八年级下16.2二次根式定义的乘除同步练习及答案
- 格式:doc
- 大小:522.50 KB
- 文档页数:5
2017-2018学年度八年级数学下
16.2二次根式的乘除同步练习
一、选择题
1.下列二次根式中,最简二次根式是()
A、B、C、D、
2.下面计算正确的是()
A.3+=3B.÷=2 C.·= D.
3.(2014•上海)计算的结果是()A.B.C.D.3
4.化简的结果是()
A.B.C.D.
5.计算的值为()
A.
B.
C.
D.
6.能使等式成立的x的取值范围是()
A.x≠2 B.x≥0 C.x>2 D.x≥2
二、填空题
7.(2015秋•太原期中)将化成最简二次根式为.
8.计算:=.
9.计算的结果为_____.
10.最简二次根式与是同类二次根式,则.11.计算:(﹣2)2003•(+2)2004=.
12.一列有规律的数:,2,,,,…,则第6个数是,第n个数是(n为正整数).
三、解答题
13.已知x=3+,y=3﹣,求x2y+xy2的值.
14.化简求值:,其中.
15.观察下列一组等式的化简.然后解答后面的问题:
;
;
…
(1)在计算结果中找出规律=(n表示大于0的自然数)
(2)通过上述化简过程,可知(填“>”、“<”或“=”);
(3)利用你发现的规律计算下列式子的值:
参考答案一、选择题
1.A2.B3.B
4.C.5.B6.C
二、填空题
7.4.8.9.1 10.611..12.2;
三、解答题
13.30
14..
15.(1);(2)>;(3)2015.。
16.2二次根式的乘除(同步练习)一、单选题1.与根式−x√−1x的值相等的是( ) A .−√x B .−x 2√−x C .−√−x D .√−x2.下列根式不是最简二次根式的是 ( )A B C D3.下列计算正确的是( )A .√(−3)(−4)=√−3×√−4B .√42−32=√42−√32C .√62=√3D .√6√2=√3 4.计算√6a ÷√3a 的结果是( )A .√2B .√22C .√2aD 5.估计√3×(√7−√3)的值应在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间6.下列二次根式中是最简二次根式的是( )A .√18B .√13C .√3x 2D .√ab 7.下列各式①√8;②√0.3;③√a 2+1;其中一定是最简二次根式的有( )A .4个B .3个C .2个D .1个8.下列等式中,一定成立的是( ).A .√a 33=aB .√a 2=aC .√a b =√a √bD .√ab =√a ⋅√b二、填空题9.计算:(3+√10)×(3√2−2√5) =__________.10.在如图的方格中,若要使横,竖,斜对角的3个实数相乘都得到同样的结果,则图中m 的值为______.11b >0)=______. 12.计算√6×√13的结果是__________.三、解答题13.计算:(√18-4√12+√2)×√8 14.已知a 2+b 2−6a −2b +10=0,求√a+b √4b+2√a 的值. 15.化简:(1)√72;(2)√3311;(3(4)√9y 25x 2.16.计算: (1)(√3+√2)2016·(√3−√2)2015 (2)√8−(3√2−1)2.17.计算:. 18. 计算 (1)(√8)2−2√4;.参考答案:1.D2.D3.D4.A5.A6.D7.C8.A 9.−√210.√611.√ab 212.√213.814.115.(1)√142;(2)6√1111;(3)√104;(4)3√y 5|x|. 16.(1(2)8√2-19. 17.3√318.(1)4(2)3。
第十六章 二次根式16.2 二次根式的乘除1.下列二次根式中,最简二次根式是 A 23aB 13C 153D 1432.如果mn >0,n <0,下列等式中成立的有。 mn m n =1n m m n =m m n n=1m m n mn =-.A .均不成立B .1个C .2个D .3个3.下列各组二次根式化成最简二次根式后,被开方数完全相同的是 A ab 2abB mn 11m n+ C 22m n +22m n - D 3289a b 3489a b 4.下列等式不成立的是 A .2×36B 8÷2=4C 1333D 8×2=453x x-3x x -,则x 的取值范围是A .x <3B .x ≤3C .0≤x <3D .x ≥06结果为A .B .C .D .7=x 的取值范围是__________.8.计算:=__________.9=__________.10.下列二次根式:. 其中是最简二次根式的是__________.