例谈用向量解决有关立体几何问题
- 格式:pdf
- 大小:58.71 KB
- 文档页数:1
纵观立体几何考题感悟向量方法解题在高中数学学习中,立体几何一直是学生们非常头疼的一个部分。
立体几何的主要难点是空间的复杂性,加上几何思维本来就不易理解,许多学生解题困难。
但是,通过向量方法解题是一种很好的解决立体几何问题的方法。
本文将通过纵观立体几何考题,分享一些关于向量方法解题的经验与感悟。
一、向量的基本概念及运算向量的表示法是用箭头表示。
箭头的长度代表向量的大小,箭头的方向代表向量的方向。
一个向量可以被表示为一个由有序数对$(x,y)$所确定的点A和另一个由有序数对$(x',y')$所确定的点B之间的向量$\vec{AB}$。
向量也可以表示为箭头的坐标,即$\vec{AB}=\begin{pmatrix}x'-x\\y'-y\end{pmatrix}$。
向量的大小表示为$|\vec{AB}|=\sqrt{(x'-x)^2+(y'-y)^2}$。
向量的运算有向量加法和向量数乘。
向量加法的定义是:$\vec{a}+\vec{b}=\begin{pmatrix}a_1+b_1\\a_2+b_2\\a_3+b_3\e nd{pmatrix}$。
其中,$\vec{a}=(a_1,a_2,a_3)$,$\vec{b}=(b_1,b_2,b_3)$。
向量数乘的定义是:$\lambda\vec{a}=(\lambda a_1,\lambda a_2,\lambda a_3)$。
其中,$\lambda$是一个实数。
二、应用向量方法求解空间几何问题1.立体几何基本概念首先,我们需要掌握一些立体几何的基本概念,比如平面、线段、角等。
此外,还需要了解空间中的直线、平面、空间角、平行线等概念。
了解这些概念是建立解题基础的必要条件。
2.向量表达式的转化在解题中,我们可以通过向量的基本运算将问题转化为向量的加、减、数乘问题。
因此,我们需要能够将向量从一个表达式转化为另一个表达式,并灵活地运用向量的加、减、数乘运算法则来求解问题。
用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。
更易于学生们所接受,故而执教者应高度重视空间向量的工具性。
首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。
二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。
向量在立体几何中的几点应用向量在立体几何中的几点应用在数学中,向量是一个有大小和方向的量,它在几何中的应用非常广泛。
在立体几何中,向量也有着重要的应用,下面就来谈谈它的一些应用。
1.向量的叉积向量的叉积在立体几何中有着广泛的应用。
它定义了一个向量和一个法向量,这使得它适用于区分面积和体积,这是立体几何中很重要的概念。
在计算立体几何的体积时,有时需要利用向量的叉积。
例如,在计算一个四棱锥的体积时,可以用其底面上的两个向量构成一个平面向量,然后将这个平面向量与第五个顶点所在的向量做叉积,便可以得到该四棱锥的体积。
这个方法非常简单,而且不需要用到具体的高度或底面积这样的参数,因此,在计算体积时十分方便。
另一个例子是,在求解两条直线的交点时可以使用向量的叉积。
如果已知两个直线所在的平面,可以将它们所在的向量取叉积,便可以得到一个垂直于两条直线所在平面的向量,从而可以得到它们的交点。
这个方法也非常简单,而且不需要求解方程组,因此在计算交点时比较方便。
2.向量的点积向量的点积在立体几何中也有着很重要的应用。
它可以用来计算向量的夹角,从而在计算三角形的面积或四面体的体积等问题时十分方便。
例如,在计算三角形的面积时,可以用两个边向量之间的夹角及其对顶点到该边的距离来计算。
这就用到了向量的点积。
在计算四面体的体积时,我们可以用面积乘以高度来计算,而面积可以使用向量的叉积计算,高度可以用向量的点积计算。
这种方法比基本的平行六面体法更直观,更方便。
3.平面与直线的向量表示在立体几何中,我们经常需要对平面和直线进行求交、平移、旋转等处理。
而这些处理都可以使用向量的表示法来简化。
例如,在求解平面与直线的交点时,如果已知平面和直线的法向量,我们就可以用向量的点积求出它们之间的夹角,从而计算出交点。
这个方法比纯粹的代数方法更加便捷、直观。
再例如,在计算平面和直线的平移时,可以用向量的加减法来表示平移后的位置。
这种向量的表示法非常简单、直观,因此在计算中能够提高效率。
