得到正确的图像. 【详解】2cos ()x x x x f x e e -=-,()()22cos cos ()()x x x x x x x x f x f x e e e e-----==-=---∴, 因此函数()f x 为奇函数,图像关于原点对称,排除,C D , 又当102x <<时,cos 0,0x xx e e ->->,()0f x ∴>,排除B . 故选:A . 【点睛】本题主要考查的是函数图像,考查利用函数的奇偶性看图形,排除法的应用,考查学生的分析问题的能力,是中档题.6.D解析:D 【分析】函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,数形结合即可求出a 的取值范围. 【详解】令2x =可得12x =-,22x =;令3log 2x =得39x =函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,作3,()log ,x x a f x x x a⎧≤=⎨>⎩()0a >图象如图:当02a <<时,()y f x =与2y =两个函数图象有且仅有两个交点,交点横坐标为12x =-,39x =,符合题意;当29a ≤≤时,()y f x =与2y =两个函数图象有且仅有3个交点,交点横坐标为12x =-,22x =,39x =,不符合题意;当9a >时,()y f x =与2y =两个函数图象有且仅有2个交点,交点横坐标为12x =-,22x =,不符合题意;所以a 的取值范围是:()()0,29,⋃+∞, 故选:D 【点睛】本题主要考查了已知函数的零点个数求参数的范围,函数的零点转化为对应方程的根,转化为函数图象的交点,属于中档题.7.C解析:C 【分析】分别画出函数()y f x =和()1g ?x x=的图像,根据图像得出结论. 【详解】因为()()10F x xf x =-=,所以()1xf x =,转化为()1f x x=如图,画出函数()y f x =和()1g ?x x=的图像,当x <0时,有一个交点,当x >0时,(1)1,(1)1f g ==,此时()()1g 11f ==,1x =是函数的一个零点,111(3)(1),(3)223f fg ===,满足(3)(3)f g >,所以在(2,4)有两个交点, 同理(5)(5)f g >,所以在(4,6)有两个交点, (7)(7)f g >,所以在(6,8)内没有交点,当n >7时,恒有()()f x g x >,所以两个函数没有交点 所以,共有6个. 故选:C. 【点睛】本题考查分段函数的知识点,涉及到函数的零点的知识点,考查了数形结合的思想,属于基础题型.8.C解析:C 【分析】设()21f x x mx =++,根据二次函数零点分布可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】设()21f x x mx =++,则二次函数()21f x x mx =++的两个零点都在区间()0,2内,由题意()()2400220102250m m f f m ⎧∆=-≥⎪⎪<-<⎪⎨⎪=>⎪=+>⎪⎩,解得522m -<≤-. 因此,实数m 的取值范围是5,22⎛⎤-- ⎥⎝⎦. 故选:C. 【点睛】本题考查利用二次方程根的分布求参数,一般分析对应二次函数图象的开口方向、判别式、对称轴以及端点函数值符号,考查分析问题和解决问题的能力,属于中等题. 9.D解析:D【分析】作出函数()f x 的图象,由函数()f x 的图象与直线y a =的交点得123,,x x x 的范围与关系,从而可求得123a x x x ++的取值范围. 【详解】函数()y f x a =-的零点就是函数()y f x =的图象与直线y a =的交点的横坐标,作出函数()y f x =的图象,作出直线y a =,如图,由图可知122x x +=-,由241x =得12x =(12x =-舍去),∴3102x <≤,234x a =, ∴23123334224(2,0]x a x x x x x ++=-+=-+∈-. 故选:D .【点睛】本题考查函数的零点,解题关键是掌握转化与化归思想,函数零点转化为函数图象与直线的交点,由数形结合思想确定零点的性质,得出结论.10.A解析:A【分析】利用十字相乘法解()0g x =,得()2f x =或()f x a =-,利用函数与方程之间的关系转化为两个图象的交点个数问题进行求解即可.【详解】解:若2()[()](2)()2[()2][()]g x f x a f x a f x f x a =+--=-+有三个零点,即()[()2][()]0g x f x f x a =-+=有三个根,即()2f x =或()f x a =-.当()2f x =时,由|1|12x e -+=,即|1|1x e -=,则11x e -=或11x e -=-,即2x e =或0x e =,则2x ln =或x 无解,此时方程只有一个解,则()f x a =-.有两个不同的根,作出()f x 的图象如图:由图象知,则12a <-<,即21a -<<-,即实数a 的取值范围是(2,1)--,故选:A .