(只填序号)11.计算:-=__________.12.200020012)2)+⋅-=__________. 13.计算:(1;(2)- 14.计算:(123)4).15.计算(1)1223452533÷⨯;(2)21123(15)3825⨯-÷; (3)282(0)aa b ab a b÷⨯>;(4)27506⨯÷.16.当x <03x y -等于A .xyB .xC .-xy -D .-xy 179520的结果是 A .32B 32C 532D .5218.计算8(223)÷-⨯的结果是A .26B .33C .32D .6219.下列运算正确的是A 222253535315⨯==⨯=B 22224343431-=-=-=C.2510 5=D.(4)(16)416(2)(4)8-⨯-=-+-=-⨯-=20.若22m n+-和3223m n-+都是最简二次根式,则m=__________,n=__________.21.一个圆锥的底面积是26cm2,高是43cm,那么这个圆锥的体积是__________.22.计算:263⨯+(3-2)2-2(2-6).23.方老师想设计一个长方形纸片,已知长方形的长是140πcm,宽是35πcm,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.24.(2018·甘肃兰州)下列二次根式中,是最简二次根式的是A.18B.13C.27D.1225.(2018·湖南益阳)123=⨯__________.26.(2018·江苏镇江)计算:182⨯=__________.1.【答案】D【解析】A a |,可化简;B ==C ==,可化简;因此只有D : =,不能开方,符合最简二次根式的条件.故选D .2.【答案】C【解析】根据题意,可知mn >0,n <0,所以可得m <0,根据二次根式的乘法的性质,可知m ≥0,n ≥0,=1,故②正确;根据二次根式除法的性质,可知m ≥0,n >0=-m ,故④正确.故选C . 3.【答案】D【解析】选项A 的被开方数不相同;选项B 的被开方数不相同;选项C ,不能够化简,被开方数不相同;选项D ,=23,23ab D .4.【答案】B【解析】选项A 、C 、D 正确;选项B 2=,选项B 错误,故选B . 5.【答案】C【解析】根据题意得:030x x ≥⎧⎨->⎩,解得:03x ≤<.故选C .6.【答案】B【解析】原式==,故选B .9.【答案】7120.091960.091960.31470.361440.361440.61212⨯==⨯=⨯.故答案为:712.10.【答案】①⑥【解析】最简二次根式是满足下列条件的二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽方的因式或因数.由此可得①⑥是二次根式,故答案为:①⑥. 11.【答案】-5【解析】原式48332731639495=÷-÷==-=-.故答案为:5-.123+2【解析】原式200020002000(32)(32)(32)[(332)]=-++⋅=⋅2000(1)32)=-⋅+⋅32)+32=32+.13.【解析】(1)25144⨯25144=512=⨯ 60=.(2)13xyz xy⋅- 13xyz xy=-⋅=-14.【解析】(1==(2==(3)====-.(4)====15.【解析】(1)原式233=⨯23=45==(2)(13()8=⨯-⨯354=-⨯ 154=-.(3)原式===(4)原式15==. 16.【答案】C【解析】∵x <0=|x -C . 17.【答案】A【解析】原式32,故选A . 18.【答案】BB . 19.【答案】A5315==⨯=,故正确;,故不正确;248==⨯=,故不正确.故选A . 20.【答案】1、2【解析】由题意,知213221m n m n +-=⎧⎨-+=⎩,解得12m n =⎧⎨=⎩,因此m 的值为1,n 的值为2.故答案为:1,2.21【解析】根据圆锥的体积公式可得,这个圆锥的体积是13⨯==故答案为24.【答案】B【解析】A1832=B13是最简二次根式,正确;C2733=不是最简二次根式,错误;D1223=B.25.【答案】6【解析】原式3×3=6.故答案为:6.26.【答案】218 2182⨯,故答案为:2.。
