高二数学1.1任意角与弧度制同步新必修4
- 格式:doc
- 大小:336.96 KB
- 文档页数:3
《弧度制和弧度制与角度制的换算》同步练习1、若α是第四象限角,则απ-是( )。
A .第一象限角B .第二象限角C .第三象限角D .第四象限角2、若α=-3,则角α的终边在( )。
A .第一象限B .第二象限C .第三象限D .第四象限3、求值:1333-tansin cos πππ·· 等于( )。
A .14 B .34 C .12 D .324、下列各组角中,终边相同的角是( )。
A .π2k 与)(2Z k k ∈+ππ B .)(3k 3Z k k ∈±πππ与 C .ππ)14()12(±+k k 与 )(Z k ∈ D .)(66Z k k k ∈±+ππππ与5、若角α与角β的终边关于y 轴对称,则( )。
A .B .C .D . 6、集合⎭⎬⎫⎩⎨⎧∈==Z k k A ,6παα与⎭⎬⎫⎩⎨⎧∈+==Z n n B ,63ππββ的关系是( )。
A 、B A ⊂ B 、B A ⊃ C 、B A = D 、B A ⊆7、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )。
A .2B .1sin 2C .1sin 2D .2sin8、某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为( )。
A .2°B .2C .4°D .49、一个半径为R 的扇形,它的周长是4R ,则这个扇形所含弓形的面积是( )。
2222)1cos 1sin D.(1 21.1cos 1sin 21B. )1cos 1sin 2(21A R R C R R -- 10、下列命题中,正确的命题是( )。
A .若两扇形面积的比是1∶4,则两扇形弧长的比是1∶2。
B .若扇形的弧长一定,则面积存在最大值。
C .若扇形的面积一定,则弧长存在最小值。
D .任意角的集合可以与实数集R 之间建立一种一一对应关系。
必修四§1.1任意角和弧度制第一课时:§1.1.1任意角1. 下列命题中正确的是( )A .终边在y 轴非负半轴上的角是直角B .第二象限角一定是钝角C .第四象限角一定是负角 D.若β=α+k·360°(k∈Z),则α与β终边相同2.将-885化为360k α+⋅ (0360α≤<k ,∈Z )的形式是 ( ) A.-165(2)360+-⨯ B.195(3)360+-⨯ C.195(2)360+-⨯ D.165(3)360+-⨯3.在[360°,1440°]中与-21°16′终边相同的角有( )A .1个B .2个C .3个D .4个4.终边落在X 轴上的角的集合是( )A.{ α|α=k ·360°,K ∈Z }B.{ α|α=(2k+1)·180°,K ∈Z }C.{ α|α=k ·180°,K ∈Z }D.{ α|α=k ·180°+90°,K ∈Z }5.角α=45°+k·180°,k∈Z的终边落在 ( )A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限6.设,,,,那么( ) A .B C A B .B A C C .D (A ∩C) D .C ∩D=B7.下列各组角中终边相同的是( )A. +90与Z B.与ZC. +30与+30Z D.与+60Z 8.若角和的终边关于y 轴对称,则有 ( ) A. B.Z C.Z D.Zo {90A =小于的角}{B =锐角}{C =第一象限的角}00{900}D =小于而不小于的角180k ⋅90k ⋅k ,∈(21)180k +⋅(41)180k ±⋅k ,∈180k ⋅360k ⋅k ,∈60k ⋅180k ⋅k ,∈αβ90αβ+=90αβ+=360k +⋅k ,∈360k αβ+=⋅k ,∈180αβ+=360k +⋅k ,∈9.若β是第四象限角,则180β-是第 象限角。
任意角和弧度制(简答题:容易1,较易8,一般26,较难29,困难30)1、把下列各角用另一种度量制表示出来:;;;.2、如果角的终边经过点,试写出角的集合,并求集合中最大的负角和绝对值最小的角.3、已知扇形的中心角为,扇形所在圆的半径为,若扇形的面积值与周长值的差为,求的最小值及对应的值.4、扇形AOB的周长为8cm,它的面积为3 cm2,求圆心角的大小.5、(本小题满分13分)直角坐标系中,锐角的终边与单位圆的交点为,将绕逆时针旋转到,使,其中是与单位圆的交点,设的坐标为.(Ⅰ)若的横坐标为,求;(Ⅱ)求的取值范围.6、一个半径大于2的扇形,其周长,面积,求这个扇形的半径和圆心角的弧度数.7、一个扇形OAB的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长AB.8、已知扇形OAB的圆心角α为120°,半径长为6,(1)求的弧长;(2)求弓形OAB的面积.9、写出如图所示阴影部分的角α的范围.10、如图,动点,从点出发,沿圆周运动,点按逆时针方向每秒钟转弧度,点按顺时针方向每秒钟转弧度,求,第一次相遇时所用的时间及,点各自走过的弧长.11、已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,在范围内,找出与下列各角终边相同的角,并判断它们是第几象限角.(1);(2);(3).12、已知扇形AOB的圆心角为120°,半径长为6,求:(I)弧的长;(II)扇形所含弓形的面积 (即阴影面积).13、一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,若两只蚂蚁均从点A(1,0)同时逆时针匀速爬动,若红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0°<α<β<180°),如果两只蚂蚁都在第14秒时回到A点,并且在第2秒时均位于第二象限,求α,β的值.14、在角的集合{α|α=k•90°+45°,k∈Z}中:(1)有几种终边不相同的角?(2)有几个适合不等式﹣360°<α<360°的角?(3)写出其中是第二象限角的一般表示法.15、已知扇形的圆心角为,所在圆的半径为.(1)若,,求扇形的弧长.(2)若扇形的周长为24,当为多少弧度时,该扇形面积最大?并求出最大面积.16、已知一个扇形的半径为,圆心角为,求这个扇形的面积。