【点睛】本题主要考查函数零点个数的应用,利用数形结合转化为两个函数图象的交点个数问题是解决本题的关键.11.A解析:A【分析】由对称性判断①,由周期性判断②,周期性与奇偶性、单调性判断③,作出函数()y f x =的大致图象与直线y t =,由它们交点的性质判断④.【详解】由()()20f x f x +--=可知()f x 的图象关于直线1x =对称,①正确;因为()f x 是奇函数,所以()()()2f x f x f x +=-=-,所以()()()42f x f x f x +=-+=,所以()f x 是周期函数,其一个周期为4,但不能说明2是()f x 的周期,故②错误;由()f x 的周期性和对称性可得1644243333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.又当[]0,1x ∈时,()()2log 1f x x =+,所以()f x 在[]0,1x ∈时单调递增,所以1223f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即16132f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,③错误; 又[]0,1x ∈时,()()2log 1f x x =+,则可画出()f x 在区间[]2,8-上对应的函数图象变化趋势,如图易得()0f x t -=(01t <<)即()f x t =(01t <<)在区间()2,7-上的根分别关于1,5对称,故零点之和为()21512⨯+=,④正确.故选:A.【点睛】本题考查函数的奇偶性、对称性、单调性,考查函数的零点,掌握函数的基本性质是解题基础.函数零点问题常用转化为函数图象与直线的交点问题,利用数形结合思想求解. 12.B解析:B【分析】利用方程和函数之间的关系分别进行判断即可得到结论.【详解】A :令2()3f x x x =+-,因为抛物线开口向上,()()1010f f -<<,,所以在区间()1,1-内无实数解;B :令()10xf x e x =--=,解得0x =,所以在区间()1,1-内有实数解; C :令()()3ln 1f x x x =-++,则1()101f x x '=+>+在()1,1-成立,所以函数在()1,1-上单调递增,又(1)0f <,故在区间()1,1-内无实数解;D :当(0,1)x ∈时,()20,1x ∈,lg (,0)x ∈-∞,则2lg 0x x ->,此时方程在()1,1-内无解.故选:B.【点睛】本题主要考查函数与方程以及零点存在定理,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】先由题中条件得到方程在上有两个不同实数解且对任意恒成立分别求出的范围进而可得出结果【详解】由得且即且因为关于的方程有两个不同实数解所以方程在上有两个不同实数解且对任意恒成立令则函数在区间上有解析:2,⎡⎣【分析】先由题中条件,得到方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,分别求出m 的范围,进而可得出结果.【详解】x m =+得()224x x m -=+且240x -≥,即222240x mx m ++-=且22x -≤≤,因为关于xx m =+有两个不同实数解,所以方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,令()22224f x x mx m =++-,[]2,2x ∈-, 则函数()f x 在区间[]22-,上有两不同零点, 因为函数()22224f x x mx m =++-是开口向上,对称轴为x m =-的二次函数, 因此只需()()()2220204840f f m m ⎧-≥⎪⎪≥⎨⎪∆=-->⎪⎩,解得m -<<又0x m +≥对任意[]2,2x ∈-恒成立,所以m x ≥-对任意[]2,2x ∈-恒成立, 因此只需2m ≥综上,2m ≤<故答案为:2,⎡⎣.【点睛】关键点点睛:求解本题的关键在于根据题中条件,得到方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,(一定要注意0x m +≥),转化为一元二次方程根的分布问题求解即可. 14.①②【分析】由分段函数可得函数的单调性可判断①;由的值可判断②;由的值可判断③【详解】可得随着的增加而减少故①正确;当时9天后小菲的单词记忆保持量低于故②正确;故③错误故答案为①②【点睛】本题考查分解析:①②【分析】由分段函数可得函数的单调性,可判断①;由()9f 的值可判断②;由()26f 的值可判断③.【详解】()1271012019130.520x x f x x x ,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩, 可得()f x 随着x 的增加而减少,故①正确;当130x <≤时,()1219520f x x -+=,()1219990.35520f -=+⋅=, 9天后,小菲的单词记忆保持量低于40%,故②正确;()1219126265205f -=+⋅>,故③错误,故答案为①②. 