[推荐学习]高考数学考点解读+命题热点突破专题01集合与常用逻辑用语理
- 格式:doc
- 大小:199.31 KB
- 文档页数:11
第一章集合与常用逻辑用语(2022年文科数学高考备考版)第一节集合的概念与运算一、高考考点梳理(一)、集合的基本概念1.集合中元素的三个特性:确定性、互异性、无序性.2.元素与集合的关系是属于或不属于,符号分别为∈和∉.3.集合的三种表示方法:列举法、描述法、图示法.4.常用数集的符号:实数集记作R;有理数集记作Q;整数集记作Z;自然数集记作N;正整数集记作*N或N .+A B(四)、集合关系与运算的重要结论1.若有限集A中有n个元素,则A的子集有个,真子集有-1个.n2n22.传递性:A ⊆B ,B ⊆C ,则A ⊆C .3.A ∪B =A ⇔B ⊆A ; A ∩B =A ⇔A ⊆B .4.∁U (A ∪B )=(∁U A )∩(∁U B );∁U (A ∩B )=(∁U A )∪(∁U B ) . 二、历年高考真题题型分类突破题型一 集合的基本概念【例1】(2021全国甲卷) 设集合{}{}1,3,5,7,9,27M N x x ==>,则MN =( )A. {}7,9B. {}5,7,9C. {}3,5,7,9D. {}1,3,5,7,9解析:∵7,2N ⎛⎫=+∞ ⎪⎝⎭,∴MN ={}5,7,9,故选:B .【例2】(2020全国Ⅰ卷)已知合集{}2340A x x x =--<,{}4,1,3,5B =-,则A B =( )A.{}4,1-B. {}1,5C. {}3,5D. {}1,3解析:∵{}2340A x x x =--<={ x |-1< x <4},∴A ∩B ={1,3},故选D . 【例3】(2013全国Ⅰ卷)已知集合A ={1,2,3,4},},|{2A n n x x B ∈==, 则=B A ( ).A .}4,1{B .}3,2{C .}16,9{D .}2,1{ 解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16},∴A ∩B ={1,4},故选A .题型二 集合间的关系【例4】(2021全国乙卷) 已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则∁U (M ∪N ) =( ) A. {}5B. {}1,2C. {}3,4D. {}1,2,3,4解析:由题意可得:{}1,2,3,4MN =,则∁U (M ∪N ) ={}5. 故选:A .【例5】(2020全国Ⅲ卷) 已知集合{}1,2,3,5,7,11A =,{}|315B x x =<<,则A B中元素的个数为( )A. 2B. 3C. 4D. 5解析:根据题意,得A ∩B ={5,7,11},故选B .【例6】(2017全国Ⅰ卷)已知集合A ={}|2x x <,B ={}|320x x ->,则( ).A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R解析:由B ={}|320x x ->,得B 3|2x x ⎧⎫=<⎨⎬⎩⎭,因为A ={}|2x x <,所以A B =3|2x x ⎧⎫<⎨⎬⎩⎭,故选A .题型三 集合的运算【例7】(2020全国Ⅱ卷)已知集合A={}3,x x x Z <∈,B={}1,x x x Z >∈,则A B =( )A. ∅B. {}3,2,2,3--C. {}2,0,2-D. {}2,2-解析:由以知,得A ={x |-3< x <3,x ∈Z},B ={x |x <-1或x >1,x ∈Z}, 所以A ∩B ={-2,2},故选D .【例8】(2019全国Ⅰ卷)已知集合U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},则B ∩∁U A =( ).A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}解析:∵U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7}, ∴∁U A ={1,6,7},则B ∩∁U A ={6,7},故选C .第二节 命题及其关系、充分条件与必要条件一、高考考点梳理 (一)、命题的定义可以判断真假用文字或符号表述的语句叫做命题。
专题01集合与常用逻辑用语考点三年考情(2022-2024)命题趋势考点1:集合的交并补运算2024年甲卷(理)2024年甲卷(文)2023年全国Ⅰ卷2022年浙江卷2022年全国ⅠⅠ卷2022年全国乙卷(文)2022年甲卷(文)2022年甲卷(理)2024年北京卷2024年全国Ⅰ卷2024年天津卷2023年北京卷2023年全国乙卷(文)2023年甲卷(文)2023年甲卷(理)2023年高考乙卷(理)2023年天津卷本讲为每年高考必考的内容,题型以选择题为主,考查内容、频率、题型、难度均变化不大.重点是集合间的基本运算,主要考查集合的交、并、补运算;其次考查充分必要条件的判断.考点2:含参集合以及元素与集合关系2023年全国Ⅱ卷2022年高考乙卷(理)考点3:充分必要条件的判断2024年甲卷(理)2024年北京卷2024年天津卷2023年北京卷2023年甲卷(理)2023年天津卷2023年全国Ⅰ卷2022年浙江卷考点4:命题的否定与命题的真假2024年全国Ⅱ卷考点1:集合的交并补运算1.(2024年高考全国甲卷数学(理)真题)已知集合{}{}1,2,3,4,5,9,A B x A ==,则()A A B ⋂=ð()A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,52.(2024年高考全国甲卷数学(文)真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,93.(2023年新课标全国Ⅰ卷数学真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=()A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}24.(2022年新高考浙江数学高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=()A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}5.(2022年新高考全国II 卷数学真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-6.