2017年八年级下册同步练习16.2二次根式定义的乘除练习题一、选择题:1.计算÷=()A. B.5 C. D.2.小明的作业本上有以下四题:① =4a2;②•=5a;③a==;④÷=4.做错的题是()A.①B.②C.③D.④3.下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3÷()2=﹣16a4C.3a﹣1=D.(2a2﹣a)2÷3a2=4a2﹣4a+14.下列二次根式中,与是同类二次根式的是()A.B.C.D.5.下列各式中,是最简二次根式的是()A. B. C. D.6.等式成立的条件是()A. B. C. D.或7.下列各等式成立的是()A.4×2=8 B.5×4=20C.4×3=7 D.5×4=208.下列计算结果正确的是()A. B.C. D.9.已知a<0,b<0,下列四个等式:其中正确的是()A.(1)和(2)B.(3)和(4)C.(3)D.(4)10.已知,则的取值范围是()A.B.C. D.11.计算(+2)2015(﹣2)2016的结果是()A.2+B.﹣2C.2﹣D.12.化简a的结果是()A. B. C.- D.-二填空题:13.×= ; = .14.化简:15.如果最简二次根式与是同类根式,那么16.17.计算:( +1)(﹣1)= .18.观察下列各式:①,②③,……请用含n(n≥1)的式子写出你猜想的规律:三计算题:19. 20.21. 22.23. 24.25.26.27.2017年八年级下册同步练习 16.2二次根式定义的乘除练习题答案1.A2.C3.D.4.B.5.C6.A7.D8.C9.A10.C11.C12.A13.答案为:2,.14.略15.0.216.略17.答案为:1.18.略19.略20.略21.略22.略23.略24.略25.略26.略27.略。
绝密★启用前 试卷 试卷副标题 考试范围:xxx ;考试时间:100分钟;命题人:xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1=中,关于a 、b 的取值正确的说法是( ) A .a≥0,b≥0 B .a≥0,b >0 C .a≤0,b≤0 D .a≤0,b <0 2.下列式子中,为最简二次根式的是( ) A B C D 3.估计的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间 4(0,0)a b >>的结果是( ) A B C D .5.下列二次根式中,是最简二次根式的是( ) A B C D 6.下列各式计算正确的是( ) A =B =C .23= D 2=-7.下列二次根式中属于最简二次根式的是( ) A . B C D 8.下列二次根式中,是最简二次根式的是( ).○……○……A.√8x B.√x2−3C.√x−yxD.√3a2b9,2,)A B.2C D.10.下列各式属于最简二次根式的有()A B C D11=( ).A B C D.12.下列计算中,正确的是()A.B.C D﹣313.如果0ab>,0a b+<,那么下列各式:=1=,③b=-,其中正确的是( ).A.①②B.②③C.①③D.①②③14.计算√8×√2的结果是()A.√10B.4C.√6D.215.下列根式中属于最简二次根式的是()A BC D16.下列二次根式中属于最简二次根式的是()A.√24B.√0.3C.√13D.√317.下列根式中属最简二次根式的是()A B C D 18 ) A .6到7之间 B .7到8之间 C .8到9之间 D .9到10之间 19.下列二次根式中,属于最简二次根式的是( ) A B C D 20的积为无理数的是( ) A B C D 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 21.计算 ________. 22=a +b ,其中a 是整数,0<b <1,则()(a ﹣b )=_____. 23=____________. 24.若 x ﹣1,则x 3+x 2-3x+2020 的值为____________. 25=______. 26则a 的取值范围是______. 27________. 28.计算:√10÷√2 =_____. 29. 30.已知a >0,计算:(=_____.32. 33.一个直角三角形的两条直角边分别为a =b =,那么这个直角三角形的面积是________. 34.若0, 0ab a b >+<,那么下面各式:=;1=;③b =-;a =,其中正确的是______ (填序号) 35.若规定一种运算为a ★b (b -a),如3★5×(5-3)=,★=________.36.计算:√8÷√2=_____.37.观察下列各式:===3;=,…请用含n (n≥1)的式子写出你猜想的规律:__ 38=,那么m 的取值范围是_____________39.计算:323c ab ⎛⎫= ⎪-⎝⎭_________.40n 的最小值为___三、解答题41.