【点睛】本题考查分段函数的图象和性质,主要是单调性和函数的取值范围的求法,考查判断能力和运算能力,属于基础题.15.2【详解】把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数在同一坐标系中画出这两个函数的图象由图象可知函数g(x)=f(x)-ex 的零点个数为2解析:2【详解】把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数,在同一坐标系中画出这两个函数的图象,由图象可知,函数g (x )=f (x )-e x 的零点个数为2.16.【分析】分别设分两种情况讨论即可求出的范围【详解】解:设若在时与轴有一个交点所以并且当时所以而函数有一个交点所以且所以若函数在时与轴没有交点则函数有两个交点当时与轴无交点无交点所以不满足题意(舍去) 解析:1[,1)[2,)2+∞ 【分析】分别设()2,()4()(2)xh x a g x x a x a =-=--,分两种情况讨论,即可求出a 的范围. 【详解】解:设()2,()4()(2)xh x a g x x a x a =-=--,若在1x <时,()2x h x a =-与x 轴有一个交点, 所以0a >,并且当1x =时,(1)20h a =-> ,所以02a <<,而函数()4()(2)g x x a x a =--有一个交点,所以21a ≥,且1a <, 所以112a ≤<, 若函数()2x h x a =-在1x <时,与x 轴没有交点,则函数()4()(2)g x x a x a =--有两个交点,当0a ≤时,()h x 与x 轴无交点,()g x 无交点,所以不满足题意(舍去),当(1)20h a =-≤时,即2a ≥时,()g x 的两个交点满足12,2x a x a ==,都是满足题意的,综上所述a 的取值范围是112a ≤<,或2a ≥. 故答案为:1[,1)[2,)2+∞.【点睛】本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题. 17.3【解析】令则由题意可得函数与函数的图象有三个公共点画出函数的图象如图所示结合图象可得要使两函数的图象有三个公共点则答案:3解析:3【解析】令()222f x x x =--,则由题意可得函数()y f x =与函数y m =的图象有三个公共点.画出函数()222f x x x =--的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则3m =.答案:318.【分析】先利用导数求出函数的单调区间和极值令由题意可知方程有两个不同的实数根根据数形结合和韦达定理可知一个根在内一个根在内再令因为所以只需由此即可求出的取值范围【详解】解:令得或1当时函数在上单调递 解析:3366e m e >+ 【分析】先利用导数求出函数()f x 的单调区间和极值,令()f x t =,由题意可知,方程210t mt -+=有两个不同的实数根1t ,2t ,根据数形结合和韦达定理可知,一个根在36,e ⎛⎫∞ ⎪⎝⎭内,一个根在36,e ⎛⎫∞ ⎪⎝⎭内,再令()21g t t mt =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,由此即可求出m 的取值范围. 【详解】解:()()()()22331x x x x e x f e x x =+-=+-', 令()0f x '=得,3x =-或1,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >, 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减,当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增,所以()()363f x f e =-=极大值,()()12f x f e ==-极小值, 令()f x t =,因为关于x 的方程()()210f x mf x -+=恰有四个不同的实数解,所以方程210t mt -+=有两个不同的实数根1t ,2t ,且一个根在360,e ⎛⎫ ⎪⎝⎭内,一个根在36,e ⎛⎫+∞ ⎪⎝⎭内,或者两个根都在()2,0e -内,或者一根为36e ,另一根在()2,0e -内;因为m 为正数,所以121t t =,120t t m +=>,所以1t ,2t 都为正根,所以两个根不可能在()2,0e -内,也不可能一根为36e,另一根在()2,0e -内; 所以实数根1t ,2t ,且一个根在360,e ⎛⎫ ⎪⎝⎭内,一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 令()21g t t mt =-+,因为()010g =>, 所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+, 即m 的取值范围为:336,6e e ⎛⎫++∞ ⎪⎝⎭. 故答案为:336,6e e ⎛⎫++∞ ⎪⎝⎭. 【点睛】本题主要考查了利用导数研究函数的单调性和极值,考查了函数的零点与方程根的关系,是中档题.19.