=1+12(2cos60°cos40°)-12(cos40°-cos120°)=1+12cos40°-12cos40°+12cos120°=1-14=34.四、其它转化在求值问题中,除了重组角度转化之外,还应重视三角函数名,结构等方面的转化,如:①切割化弦;②降幂转化来计算.例6 求tan20°+4sin20°的值.分析:对此类问题一般先将切化弦:tan20°+4sin20°=sin20°cos20°+4sin20°=sin20°+4sin20°cos20°cos20°由于题目中出现了20°与40°的角,其和为60°的特殊角,这样就为转化带来了空间,而且方法不是唯一的.变式1 tan20°+4sin20°=sin20°+2sin40°cos20°=sin(60°-40°)+sin40°cos20°=sin60°cos40°-cos60°sin40°+2sin40°cos20°=32cos40°-12sin40°+2sin40°cos20°=32cos40°+32sin40°cos20°=3(12cos40°+32sin40°)cos20°=3sin70°cos20°=3.变式2 tan20°+4sin20°=sin20°+2sin(60°-20°)cos20°=sin20°+3cos20°-sin20°cos20°=3cos20°cos20°=3.以上几种形式的转化求值问题,只是在三角函数教学中比较普遍存在的转化思想的体现,在很多的具体求值中,还有些异于上述的其它方法.但任何问题的解决都是将未知转化为已知的过程,在三角函数求值中体现得更为突出.在教学中应提炼出来,以便于学生共享.黑龙江省农垦总局哈尔滨分局高级中学(150088)●韩晓辉巧用平面向量解立体几何问题 平面向量是解答立体几何问题的一种快速、简捷的运算工具.不少复杂的立体几何问题,引入平面向量后,通过将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值运算,即借助平面使解题模式化,用机械性操作把问题转化,因此,平面向量为立体几何代数化带来了极大的便利.下面,介绍平面向量在立体几何中的应用.例1 如图1,AB、CD为异面直线,CD<平面α,AB∥平面α,M、N分别是AC、BD的中点,求证MN∥平面α证明因为D<平面α,B∥平面α且··数理化学习(高中版)©:.:C A12AB 、CD 异面,所以在α内存在�a 、�b 使AB =�a ,CD =�b ,且�a 、�b 不共线,由M 、N 分别是AC 、BD 的中点,得MN =12(MB +MD )=12[(MA +AB )+(MC +CD )]=12[(MA +AB )+(MC +C D )]=12[-M C +AB +MC +CD ]=12[AB +CD ]=12(�a +�b ),即MN 与�a 、�b 共面.又因为�a 、�b 在平面α内,故MN ∥平面α或MN <平面α,而若MN <平面α,则A B 、C D 同在平面α内,与AB 、CD 为异面直线矛盾,所以MN ∥平面α.例2 正四面体V -ABC 的高VD 的中点为O ,AC 的中点为M.求证:A O 、BO 、CO 两两垂直.证明:设V A =�a,V �b =�b ,VC =�c ,正四面体棱长为m,则VD =13(�a +�b +�c ),A O =16(�b +�c -5�a ),BO =16(�a +�c -5�b ),CO =16(�a +�b -5�c ).因为AO ·BO =136(�b +�c -5�a )·(�a +�c -5�b )=0,所以AO ⊥BO,即AO ⊥BO,同理,AO ⊥CO ,BO ⊥C O.例3 如图3,在三棱锥S -A BC 中,∠S AB =∠S AC =∠AC B =90°,AC =2,SA =23,BC =13,S B =29.证明:(1)SC ⊥BC;(2)求异面直线SC 与AB 所成角α的余弦值.解:(1)证明:由题意,S ·B =,·B =,所以S ·B =(S +)·B =S A ·CB +AC ·C B =0,即SC ⊥BC .(2)因为SC ·AB =(S A +AC)·(AC +C B )=S A ·AC +SA ·C B +AC ·AC +AC ·CB =0+0+|AC |2+0=|AC |2=4,|SC |=(23)2+22=4,|A B |=(13)2+22=17,所以cosα=SC ·AB |SC |·|AB |=4417=1717.例4 如图3,已知平行六面体ABC D -A 1B 1C 1D 1的底面是菱形,且∠C 1CB =∠C 1C D=∠BC D =60°.