计算:2(71)+--42.已知a =√3−1√3+1,b =√3+1√3−1,求a 3+b 3−4的值.43.(1)20182019⨯- (2)41|2|2⎛⎫-- ⎪⎝⎭44.计算:(1)(﹣1)2(﹣2)0 (245.计算:|247.计算: 3 + (4) 4849. 50.先化简,再求值: (1)2212111x x x x ⎛⎫-+-÷ ⎪-⎝⎭,其中 (2)32322222b b ab b a b a a b ab b a ++÷--+-,其中1,25a b ==参考答案1.B2.B3.C4.A5.B6.C7.A8.B9.B10.B11.A12.C13.B14.B15.D16.D17.A18.C19.C20.B21.22.923.3π-24.201925.426.12 a≥27 28.√529.3031.32.33.34.②③35-2 36.2.37.(n+ 38.m>4.39.336c 27a b -40.541.42.4843.;(2)10-+.44.(1)﹣2;(2)-.45.﹣46.247.(1)4;(2)6(3)(4)6.4849.350.(1)1 (2)10。
16.2 二次根式的乘除第 2 课时 二次根式的除法参考答案与试题解析夯基训练知识点1二次根式的除法法则1. 计算√5×√15√3的结果是_____________.1.【答案】52.√a−3√a−1=√a−3a−1成的条件是( )A.a ≠1B.a ≥1且a ≠3C.a>1D.a ≥32.【答案】D解:由√a √a =√a b (a ≥0,b>0),得{a −3≥0a −1≥0所以a ≥3.故选D. 3.计算√34÷√16的结果是( )A.√22B.√24C.3√22D.√32 3.【答案】C解:掌握二次根式的除法,直接计算即可.4.下列计算结果正确的是( )A.2+√3=2√3B.√8÷√2=2C.(-2a 2)3=-6a 6D.(a+1)2=a 2+14.【答案】B 知识点2商的算术平方根的性质 5若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥05解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:√b a =√b √a a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.6化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).6解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式7.下列各式计算正确的是( ) A.√32=√32 B.√82=√3 C.√34=√32 D.√a 9b =√a 3b 7.【答案】C 8.若√1−a a 2=√1−a a ,则a 的取值范围是( )A.a ≤0B.a<0C.a>0D.0<a ≤18.【答案】D解:由题意得1-a ≥0且a>0,解得0<a ≤1.此题容易忽略1-a ≥0这个条件.9.下列等式不一定成立的是( )A.√a b =√a√b (b ≠0) B.a 3·a −5=1a 2(a ≠0) C.a 2−4b 2=(a+2b)(a-2b)D.(-2a 3)2=4a 69.【答案】A10.下列计算正确的是( )A.√12=2√3B.√32=√32 C.√−x 3=x D.√x 2=x10.【答案】A知识点3 最简二次根式11在下列各式中,哪些是最简二次根式?哪些不是?并说明理由. (1)45;(2)13;(3)52;(4)0.5;(5)145. 解析:根据满足最简二次根式的两个条件判断即可. 解:(1)45=35,被开方数含有开得尽方的因数,因此不是最简二次根式;(2)13=33,被开方数中含有分母,因此它不是最简二次根式; (3)52,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)0.5=12=22,被开方数含有小数,因此不是最简二次根式; (5)145=95=355,被开方数中含有分母,因此它不是最简二次根式. 方法总结:解决此题的关键是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母; (2)被开方数不含能开得尽方的因数或因式.题型总结题型1 利用二次根式的乘除法法则计算 12计算:(1)9√45÷3√212×32√223; (2)a 2∙√ab ∙b √b a ÷√9b 2a解析:先把系数进行乘除运算,再根据二次根式的乘除法则运算.