【分析】由函数单调性质判断函数是增函数运用零点存在性定理得解【详解】是上增函数是上减函数在上增函数又在上存在零点函数的零点在区间上故答案为:【点睛】本题考查函数零点分布区间判断函数零点分布区间的方法解析:1-【分析】 由函数单调性质判断函数31()(2)()2x f x x =+-是增函数,(1)0f -< ,(0)0f >运用零点存在性定理得解.【详解】3(2)y x =+是R 上增函数,1()2x y = 是R 上减函数, 31()(2)()2x f x x ∴=+-在R 上增函数, 又(1)0f -< ,(0)0f >,31()(2)()2x f x x ∴=+-在(1,0)-上存在零点 函数31()(2)()2xf x x =+-的零点在区间(,1)n n +上 1n ∴=-故答案为:1-【点睛】本题考查函数零点分布区间.判断函数零点分布区间的方法:(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上; (2)定理法:利用零点存在性定理进行判断;(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.20.(-∞-)【分析】方程有两个大于的根据此可以列出不等式组求得m 的取值范围即可【详解】解:根据题意m 应当满足条件即:解得:实数m 的取值范围:(-∞-)故答案为:(-∞-)【点睛】本题考查根的判别式及根 解析:(-∞,-12) 【分析】 方程有两个大于12的根,据此可以列出不等式组求得m 的取值范围即可. 【详解】解:根据题意,m 应当满足条件2(1)40112211(1)042m m m m m ⎧⎪∆=-+>⎪-⎪->⎨⎪⎪+-->⎪⎩即:2210012m m m m ⎧⎪++>⎪<⎨⎪⎪<-⎩,解得:12m <-, 实数m 的取值范围:(-∞,-12). 故答案为:(-∞,-12). 【点睛】本题考查根的判别式及根与系数的关系,解题的关键是正确的运用判别式及韦达定理,是中档题. 三、解答题21.(1)12,020518,203010t t P t t ⎧+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(2)()()1230,02051830,203010t t t y t t t ⎧⎛⎫+-+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+≤≤ ⎪⎪⎝⎭⎩,这30天中第10天的日交易额最大,最大值为80万元.【分析】(1)设出分段函数,利用图象,建立方程组求解.(2)先确定y 关于t 的函数解析式,再利用二次函数的性质求解.【详解】(1)当020t <<时,设P kt b =+,将()()0,2,20,6带入上式,,得2620b k b =⎧⎨=+⎩, 解得215b k =⎧⎪⎨=⎪⎩, 所以()120205P t t =+<<, 当2030t ≤≤时,同理可求1810P t =-+,所以12,020518,203010t t P t t ⎧+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(2)由30Q at =+,当10t =时,20Q =,故得1a =-, 所以30Q t =-+,因为()()1230,02051830,203010t t t y PQ t t t ⎧⎛⎫+-+<< ⎪⎪⎪⎝⎭==⎨⎛⎫⎪-+-+≤≤ ⎪⎪⎝⎭⎩当020t <<时,当10t =时,y 取得最大值80;当2030t ≤≤时,当20t =时,y 取得最大值60; 所以,这30天中第10天的日交易额最大,最大值为80万元. 【点睛】方法点睛:(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.22.(1)(0)0f =,[](1)1f f =-,(2)2()2f x x x =+,(3)(1,0)- 【分析】(1)根据题意,由函数的解析式,将0x =代入函数解析式即可求得(0)f 的值,同理可得(1)f 的值,利用函数的奇偶性分析可得[](1)f f 的值;(2)设0x <,则0x ->,则函数的解析式分析得()f x -的解析式,进而由函数的奇偶性分析可得答案;(3)若方程()0f x m -=有四个不同的实数根,则函数()y f x =与直线y m =有4个交点,作出函数()y f x =的图像,由数形结合分析即可得答案 【详解】解:(1)由题意得,2(0)0200f =-⨯=,2(1)1211f =-⨯=-,因为函数()f x 是定义在是R 上的偶函数, 所以(1)(1)1f f =-=-, 所以 [](1)(1)1f f f =-=-, (2)令0x <,则0x ->,则有22()()2()2f x x x x x -=---=+, 因为函数()f x 是定义在是R 上的偶函数, 所以2()()2f x f x x x =-=+,所以当0x <时,2()2f x x x =+,(3)若方程()0f x m -=有四个不同的实数根,则函数()y f x =与直线y m =有4个交点,函数()y f x =的图像如图所示, 由图像可得10m -<< 所以实数m 的取值范围为(1,0)-【点睛】关键点点睛:此题考查函数奇偶性的应用,考查函数与方程的应用,解题的关键是把方程()0f x m -=有四个不同的实数根,等价转化为函数()y f x =与直线y m =有4个交点,然后作出函数图像,利用数形结合的思想求解即可,考查转化思想,属于中档题 23.