(1)证明:C 1C ⊥BD ;(2)当CDCC 1的值为多少时,能使A 1C ⊥平面C 1BD 请给予证明.证明:(1)取C D 、CB 、CC 1为空间的一个基.因为∠C 1CB =∠BC D =60°,ABCD 是棱形,所以|C D |=|CB |,又因为BD =C D -CB,所以CC 1·BD =CC 1·(C D -CB )=CC 1·CD -CC 1·C B =0.所以C 1C ⊥BD.(2)设CDCC 1=λ(λ>0),即|C D |=λ|CC 1|时,能使A 1C ⊥平面C 1BD.因为C 1D ∩BD =D ,所以A 1C ⊥平面C 1BD ΖA 1C ⊥C 1D 且A 1C ⊥BD ΖA 1C ·C 1D =0且A 1C ·BD =0.因为=(D +B +),D =D ,<B,D >=6°,<B ,>=6°,··数理化学习(高中版)©A C 0AC C 0C C A AC C A 1C -C C CC 1C 1C -CC 1C C 0C CC 1022|CD|=|CB|,所以A1C·C1D=-(|C D|2-CD·CC1+ CB·CD-CB·CC1+CC1·CD-|CC1|2)=-(λ2|CC1|2+12λ2|CC1|2-12λ|CC1|2-|CC1|2)=-(32λ2-12λ-1)|CC1|2.所以A1C·C1D=0Ζ32λ2-12λ-1=0Ζ(λ-1)(3λ+2)=0,因为λ>0,所以λ=1.经验证,当λ=1时,A1C·C1D=0.即当C DCC1=1时,能使A1C⊥平面C1BD.前面这些题目若采用传统的立体几何方法证明,大多数不可避免地需要添加“辅助线”,然后再分别证明线线平行(垂直)或面面平行(垂直),而这些证法与用平面向量法相比,显然难度是大的.因此,平面向量确实是处理立体几何问题的重要而又简便的方法.作为平面向量的主要技巧,是将相关量表示为基向量的形式,把问题转化为平面向量的运算,这与把空间图形关系转化为平面图形关系的传统解法相比,显然是更高的思维方式,它抓住了空间的主要特征和其内在规律,使“纷繁复杂的现象变得井然有序.”河北省乐亭县第一中学(063600)●张云飞线段定比分点的向量公式及应用例举(一) 线段的定比分点公式是同学们所熟悉的重要公式,它在中学数学中有较为广泛的应用,近几年的高考也时有涉及,如2000年全国高考文理科倒数第一大题都直接考查了定比分点公式的运用.同学们所熟悉的是定比分点的坐标公式,其实,除此以外,定比分点公式还有其向量形式.运用定比分点的向量形式解题有时显得更为简洁明快.一、线段的定比分点向量公式设P1、P2是直线l上的两点,点P是l上不同于、的任意一点,O 是平面内任意一点,设O P1=�a,O P2=�b,P分有向线段P1P2所成的比为λ,则有O P=�a+λ�b1+λ.证明:如图1,因为P1P=O P-�a,.PP2=�b-O P,P1P=λPP2,所以O P-�a=λ(�b-O P)所以O P=�a+λ�b1+λ①公式①就是线段的定比分点向量公式.二、应用例1 在△ABC中,已知D是BC的中点, E是AD的中点,直线B E交AC于F,求证:CF =2FA.证明如图,在△B中,设BD=�,B=�,·3·数理化学习(高中版)©P1P2:2A Ca A b2。
向量在立体几何中的应用向量是中学数学的重要概念之一,它兼有数和形的特征,因而它是数形结合的桥梁之一,是实现数形转换的一个重要工具。
许多数学问题用向量知识来解决显得格外简练。
一、证明两直线平行或垂直根据∥?圳=λ(λ≠0)将证两线平行转化为证两向量共线(平行)。
根据⊥?圳·=0,将垂直问题转化为证两向量的数量积等于0.例1.已知正四棱柱abcd-a1b1c1d1,ab1=1,aa1=2点e为cc1的中点,点f为bd1的中点.求证:ef是bd1与cc1的公垂线。
证明:建立空间直角坐标系,则b(1,1,0),c(0,1,0),c1=(0,1,1),d1(0,0,1),e=(0,1,),f=(,,),=(,,0),=(0,0,1),=(-1,-1,1),所以·=0,·=0,即⊥,⊥.故ef是cc1与bd1的公垂线。
若用立体几何中的理论来证明这道题目则可以通过证明三角形ed1b和三角形fc1c为等腰三角形来达到目的。
证明过程中需利用已知边长,垂直等条件求出其他边长。
而用向量的性质来解则只需将各点坐标表示出来,再利用两向量的数量积是否等于0便可以得出结论。
相较而言,利用向量更为简便,计算量也相对较少。