(2022年高考全国乙卷数学(文)真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}7.(2022年高考全国甲卷数学(文)真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ()A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}8.(2022年高考全国甲卷数学(理)真题)设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B ⋃=ð()A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-9.(2024年北京高考数学真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=()A .{}11x x -≤<B .{}3x x >-C .{}|34x x -<<D .{}4x x <10.(2024年新课标全国Ⅰ卷数学真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ()A .{1,0}-B .{2,3}C .{3,1,0}--D .{1,0,2}-11.(2024年天津高考数学真题)集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A .{}1,2,3,4B .{}2,3,4C .{}2,4D .{}112.(2023年北京高考数学真题)已知集合{20},{10}M x x N x x =+≥=-<∣∣,则M N ⋂=()A .{21}x x -≤<∣B .{21}x x -<≤∣C .{2}xx ≥-∣D .{1}xx <∣13.(2023年高考全国乙卷数学(文)真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A .{}0,2,4,6,8B .{}0,1,4,6,8C .{}1,2,4,6,8D .U14.(2023年高考全国甲卷数学(文)真题)设全集{}1,2,3,4,5U =,集合{}{}1,4,2,5M N ==,则U N M = ð()A .{}2,3,5B .{}1,3,4C .{}1,2,4,5D .{}2,3,4,515.(2023年高考全国甲卷数学(理)真题)设全集Z U =,集合{31,},{32,}M x x k k Z N x x k k Z ==+∈==+∈∣∣,()U M N ⋃=ð()A .{|3,}x x k k =∈ZB .{31,}xx k k Z =-∈∣C .{32,}xx k k Z =-∈∣D .∅16.(2023年高考全国乙卷数学(理)真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=()A .()U M N ðB .U N M ðC .()U M N ðD .U M N⋃ð考点2:含参集合以及元素与集合关系17.(2023年天津高考数学真题)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A = ð()A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,518.(2023年新课标全国Ⅱ卷数学真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A .2B .1C .23D .1-19.(2022年高考全国乙卷数学(理)真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉考点3:充分必要条件的判断20.(2024年高考全国甲卷数学(理)真题)设向量()()1,,,2a x x b x =+= ,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“13x =-”是“//a b ”的充分条件21.(2024年北京高考数学真题)设a ,b 是向量,则“()()·0a b a b +-=”是“a b =- 或a b = ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件22.(2024年天津高考数学真题)设,a b ∈R ,则“33a b =”是“33a b =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件23.(2023年北京高考数学真题)若0xy ≠,则“0x y +=”是“2y xx y+=-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件24.(2023年高考全国甲卷数学(理)真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件25.(2023年天津高考数学真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件26.(2023年新课标全国Ⅰ卷数学真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件27.(2022年新高考浙江数学高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件考点4:命题的否定与命题的真假28.(2024年新课标全国Ⅱ卷数学真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题。