(1)3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫⎪⎝⎭,43k =,2m =-,4a =,3b =;(2)①19()94,[0,3]54f t t t t ⎛⎫=--∈ ⎪-⎝⎭;②52t =,min ()1f t =. 【分析】(1)根据题中给的边长,得到点,A C 的坐标,并代入直线,求,k m ,由点,D E 的坐标代入函数1b y x a =--,求,a b 的值;(2)①由(1)可知点43,1M t t ⎛⎫- ⎪-⎝⎭,利用点到直线的距离求()l f t =,②定义域下利用基本不等式求最值. 【详解】(1)由题意得:4OF BC ==,OA EC =,∴3,02A ⎛⎫⎪⎝⎭,9,42C ⎛⎫⎪⎝⎭, 把3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭代入y kx m =+得302942k m k m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得43k =,2m =-.∵70,4D ⎛⎫ ⎪⎝⎭,()3,4E ,把70,4D ⎛⎫⎪⎝⎭,()3,4E 代入1b y x a =--得3433b a b a ⎧=⎪⎪⎨⎪=⎪-⎩,解得:4a =,3b =.(2)①由(1)得:M 点在314y x =--上,∴43,1M t t ⎛⎫- ⎪-⎝⎭,[0,3]t ∈,∴桥MN 的长l为341219()(94),[0,3]54l f t t t t t --+===--∈-; ②由①得:1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦194(4)754t t ⎡⎤=----⎢⎥-⎣⎦, 而40t -<,904t <-,∴94(4)124t t ---≥=-, 当且仅当94(4)4t t --=--时即52t =时,“=”成立,∴min 1()12715f t =-+=. 【点睛】关键点点睛:本题考查函数应用题,函数模型的应用,基本不等式求最值. 本题的关键是最后一问,函数的变形,1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦,只有变形成这种形式,才能用基本不等式求最值.24.(1)[0,2];(2)答案见解析. 【分析】(1)0x =时恒成立,2(]0,x ∈,不等式变形后得22x a -≤-≤,求出x a -的取值范围,由这个范围包含于(0,2]可得a 的范围;(2)问题转化为程||2x a x b -=-在[0,2]上有解,引入函数22,(),x ax x a h x x a x x ax x a⎧-≥=-=⎨-<⎩,分类讨论求出()h x ([0,2]x ∈)的值域以可得.【详解】解:(1)当0b =时,若不等式||2x a x x -在[0,2]x ∈上恒成立;当0x =时,不等式恒成立,则a R ∈;当02x <≤,则||2a x -在(0,2]上恒成立,即22x a -≤-≤在(0,2]上恒成立,因为y x a =-在(0,2]上单调增,max 2y a =-,y a >-,则222a a -⎧⎨--⎩,解得,02a ≤≤;则实数a 的取值范围为[0,2];(2)函数()f x 在[0,2]上存在零点,即方程||2x a x b -=-在[0,2]上有解;设22,(),x ax x ah x x ax x a⎧-≥=⎨-+<⎩当0a ≤时,则()2h x x ax =-,[]0,2x ∈,且()h x 在[0,2]上单调递增,所以()()min 00h x h ==,()()max 242h x h a ==-,则当0242b a ≤-≤-时,原方程有解,则20a b -≤≤;当0a >时,22,(),x ax x ah x x ax x a⎧-≥=⎨-+<⎩,则()h x 在0,2a ⎡⎤⎢⎥⎣⎦上单调增,在,2aa ⎡⎤⎢⎥⎣⎦上单调减,在[,)a +∞上单调增;①当22a≥,即4a ≥时,()()max 242h x h a ==-,()()min 00h x h ==, 则当0224b a ≤-≤-时,原方程有解,则20a b -≤≤;②当22a a <≤,即24a ≤<时,2max ()24a a h x h ⎛⎫== ⎪⎝⎭,()(0)0min h x h ==则当2024a b -时,原方程有解,则208a b -; ③当02a <<时,2max()max ,(2)max ,4224a a h x h h a ⎧⎫⎧⎫⎛⎫==-⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,()(0)0min h x h ==当2424a a -,即42a -+<时,2max ()4a h x =, 则当2024ab -时,原方程有解,则208a b -;当2424a a <-时,即04a <<-+max ()42h x a =-, 则当0242b a --时,原方程有解,则20a b -;综上,当4a <-+b 的取值范围为[]2,0a -;当44a -+<时,实数b 的取值范围为2,08a ⎡⎤-⎢⎥⎣⎦; 当4a ≥时,实数b 的取值范围为[]2,0a -. 