二、证明线面平行或垂直证明线面平行,可转化为证明直线的方向向量与平面的法向量垂直;证明线面垂直,可转化为证明直线的方向向量与平面的法向量平行,从而得出结论,达到解决问题的目的。
例2.已知正方体abcd-a1b1c1d1的棱长为2,e,f,g分别是bc,cd,cc1的中心,求证:(1)ad1∥平面efg.(2)a1c⊥平面efg.证明:以d为坐标原点建立空间直角坐标系d-xyz,则d(0,0,0),a(2,0,0),a1(1,1,0),d1(0,0,2),c(0,2,0),c1(0,2,2),e(1,2,0),g(0,2,1)所以=(-2,0,2),=(2,-2,2),=(-1,-1,0),=(-1,0,1)。
向量法解立体几何1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.⑵.平面的法向量: 若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.④根据法向量定义建立方程组0n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量.例1:在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量.2、用向量方法判定空间中的平行关系⑴线线平行。
设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.例2: 四棱锥P-ABCD 中,底面ABCD 是正方形, PD ⊥底面ABCD ,PD=DC=6, E 是PB的中点,DF:FB=CG:GP=1:2 . 求证:AE//FG.⑵线面平行。
设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=.例3:如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .求证:PB 1∥平面BDA 1;⑶面面平行。
若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=.例4:在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .3、用向量方法判定空间的垂直关系⑴线线垂直。
立体几何探索性问题是近年高考或各地模拟考试中的热点题型.向量作为一种工具,在解决立体几何探索性问题中有着无比的优越性.运用向量法解题,可使几何问题代数化,大大简化思维程序,使解题思路直观明了.下面举例说明向量法在求解两类立体几何探索性问题中的运用.一、条件探索型所谓“条件探索型”是指给出了问题的明确结论,但条件不足或未知,需要解题者探求、寻找使结论成立的条件的一类问题,这类问题的常用解法是逆推法,利用结论探求条件. 例1 如图1,棱长为1的正方体1111ABCD A B C D -,E 是BC 的中点,F 是棱CD 上的动点(非C 、D 两点),设二面角1C EF C --的大小为θ.试确定F 点的位置,使得1cos 3θ=.解析:以A 为坐标原点,建立如图1所示的直角坐标系, 则111(001)(111)102A C E ⎛⎫⎪⎝⎭,,,,,,,,.设(10)(01)F x x <<,,, 易知111011022C E EF x ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,,,,,.设()a b c =,,v 是平面1C EF 的一个法向量, 则11021(1)02C E b c EF x a b ⎧=--=⎪⎪⎨⎪=-+=⎪⎩,,v v令1c =,则1211x ⎛⎫=- ⎪-⎝⎭,,v .又1(001)AA =,,是平面AC 的一个法向量, ∴111cos AA AA AA ==⎛,v v v结合条件知可取1cos cos AA θ=,v , 13=,解得12x =或32x =(舍).故当F 是CD 的中点时,1cos 3θ=.二、存在型所谓“存在型”是指结论不确定的问题,即在数学命题中,结论常以“是否存在”的形式出现,其结果可能存在,需要找出来;可能不存在,则需要说明理由.解答这一类问题时,先假设结论存在,若推证无矛盾,则结论存在;若推证出矛盾,则结论不存在.例2 已知正三棱柱111ABC A B C -的侧棱长为2,底面边长为1,M是BC 的中点.在直线1CC 上是否存在一点N,使得1MN AB ⊥?若存在,请你求出它的位置;若不存在,请说明理由.