专题01 集合、常用逻辑用语1.已知全集U ={1,2,3,4,5,6,7,8},集合A ={3,4,5},B ={1,3,6},则集合{2,7,8}是( ) A .A ∪B B .A ∩B C .∁U (A ∩B )D .∁U (A ∪B )【解析】解法一:由题意可知∁U A ={1,2,6,7,8},∁U B ={2,4,5,7,8},∴(∁U A )∩(∁U B )={2,7,8}.由集合的运算性质可知(∁U A )∩(∁U B )=∁U (A ∪B ),即∁U (A ∪B )={2,7,8},故选D.解法二:画出韦恩图(如图所示),由图可知∁U (A ∪B )={2,7,8},故选D.【答案】D2.已知N 是自然数集,设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪6x +1∈N ,B ={0,1,2,3,4},则A ∩B =( ) A .{0,2} B .{0,1,2} C .{2,3} D .{0,2,4} 【解析】∵6x +1∈N ,∴x +1应为6的正约数,∴x +1=1或x +1=2或x +1=3或x +1=6,解得x =0或x =1或x =2或x =5,∴集合A ={0,1,2,5},又B ={0,1,2,3,4},∴A ∩B ={0,1,2},故选B.【答案】B3.已知集合A ={1,3,a },B ={1,a 2-a +1},若B ⊆A ,则实数a =( ) A .-1 B .2C .-1或2D .1或-1或2【答案】C4.已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数为( ) A .1 B .3 C .5 D .7【解析】由⎩⎪⎨⎪⎧x 2=4y ,y =x得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =4,y =4,即A ∩B ={(0,0),(4,4)},∴A ∩B 的真子集个数为22-1=3,故选B. 【答案】B5.已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若A ∪B =A ,则实数a 的取值范围为( ) A .(-∞,-3]∪[2,+∞) B .[-1,2] C .[-2,1]D .[2,+∞)【解析】集合A ={x |y =4-x 2}={x |-2≤x ≤2},因A ∪B =A ,则B ⊆A ,所以有⎩⎪⎨⎪⎧a ≥-2,a +1≤2,所以-2≤a ≤1,故选C.【答案】C6.设A ,B 是两个非空集合,定义集合A -B ={x |x ∈A ,且x ∉B }.若A ={x ∈N |0≤x ≤5},B ={x |x 2-7x +10<0},则A -B =( )A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,5}【解析】∵A ={x ∈N |0≤x ≤5}={0,1,2,3,4,5},B ={x |x 2-7x +10<0}={x |2<x <5},A -B ={x |x ∈A 且x ∉B },∴A -B ={0,1,2,5},故选D.【答案】D7.下列说法正确的是( )A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1” B .“若am 2<bm 2,则a <b ”的逆命题为真命题 C .存在x 0∈(0,+∞),使3x 0>4x 0成立 D .“若sin α≠12,则α≠π6”是真命题【答案】D8. “m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】当m <0时,由图象的平移变换可知,函数f (x )必有零点;当函数f (x )有零点时,m ≤0,所以“m <0”是“函数f (x )=m +log 2x (x ≥1)存在零点”的充分不必要条件,故选A.【答案】A9.已知命题p :∃x 0∈R ,x 20-x 0+1≥0;命题q :若a <b ,则1a >1b,则下列命题中为真命题的是( )A .p ∧qB .p ∧(綈q )C .(綈p )∧qD .(綈p )∧(綈q )【解析】x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34>0,所以∃x 0∈R ,使x 20-x 0+1≥0成立,故p 为真命题,綈p 为假命题,又易知命题q 为假命题,所以綈q 为真命题,由复合命题真假推断的真值表知p ∧(綈q )为真命题,故选B.【答案】B10.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x 24-y23=1,B ={y |y =x 2},则A ∩B =( ) A .[-2,2]B .[0,2]C .{(-2,4),(2,4)}D .[2,+∞)【解析】由A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x 24-y23=1,得A =(-∞,-2]∪[2,+∞). 由B ={y |y =x 2},知集合B 表示函数y =x 2的值域,即B =[0,+∞), 所以A ∩B =[2,+∞),故选D. 【答案】D11.已知a ,b 都是实数,那么“2a >2b ”是“a 2>b 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】充分性:若2a >2b ,则2a -b>1,∴a -b >0,∴a >b .当a =-1,b =-2时,满意2a >2b ,但a 2<b 2,故由2a>2b不能得出a 2>b 2,因此充分性不成立.必要性:若a 2>b 2,则|a |>|b |.当a =-2,b =1时,满意a 2>b 2,但2-2<21,即2a <2b ,故必要性不成立.综上,“2a >2b ”是“a 2>b 2”的既不充分也不必要条件,故选D.【答案】D12.给出下列命题:①已知a ,b ∈R ,“a >1且b >1”是“ab >1”的充分条件;②已知平面对量a ,b ,“|a |>1,|b |>1”是“|a +b |>1”的必要不充分条件; ③已知a ,b ∈R ,“a 2+b 2≥1”是“|a |+|b |≥1”的充分不必要条件;④命题p :“∃x 0∈R ,使e x 0≥x 0+1且ln x 0≤x 0-1”的否定为綈p :“∀x ∈R ,都有e x<x +1且ln x >x -1”.其中正确命题的个数是( ) A .0 B .1 C .2 D .3【解析】①已知a ,b ∈R ,“a >1且b >1”能够推出“ab >1”,“ab >1”不能推出“a >1且b >1”,故①正确;②已知平面对量a ,b ,“|a |>1,|b |>1”不能推出“|a +b |>1”,|a +b |>1不能推出|a |>1且|b |>1,故②不正确;③已知a ,b ∈R ,当a 2+b 2≥1时,a 2+b 2+2|a |·|b |≥1,则(|a |+|b |)2≥1,则|a |+|b |≥1,又a =0.5,b =0.5满意|a |+|b |≥1,但a 2+b 2=0.5<1,所以“a 2+b 2≥1”是“|a |+|b |≥1”的充分不必要条件,故③正确;④命题p :“∃x 0∈R ,使e x 0≥x 0+1且ln x 0≤x 0-1”的否定为綈p :“∀x ∈R ,都有e x<x +1或ln x >x -1”,故④不正确.