【点睛】本题考查不等式恒成立,函数零点问题,解题方法是掌握问题的转化,不等式恒成立,转化求函数的最值,函数吸零点问题转化为方程有解的问题,从而转化为求函数值域.旨在考查转化与化归思想,运算求解能力.25.(1)()11,00,011,0x x x f x x x x x ⎧++<⎪⎪==⎨⎪⎪+->⎩;(2)证明见解析.【分析】(1)当(0,)x ∈+∞时,(,0)x -∈-∞,利用()()f x f x =-- 求当(0,)x ∈+∞时的解析式,结合(0)(0)f f =-即可得答案;(2)先利用定义证明当(1,)x ∈+∞时, 1()1f x x x=+-递增,结合224y x x =-在(1,)+∞单调递增,可得()()224g x f x x x =+-在(1,)+∞单调递增,利用零点存在性定理可得答案. 【详解】(1)当(0,)x ∈+∞时,(,0)x -∈-∞,所以11()()11f x f x x x x x ⎛⎫=--=--++=+- ⎪-⎝⎭ 当0x =时,(0)(0)f f =-, 所以()0f x =.所以()11,00,011,0x x x f x x x x x ⎧++<⎪⎪==⎨⎪⎪+->⎩(2)当(1,)x ∈+∞时,由(1)知1()1f x x x=+-, 设121x x <<,则12121211()()11f x f x x x x x ⎛⎫⎛⎫-=+--+- ⎪ ⎪⎝⎭⎝⎭121211x x x x =-+-()()()1212121212111x x x x x x x x x x --⎛⎫=--= ⎪⎝⎭因为121x x <<,所以120x x -<,1210x x ->, 所以12())0(f x f x -<,即12()()f x f x <,所以函数()f x 在(1,)+∞单调递增.又因为224y x x =-在(1,)+∞单调递增,所以()()224g x f x x x =+-在(1,)+∞单调递增,又因为()()()311210,202g f g =-=-<=>,即()()120⋅<g g ,所以函数()g x 在1,恰有一个零点.即函数()g x 的图象在区间1,内与x 轴恰有一个交点.【点睛】本题主要考查函数的奇偶性与单调性的应用,属于中档题. 利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x ->可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数.26.(1)奇函数,证明见解析;(2)30,16a ⎛-∈ ⎝⎦.【分析】(1)先求定义域,再利用函数奇偶性的定义即可判断(2)通过()log (3)a g x x =-,将()1()f x g x -=化简,求出方程中a 的表达式,通过变形,利用基本不等式即可求解. 【详解】(1)()f x 为奇函数 由505x x ->+解得定义域为{|5x x >或5}x <-关于原点对称, 55()log log ()55a a x x f x f x x x ----==-=--++,所以()f x 为奇函数 ;(2) 由题意知log log ()a a x 51x 3x 5--=-+,即5log log (3)5aa x a x x -=-+, 所以()535x a x x -=-+, 即5(5)(3)x a x x -=+-在(5,)+∞有解,设5x t -=,则(0,)t ∈+∞设(10)(2)ty t t =++,则12012y t t=++,因为201212t t++≥,当且仅当20t t==等号成立 , 所以12012y t t=++值域为⎛ ⎝⎦,所以a ⎛∈ ⎝⎦, 【点睛】本题主要考查了函数奇偶性的判断,函数的零点与方程的根的关系,属于中档题.。
函数应用测试题
A 卷
一.选择题(每小题6分,共36分)
1.观察下列四个函数图像,其中在区间()0,
∞-内使得方程0)(=x f i )4,3,2,1(=i 有解的是( )
(A) (B) (C) (D)
2.在下列区间内,函数52)(2
3++-=x x x x f 有零点的区间是( )
(A)()2,3-- (B)()1,2-- (C)()0,1- (D)()1,0 3.下列方程中,在区间()10,
内有实数解的方程是( ) (A)x x =+32 (B)x x lg 2= (C)x
x 2log 2= (D) x x -=33
4.设()833-+=x x f x ,用二分法求方程0833=-+x x 在()3,1∈x 内近似解的过程中取区间中点20=x ,那么下一个有根区间为 ( )
(A)()2,1 (B)()3,2 (C)()2,1或()3,2都可以 (D)不能确定
5.()x
x x f 12+=的零点的个数为( ) (A)0个 (B)1个 (C)2个 (D)3个
6.方程052=+-m x x 的两个实根都大于1,则实数m 的取值范围是( )
(A)4<m (B)425<
m (C)4
254<<m (D)R m ∈
二.填空题(每小题6分,共24分)
7.函数232+-=x x y 的零点为 .