解:(1)原式=9×13×32×45×25×83=183; (2)原式=a 2·b ·ab ·b a ·a 9b 2=a 2b 3a . 方法总结:二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,在运算时要注意运算符号和运算顺序,若被开方数是带分数,要先将其化为假分数. 题型2利用商的算术平方根的性质求代数式的值13.已知√x−69−x =√x−6√9−x ,且x 为奇数,求(1+x)·√x 2−5x+4x 2−1的值. 13.解:∵√x−69−x =√x−6√9−x , ∴{x −6≥09−x ≥0∴6≤x<9. 又∵x 是奇数,∴x=7.∴(1+x)√x 2-5x+4x 2-1=(1+x)√(x -1)(x -4)(x+1)(x -1)=(1+x)√(x -4)(x+1)=√(x +1)(x −4).当x=7时,原式=√(7+1)(7−4)=2√6.题型3 利用商的算术平方根的性质确定字母的取值范围14若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:b a =b a(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.题型4 利用商的算术平方根的性质化简二次根式15化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式拓展培优拓展角度1利用二次根式的性质活用代数式表示数16.老师在讲解“二次根式及其性质”时,在黑板上写下了下面的一题作为练习:已知√7=a,√70=b,用含有a,b 的代数式表示√4.9.甲的解法:√4.9=√4910=√49×1010×10=√7×√7010=ab 10; 乙的解法:√4.9=√49×0.1=7√0.1, 因为√0.1=√110=√770=√7√70=a b , 所以√4.9=7√0.1=7·a b =7a b .请你解答下面的问题:(1)甲、乙两人的解法都正确吗?(2)请你再给出一种不同于上面两人的解法.16.解:(1)都正确.(2)∵√10=√707=√70√7=b a , ∴√4.9=√4910=√49×1010×10=710√10=710·b a =7b 10a .拓展角度2 利用二次根式的乘除法法则进行分母有理化(类比思想)19.化简√3+√2,甲、乙两位同学的解法如下:甲:√3+√2=√3-√2(√3+√2)(√3-√2)=√3−√2; 乙:√3+√2=√3+√2=√3+√2)(√3-√2)√3+√2=√3−√2.以上两种化简的步骤叫做分母有理化.仿照上述两种方法化简:√7−√5.19.解:方法1:√7−√5=√7+√5)(√7−√5)(√7+√5)=2(√7+√5)2=√7+√5. 方法2:√7−√5=√7−√5=√7+√5)(√7−√5)√7−√5=√7+√5.拓展角度3二次根式除法的综合运用20座钟的摆针摆动一个来回所需的时间称为一个周期,其周期计算公式为T =2π√l g ,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =9.8米/秒2,假若一台座钟摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声(π≈3.14)?解析:由给出的公式代入数据计算即可.要先求出这个钟摆的周期,然后利用时间除周期得到次数.解:∵T =2π√0.59.8≈1.42,60T =601.42≈42(次),∴在1分钟内,该座钟大约发出了42次滴答声.方法总结:解决本题的关键是正确运用公式.用二次根式的除法进行运算,解这类问题时要注意代入数据的单位是否统一.。
16.2 二次根式的乘除(1)学习要求: 理解二次根式的乘法法则,即)0,0(≥≥=⋅b a ab b a 的合理性,会运用法则进行计算,并会逆用乘法法则对二次根式进行化简.做一做:一、填空题:1.计算:ab a ⋅=______.2.已知xy <0,则=y x 2______.3.实数a ,b 在数轴上的位置如图所示,则化简22b a 的结果是______.4.若,6)4()4)(6(2x x x x --=--则x 的取值范围是______.5.在如图的数轴上,用点A 大致表示40:6.观察分析下列数据,寻找规律:0,3,6,3,23,15,23,……那么第10个数据应是______.二、选择题:7.化简20的结果是( ) (A)25 (B)52 (C)102 (D)548.化简5x -的结果是( ) (A)x x 2- (B)x x --2 (C)x x -2 (D)x x 29.