所以正确命题的个数为2,故选C. 【答案】C13.下列说法中正确的个数是( )(1)若命题p :∃x 0∈R ,x 20-x 0≤0,则綈p :∃x 0∈R ,x 20-x 0>0; (2)命题“在△ABC 中,A >30°,则sin A >12”的逆否命题为真命题;(3)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的充分必要条件; (4)若统计数据x 1,x 2,…,x n 的方差为1,则2x 1,2x 2,…,2x n 的方差为2. A .0 B .1 C .2 D .3【答案】A14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知条件p :a ≤b +c2,条件q :A ≤B +C2,那么条件p 是条件q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】在△ABC 中,若a ≤b +c2,由余弦定理知cos A =b 2+c 2-a22bc≥b 2+c 2-⎝⎛⎭⎪⎫b +c 222bc=34(b 2+c 2)-12bc2bc≥34×2bc -12bc 2bc =12,当且仅当a =b =c 时等号成立,所以0<A ≤π3,所以B +C ≥2π3≥2A ,即A ≤B +C 2.若A ≤B +C 2,由A +B +C =π,得0<A ≤π3,令A =π3,B =π6,C =π2,满意A ≤B +C 2,此时令a =3t (t >0),则b =t ,c =2t ,由3t >1+22t =32t ,得a >b +c 2.综上,条件p 是条件q 成立的充分不必要条件.故选A. 【答案】A15.已知函数f (x )=x 2x 2-2x +2.命题p 1:y =f (x )的图象关于点(1,1)中心对称,命题p 2:若a <b <2,则f (a )<f (b ).则在命题q 1:p 1∨p 2,q 2:(綈p 1)∧(綈p 2),q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 1,q 4C .q 2,q 3D .q 2,q 4【答案】B16.命题“∃x 0∈R ,a sin x 0+cos x 0≥2”为假命题,则实数a 的取值范围是________. 【答案】(-3,3)【解析】由题意,命题“∀x ∈R ,a si n x +cos x <2”为真命题, 则a 2+1<2,∴-3<a <3, 则实数a 的取值范围是(-3,3).17.已知集合A ={x |x 2-x -6≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x ≤1,则A ∩B =________.【解析】∵A ={x |x 2-x -6≤0}=[-2,3],B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x ≤1=[1,+∞)∪(-∞,0),∴A ∩B =[-2,0)∪[1,3].【答案】[-2,0)∪[1,3]18.若条件p :|x +1|>2,条件q :x >a ,且綈p 是綈q 的充分不必要条件,则实数a 的取值范围是________. 【解析】綈p 是綈q 的充分不必要条件等价于q 是p 的充分不必要条件,条件p :|x +1|>2即x >1或x <-3.因为条件q :x >a ,故a ≥1.【答案】a ≥119.已知命题p :∀x ∈[2,4],log 2x -a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧(綈q )”是真命题,则实数a 的取值范围是________.【解析】命题p :∀x ∈[2,4],log 2x -a ≥0⇒a ≤1.命题q :∃x 0∈R ,x 20+2ax 0+2-a =0⇒a ≤-2或a ≥1,由p ∧(綈q )为真命题,得-2<a <1.【答案】-2<a <120.设集合A ={x |x 2+2x -3>0},B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是________.【解析】A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,因为函数f (x )=x 2-2ax -1图象的对称轴为直线x =a (a >0),f (0)=-1<0,依据对称性可知若A ∩B 中恰有一个整数,则这个整数为2,所以有⎩⎪⎨⎪⎧f2≤0,f 3>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43. 【答案】⎣⎢⎡⎭⎪⎫34,43。
(一)集合考纲原文1.集合的含义与表示(1)了解集合的含义,体会元素与集合的属于关系(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集(2)在具体情境中,了解全集与空集的含义3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集(3)能使用韦恩(V e n n)图表达集合间的基本关系及集合的基本运算(十四)常用逻辑用语1.命题及其关系(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系. (3)理解必要条件、充分条件与充要条件的意义.2.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.3.全称量词与存在量词①理解全称量词与存在量词的意义.②能正确地对含有一个量词的命题进行否定.高考预测1.涉及本专题的题目一般考查集合间的基本关系及运算,四种命题及其关系,结合概念考查充分条件、必要条件及全称命题、特称命题的否定及真假的判断等.2.从考查形式来看,涉及本专题知识的考题通常以选择题、填空题的形式出现,考查集合之间的关系以及概念、定理、公式的逻辑推理等.3.从考查难度来看,考查集合的内容相对比较单一,试题难度相对容易,以通过解不等式,考查集合的运算为主,而常用逻辑用语则重点考查概念的理解及推理能力.4.从考查热点来看,不等式的解法和概念、定理、公式之间的相互推理是本专题主要考查的内容,其要求不高,重在理解.新题速递1.已知集合{}21,0,1,2,3,4,{|16,}A B x x x =-=<∈N ,则A B I 等于 A .{}1,0,1,2,3- B .{}0,1,2,3,4 C .{}1,2,3 D .{}0,1,2,32.设集合2{|230}A x x x =∈--≤Z ,{}0,1B =,则A B =ð A .{}3,2,1--- B .{}1,2,3- C .{}1,0,1,2,3- D .{}0,13.“直线y x b =+与圆221x y +=相交”是“01b <<”的A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件4.已知命题()31,,168p x x x ∀∈+∞+>:,则命题p 的否定为 A .()31,,168p x x x ⌝∀∈+∞+≤: B .()31,,168p x x x ⌝∀∈+∞+<: C .()30001,,168p x x x ⌝∃∈+∞+≤: D .()30001,,168p x x x ⌝∃∈+∞+<:答案。