解:假设在直线1CC 上存在一点N,使得1MN AB ⊥.如图2,建立空间直角坐标系,有1131(000)00(01)2242A B M N z B ⎫⎫⎫⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,,,, ∴13131224AB MN z ⎛⎫⎛⎫==- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,,,,,. ∵1AB MN ⊥,∴13131312202488AB MN z z ⎛⎫⎛⎫=-=-++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,, 解得18z =,1018N ⎛⎫ ⎪⎝⎭,,,即18CN =时,1AB MN ⊥. 用法向量求距离一、求异面直线间的距离如图1,若CD 是异面直线a b ,的公垂线段,A B ,分别为a b ,上的任决两点.令向量a b ⊥⊥,n n ,则AB CD =n n . 分析:AB AC CD DB =++, AB AC CD DB ∴=++n n n n .AB CD ∴=n n ,AB CD ∴=n n .AB CD ∴=nn .∴两异面直线a b ,间的距离为AB d =n n (其中n 与a b ,垂直,A B ,分别为两异面直线上的任意两点). 例1 如图2,在正方体1111ABCD A B C D -中,E 为11A B 的中点且正方体棱长为2.求异面直线1D E 和1BC 间的距离.解析:以1D 为原点,建立如图2所示的空间直角坐标系, 则11(210)(202)D E C B =,,,,,.设1D E 和1BC 公垂线段上的向量为(1)λμ=,,n ,则1100D E C B ⎧=⎪⎨=⎪⎩,,n n 即20220λμ+=⎧⎨+=⎩,,21λμ=-⎧⎨=-⎩,.(121)∴=--,,n .又11(020)DC =,,,11D C ==nn所以异面直线1D E 和1BC .二、求点到平面的距离如图3,已知AB 为平面α的一条斜线段,n 为平面α的法向量. 求证:点A 到平面α的距离AB AC =n n . 分析:cos AB AB AB =,n n n , cos AB AB AC AB AB AB AB ∴===,nnn n n .例2 如图4,已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.求点C 到平面1AB D 的距离.解析:11ABB A 为正方形,11A B AB ∴⊥.易得平面1AB D ⊥平面11ABB A ,1A B ∴⊥面1AB D ,1A B ∴是平面1AB D 的一个法向量.设点C 到平面1AB D 的距离为d , 则111()06024AC A BAC A A AB d a A B +====. 三、求直线到平面的距离例3 如图5,已知边长为ABC 中,E F ,分别为BC 和AC 的中点,PA ⊥面ABC ,且2PA =,设平面α过PF 且与AE 平行.求AE 与平面α间的距离.解析:设A P A E E C ,,的单位向量分别为123,,e e e ,选取{}123,,e e e 作为空间向量的一个基底. 易知1213230===e e ee e e ,12AP =e ,226AE =,322EC =,1231()22PF PA AE EC =++=-+e . 设123x y =++n e e e 是平面α的一个法向量,则AE ⊥n ,PF ⊥n.00AE PF ⎧=⎪∴⎨=⎪⎩,,n n即22222123020x ⎧=⎪⎨-=⎪⎩,,e e e 解得02y x =⎧⎪⎨=⎪⎩,13∴=+n e .∴直线AE 与平面α间的距离1121222322AP d ⎛+ ⎝===+e e e nn e e . 四、求两平行平面间的距离例4 如图6,在棱长为1的正方体1111ABCD A B C D -中. 求平面1AB C 与平面11AC D 间的距离.解析:建立如图所示的空间直角坐标系,易知平面1AB C 与平面11AC D 平行.设平面11AC D 的一个法向量(1)x y =,,n , 则1100DA DC ⎧=⎪⎨=⎪⎩,,n n 即(1)(101)01(1)(011)01x y x x y y ==-⎧⎧⇒⎨⎨==-⎩⎩,,,,,,,,,,. (111)∴=--,,n .∴平面1AB C 与平面11AC D 间的距离22(100)(111)(1)1AD d ---===+-+,,,,n n .。