若a ≤0,则3)1(a -化简后为( ) (A)1)1(--a a(B)a a --1)1( (C)a a --1)1((D)1)1(--a a三、解答题:10.计算: (1);63⨯ (2));7(21-⨯ (3));102(53-⨯(4));804()245(-⨯- (5));25.22(321-⨯(6);656)3122(43⨯-⨯ (7));152245(522-⨯(8);24)654(⨯- (9));3223)(3223(-+(10));23)(32(x y y x -+ (11);)10253(2+ (12);10253ab a ⋅(13));42(2212mn m m +-⋅ (14))12()321(123143z xy x x ⋅-⋅⋅.11.化简: (1));0(224≥-a b a a (2)⋅≥≥+-)0(23223a b ab b a b a12.计算:(1)|;911|)1π(8302+-+--+- (2)2201020101()0.254.22--⨯13.如图,在△ABC 中,∠C =90°,∠A =30°,∠B 的平分线BD 的长为4cm ,求这个三角形的三边长及面积.四、问题探究:在劳技课上,老师请同学们在一张长为17cm ,宽为16cm 的长方形纸板上,剪下一个腰长为10cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上).请你帮助同学们计算剪下的等腰三角形的面积.参考答案1.b a 2.y x - 3.-ab 4.x ≤4 5.略 6.33 7.B 8.C 9.B 10.(1)23 (2)37- (3)230- (4)30160 (5)15- (6)237- (7)1222- (8)24 (9)6 (10)9y 2-4x (11)26085+ (12)b a 230 (13)n m m 2+- (14)xz y x 2212-11.(1)22b a a - (2)ab a b )(- 12.(1)22 (2)013.2cm 36,cm 34,cm 6,cm 32====∆ABC S AB AC BC问题探究:分三种情况计算:图1 图2 图3(1)当AE =AF =10cm 时(如图1),S △AEF =50(cm 2)(2)当AE =EF =10cm 时(如图2),BF =8(cm),)cm (40212==⋅∆BF AE S AEF (3)当AE =EF =10cm 时(如图3),⋅==∆)cm (515),cm (512AEF S DF。
人教版数学八年级下册同步训练:16.2《二次根式的乘除》.一、单选题1.下列计算正确的是()A. B.C. D.2.等式成立的条件是()A. x≠3B. x≥0C. x≥0且x≠3D. x>33.计算的结果为()A. B. C. D.4.计算÷ ÷ 的结果是()A. B. C. D.5.化简的结果是()A. -B. -C. -D. -6.化简的结果是( ).A. B. C. D.7.等式成立的条件是( ).A. B. C. D.8.下列二次根式中,最简二次根式是( ).A. B. C. D.9.下列根式中,最简二次根式是()A. B. C. D.10.等式成立的条件是( ).A. a、b同号B.C.D.11.若则等式成立的条件是( ).A. B. C. D.12.已知是正整数,则实数n的最大值为()A. 12B. 11C. 8D. 313.估计的运算结果应在()A. 1到2之间B. 2到3之间C. 3到4之间D. 4到5之间14.下列二次根式中,是最简二次根式的是()A. B. C. D.二、填空题15.________16.化简:的结果为________17.若成立,则x满足________18.把中根号外面的因式移到根号内的结果是________.19.若,则的值是________三、解答题20.已知,求的值21.在△ABC中,BC边上的高h= cm,它的面积恰好等于边长为cm的正方形面积,求BC的长。
22.将根号外的数移入根号内并化简:(1);(2)23.方老师想设计一个长方形纸片,已知长方形的长是cm,宽是cm,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.24.综合题(1)试比较与的大小;(2)你能比较与的大小吗?其中k为正整数.答案解析部分一、单选题1.【答案】B【解析】【解答】选项A是二次根式乘法的运算,选项C不符合二次根式的运算条件,选项D中被开方数不能为负,故A、C、D都是错误的,唯有B符合二次根式除法运算法则,故答案为:B.【分析】根据二次根式的性质化简,再根据二次根式乘除法的运算法则计算可判断。
二次根式16.1 二次根式:1. 使式子4x -有意义的条件是有意义的条件是 。