集合与常用逻辑用语【考向解读】集合与常用逻辑用语在高考中是以选择题或填空题的形式进行考查的,属于容易题.但命题真假的判断,这一点综合性较强,联系到更多的知识点,属于中挡题.预测2016年高考会以集合的运算和充要条件作为考查的重点.【命题热点突破一】集合的关系及运算集合是高考每年必考内容,题型基本都是选择题、填空题,题目难度大多数为最低档,有时候在填空题中以创新题型出现,难度稍高.在复习中,本部分应该重点掌握集合的表示、集合的性质、集合的运算及集合关系在常用逻辑用语、函数、不等式、三角函数、解析几何等方面的应用.同时注意研究有关集合的创新问题,研究问题的切入点及集合知识在相关问题中所起的作用.1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解.例1、【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥或,故选D .【感悟提升】(1)集合的关系及运算问题,要先对集合进行化简,然后可借助Venn 图或数轴求解.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.【变式探究】(1)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B等于( )A.(1,3) B.(1,4) C.(2,3) D.(2,4)(2)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件(3)已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.【答案】(1)C (2)C (3)4(3)由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a>4,即c=4.点评(1)弄清集合中所含元素的性质是集合运算的关键,这主要看代表元素,即“|”前面的表述.(2)当集合之间的关系不易确定时,可借助Venn图或列举实例.【命题热点突破二】四种命题与充要条件逻辑用语是高考常考内容,充分、必要条件是重点考查内容,题型基本都是选择题、填空题,题目难度以低、中档为主.在复习中,本部分应该重点掌握四种命题的真假判断、否命题与命题的否定的区别、含有量词的命题的否定的求法、充分必要条件的判定与应用.这些知识被考查的概率都较高,特别是充分、必要条件几乎每年都有考查.1.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假.2.若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.例2、【2016高考天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C【解析】由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C.【感悟提升】充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件);若A =B ,则A 是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.【变式探究】(1)设α,β是两个不同的平面,m 是直线且m ⊂α.则“m ∥β”是“α∥β”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 B解析 m ⊂α,m ∥β⇒/α∥β,但m ⊂α,α∥β⇒m ∥β, 所以m ∥β是α∥β的必要而不充分条件. (2)给出下列命题:①若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ②a =b 的充要条件是|a |=|b |且a ∥b ; ③在△ABC 中,sin A >sin B 的充要条件为A >B ;④在△ABC 中,设命题p :△ABC 是等边三角形,命题q :a ∶b ∶c =sin B ∶sin C ∶sin A ,那么命题p 是命题q 的充分不必要条件.其中正确的命题为________.(把你认为正确的命题序号都填上)【答案】①③③正确.由正弦定理知sin A =a 2R ,sin B =b2R,当sin A >sin B 成立时,得a >b ,则A >B ;当A >B 时,则有a >b ,则sin A >sin B ,故命题正确.④不正确.若△ABC 是等边三角形,则a =b =c ,sin B =sin C =sin A ,即命题p 是命题q 的充分条件;若a ∶b ∶c =sin B ∶sin C ∶sin A ,则sin C sin A =b c ,又由正弦定理得a sin A =c sin C ,即sin C sin A =c a ,所以c a =b c ,即c2=ab ,同理得a 2=bc ,b 2=ac ,所以c =a =b ,所以△ABC 是等边三角形.因此命题p 是命题q 的充要条件.综上所述,正确命题的序号是①③. 点评 判断充分、必要条件时应注意的问题(1)先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .(2)举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.(3)准确转化:若綈p 是綈q 的必要不充分条件,则p 是q 的充分不必要条件;若綈p 是綈q 的充要条件,那么p 是q 的充要条件.【命题热点突破三】 逻辑联结词、量词1.命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p 和p 为真假对立的命题.2.