8.已知函数62ln )(-+=x x x f
根据上表写出0)(=x f 的实数解所在的一个区间为 .
9. ①函数)(x f 唯一的零点同时在区间()16,0,()8,0,()8,4,()8,6内;
②函数)(x f y =在区间()7,6或()8,7内有零点;
③函数)(x f y =在区间()7,6内有零点;
④函数)(x f y =在区间])[(16,86,0 上没有零点;
⑤函数)(x f y =在区间()15,6上有零点.
以上说法中,若①正确,则正确的说法还有 .
10.利用二分法求方程0)(=x f 在[]1,0上的近似解时,经计算0)625.0(<f ,0)75.0(>f ,0)6875.0(<f ,则可得到方程精确到1.0的一个近似解是 .
三.解答题(每小题20分,共40分)
11.判断下列方程在()10,
内是否存在实数解,并说明理由. (1)1
23+-=
x x x ;(2)013=+x .
12.已知函数632)(-+=x x f x 在区间[]2,1内有零点,用二分法求方程0632=-+x x 在区间[]2,1内的一个实数解的近似值(精确到0.1).
测试题参考答案
A 卷
一.选择题:
1.A 2.B 3.D 4.A 5.B 6.C
答案提示:
1.函数)(1x f y =在()0,∞-内有零点⇔方程0)(1=x f 在()0,∞-内有解.
2.043)3(<-=-f ,013)2(<-=-f ,01)1(>=-f ,由0)1()2(<--f f ,知方程0)(=x f 在区间()1,2--内有实数解.
3.当10<<x 时,03)(2<-+=x x x f 恒成立,则x x =+32在()1,0内无解,同理x x lg 2=,x x 2log 2=在()1,0内无解.再令x x f x +-=33)(,02)0(<-=f ,01)1(>=f ,由0)1()0(<f f ,知方程0)(=x f 在()1,0内有实数解.
4.02)1(<-=f ,028)3(>=f ,07)2(>=f ,由0)2()1(<f f ,知0)(=x f 的解在区间()2,1内.
5.令012=+
x x ,移项得x x 12-=,在同一坐标系内,分别作出2x y =,x y 1-=的图象,交点个数只有1个.
6.设m x x x f +-=5)(2,则对称轴为2
5=x ,且抛物线开口向上,所以方程052=+-m x x 的两个实根都大于1⇔⎪⎩⎪⎨⎧<>0)25(0)1(f f ,即⎪⎩⎪⎨⎧<+⨯->+⨯-0255)2
5(015122m m ,解得4254<<m 二.填空题:
7.1或2 8.()3,2 9.④⑤ 10.7.0
答案提示:
7.令0232=+-x x ,0)2)(1(=--x x ,解得1=x 或2=x .
8.0)2(<f ,0)3(>f ,由0)3()2(<f f ,知方程0)(=x f 在区间()3,2内有解.
9.∵)(x f 的零点在()8,6内,∴④⑤也正确.
10.∵1.06875.075.0<-,∴精确到0.1的一个近似解是0.7.
三.解答题:
11.解:(1)令123123)(+-+=+--
=x x x x x f x x ,∵01)0(<-=f ,02
5)1(>=f ,由0)1()0(<f f ,且函数)(x f 在()1,0内是连续的曲线,∴函数)(x f 在()1,0内有零点,即方程123+-=x x x 在()1,0内有实数解.
(2)013=+x ,13-=x ,1-=x ,又函数13+=x y 在()+∞∞-,上是单调递增函数,∴函数13
+=x y 只有一个零点,方程013=+x 只有一个实根1-=x ,所以在()10,
内没有实数解.
12.01)1(<-=f ,04)2(>=f ,由0)2()1(<f f ,知函数632)(-+=x x f x
在()2,1内有零点,方程0632=-+x x 在()2,1内有解;取()2,1的中点5.1,032843.1)5.1(>=f ,又0)1(<f ,由0)5.1()1(<f f ,知方程0632=-+x x 在()5.1,1内有解.如此下去,得到方程实数解所在的区间的表如下:
区间[]234375.1,21875.1内的所有值,若精确到0.1则都是1.2,所以1.2是方程0632=-+x x 精确到0.1的实数解.。