2. 当__________时,212x x ++-有意义。
有意义。
3. 若11m m -++有意义,则m 的取值范围是的取值范围是 。
4. 当__________x 时,()21x -是二次根式。
是二次根式。
5. 在实数范围内分解因式:429__________,222__________x x x -=-+=。
6. 若242x x =,则x 的取值范围是的取值范围是 。
7. 已知()222x x -=-,则x 的取值范围是的取值范围是 。
8. 化简:()2211x x x -+p 的结果是的结果是。
9. 当15x ≤p 时,()215_____________x x -+-=。
10. 把1a a-的根号外的因式移到根号内等于的根号外的因式移到根号内等于 。
11. 使等式()()1111x x x x +-=-+g 成立的条件是成立的条件是。
12. 若1a b -+与24a b ++互为相反数,则()2005_____________a b -=。
13. 在式子()()()230,2,12,20,3,1,2x x y y x x x x y +=--++f p 中,二次根式有(根式有() A. 2个 B. 3个 C. 4个 D. 5个 14. 下列各式一定是二次根式的是(下列各式一定是二次根式的是( ) A. 7- B. 32m C. 21a + D.ab15. 若23a p p ,则()()2223a a ---等于(等于() A. 52a - B. 12a - C. 25a - D. 21a - 16. 若()424A a =+,则A =() A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a ≤,则()31a -化简后为(化简后为() A. ()11a a -- B. ()11a a -- C. ()11a a -- D. ()11a a -- 18. 能使等式22x x x x =--成立的x 的取值范围是(的取值范围是() A. 2x ≠ B. 0x ≥ C. 2x f D. 2x ≥ 19. 计算:()()222112a a -+-的值是(的值是() A. 0 B. 42a - C. 24a - D. 24a -或42a -20. 下面的推导中开始出错的步骤是(下面的推导中开始出错的步骤是() ()()()()()222323121232312223233224=⨯=⋅⋅⋅⋅⋅⋅-=-⨯=∴=-∴=-Q L L L L L L L L L L L L L L LA. ()1B. ()2C. ()3D. ()4 21. 若2440x y y y -+-+=,求xy 的值。
2017年八年级下册同步练习
16.2二次根式定义的乘除练习题
一、选择题:
1.计算÷=()
A. B.5 C. D.
2.小明的作业本上有以下四题:
① =4a2;②•=5a;③a==;④÷=4.做错的题是()
A.①
B.②
C.③
D.④
3.下列运算正确的是()
A.a2+a3=a5B.(﹣2a2)3÷()2=﹣16a4
C.3a﹣1=D.(2a2﹣a)2÷3a2=4a2﹣4a+1
4.下列二次根式中,与是同类二次根式的是()
A.B.C.D.
5.下列各式中,是最简二次根式的是()
A. B. C. D.
6.等式成立的条件是()
A. B. C. D.或
7.下列各等式成立的是()
A.4×2=8 B.5×4=20
C.4×3=7 D.5×4=20
8.下列计算结果正确的是()
A. B.
C. D.
9.已知a<0,b<0,下列四个等式:
其中正确的是()
A.(1)和(2)
B.(3)和(4)
C.(3)
D.(4)
10.已知,则的取值范围是()
A.B.C. D.
11.计算(+2)2015(﹣2)2016的结果是()
A.2+
B.﹣2
C.2﹣
D.
12.化简a的结果是()
A. B. C.- D.-
二填空题:
13.×= ; = .
14.化简:
15.如果最简二次根式与是同类根式,那么
16.
17.计算:( +1)(﹣1)= .
18.观察下列各式:①,②③,……请用含n(n≥1)的式子写出你猜想的规律:
三计算题:
19. 20.
21. 22.
23. 24.
25.
26.
27.
2017年八年级下册同步练习 16.2二次根式定义的乘除练习题答案
1.A
2.C
3.D.
4.B.
5.C
6.A
7.D
8.C
9.A
10.C
11.C
12.A
13.答案为:2,.
14.略
15.0.2
16.略
17.答案为:1.
18.略
19.略
20.略
21.略
22.略
23.略
24.略
25.略
26.略
27.略。