第一章 三角函数§1.1 任意角和弧度制一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( ) (A) 90°-α (B) 90°+α (C)360°-α (D)180°+α2.终边与坐标轴重合的角α的集合是 ( ) (A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z} (C){α|α=k ·180°,k ∈Z} (D){α|α=k ·90°,k ∈Z}3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( ) (A) α+β=π (B) α-β=2π(C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( )(A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π(B)-3π (C)6π (D)-6π *6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( ) (A)0个 (B)2个 (C)3个 (D)4个 二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 . 8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍. *10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 . 三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少? *14.如下图,圆周上点A 依逆时针方向做匀速圆周运动.已知A 点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.§.任意角的三角函数一.选择题1.函数y =|sin |sin x x +cos |cos |x x +|tan |tan x x的值域是 ( )(A){-1,1} (B){-1,1,3} (C) {-1,3} (D){1,3} 2.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是 ( )(A) 25 (B) -25 (C) 25或 -25 (D) 不确定3.设A 是第三象限角,且|sin2A |= -sin 2A ,则2A是 ( ) (A) 第一象限角 (B) 第二象限角 (C) 第三象限角 (D) 第四象限角4. sin2cos3tan4的值 ( ) (A)大于0 (B)小于0 (C)等于0 (D)不确定5.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( )(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形*6.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2θ的终边在 ( )(A)第二、四象限 (B)第一、三象限 (C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上 二.填空题 7.若sin θ·cos θ>0, 则θ是第 象限的角;8.求值:sin(-236π)+cos 137π·tan4π -cos 133π= ;9.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为 ;*10.设M =sin θ+cos θ, -1<M <1,则角θ是第 象限角. 三.解答题11.求函数y =lg(2cos x的定义域。
1.1.1 任意角
1、2010角所在的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2、终边在x 轴上的角的集合为( ) A.{360,}n n ββ=⋅∈Z B.{180,}n n ββ=⋅∈Z C.{(21)180,}n n ββ=+⋅∈Z D.{(21)360,}n n ββ=+⋅∈Z
3、99930'-角是第 象限角.
4、下列说法正确的有 (把所有正确的序号都填上)
①锐角是第一象限角;
②第二象限角是钝角; ③第一象限角的集合为{36090360,}k k k ββ⋅<<+⋅∈Z ; ④第一、三象限角的集合为{36090360,}n n n ββ⋅<<+⋅∈Z
5、有一个小于360的正角,它的6倍的终边与x 轴的非负半轴重合,求这个角.
参考答案
1.C ∵20102105360=+⨯,∴与2010角终边相同的角是210角,它是第三象限角.
2.B 记1{360,}{(2)180,}S k k k k ββββ==⋅∈==⋅∈Z Z ,
2{180360,}{(21)180,}S k k k k ββββ==+⋅∈==+⋅∈Z Z
∴终边在y 轴上的角的集合为12{180,}S S S n n ββ===⋅∈Z .
3.一 99930999303360336080303360'''-=-+⨯-⨯=-⨯.
4.①③ 取角145360α=+,它是第二象限角,但不是钝角,②错;第一、三象限角的集合为{18090180,}n n n ββ⋅<<+⋅∈Z ,④错.
5.设这个角为α,而6360k α=⋅,∴60k α=⋅.
又0360α<<,得060360k <⋅<,∴06k <<.
∴这个角60,120,180,240,300α=.
1.1.2 弧度制
1、下列说法正确的是( )
A .一弧度就是一度的圆心角所对的弧
B .一弧度是长度为半径的弧
C .一弧度是一度的弧与一度的角之和
D .一弧度是长度等于半径的弧所对的圆心角
2、与1角终边相同的角的集合是( )
A .{360,}180k k π⋅+
∈Z B .{360,}180
k k π⋅+∈Z C .{2,}180k k ππ+∈Z D .{2,}180
k k ππ+∈Z 3、已知函数sin y x =在[0,]2π上单调递增,记sin1M =,sin1N =,则M 与N 的大小关系是 .
4、把495-表示成2k k θπ+(∈)Z 的形式,且使θ最小,则θ= .
5、一半径为r 的扇形的周长为20cm ,面积为()S f r =.
(1)求()S f r =的解析式;
(2)求()S f r =的最大值.
参考答案
1.D 由一弧度的角的定义知D 正确.
2.C 角的表示必保持制度一致,排除A 、D ;而180角与π角对应,于是1角与π180角对应,故选C.
3.M N > ∵sin1sin
N π==180,且012ππ<<<180,sin y x =在[0,]2π上递增,有M N >. 4.4
3π-
495135360-=--,它的终边在第三象限,看作逆时针形成的角可使θ最小, 135-角的弧度为4
3π-. 5.解:(1)设扇的中心角为θ,则220r r θ+=,∴202r r θ-=
, 扇形的面积222111202()10222r S f r lr r r r r r
θ-====⋅⋅=-,
又由2020r r
θ-=>,得10r <, ∴2()10(010)S f r r r r ==-<<;
(2)由(1)得2()(5)25S f r r ==--+, ∴当5r =时,()S f r =的最大值为25.
小时.。