命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ).3.“∀x ∈M ,p (x )”的否定为“∃x 0∈M ,綈p (x 0)”;“∃x 0∈M ,p (x 0)”的否定为“∀x ∈M ,綈p (x )”. 例3、【2016高考浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( ) A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x <【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 【感悟提升】(1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.【变式探究】(1)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面(2)已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④ 【答案】(1)D (2)C点评 利用等价命题判断命题的真假,是判断命题真假快捷有效的方法.在解答时要有意识地去练习. 【高考真题解读】1.【2016高考新课标1理数】设集合{}2430A x x x =-+< ,{}230x x ->,则AB = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭【答案】D【解析】因为23{|430}={|13},={|},2A x x x x xB x x =+<<<>-所以33={|13}{|}={|3},22A B x x x x x x <<><<故选D.2.【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+ ∞) (D)(0,2]U [3,+∞) 【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥或,故选D .3.【2016年高考四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6 【答案】C 【解析】由题意,{2,1,0,1,2}AZ =--,故其中的元素个数为5,选C.4.【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)-(B )(0,1)(C )(1,)-+∞(D )(0,)+∞【答案】C【解析】}0|{>=y y A ,}11|{<<-=x x B ,则AB =∞(-1,+),选C.5.【2016高考新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C【解析】集合{|12,}{0,1}B x x x =-<<∈=Z ,而{1,2,3}A =,所以{0,1,2,3}A B =,故选C.6.【2016年高考北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-【答案】C【解析】由}22|{<<-=x x A ,得}1,0,1{-=B A ,故选C.7.【2016高考浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( ) A .[2,3] B .( -2,3 ] C .[1,2) D .(,2][1,)-∞-⋃+∞ 【答案】B【解析】根据补集的运算得.故选B .8. 【2016高考浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( ) A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D .9.【2016高考山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A【解析】直线a 与直线b 相交,则,αβ一定相交,若,αβ相交,则a,b 可能相交,也可能平行,故选A. 10.【2016高考天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C【解析】由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C.11.【2016高考天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( )(A ){1}(B ){4}(C ){1,3}(D ){1,4}【答案】D【解析】{1,4,7,10},A B {1,4}.B ==选D.12.【2016高考江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________▲________.【答案】{}1,2- 【解析】{1,2,3,6}{|23}{1,2}AB x x =--<<=-13.【2016高考上海理数】设R a ∈,则“1>a ”是“12>a ”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A【解析】2211,111a a a a a >⇒>>⇒><-或,所以是充分非必要条件,选A.14.【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 【答案】C【解析】}0|{>=y y A ,}11|{<<-=x x B ,则AB =∞(-1,+),选C.1.(2015·天津)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩(∁U B )等于( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8} 答案 A解析 由题意知,∁U B ={2,5,8},则A ∩(∁U B )={2,5},选A. 2.(2014·安徽)“x <0”是“ln(x +1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 B解析 ∵ln(x +1)<0,∴0<x +1<1,∴-1<x <0. ∵x <0是-1<x <0的必要不充分条件,故选B.3.(2015·陕西)设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N 等于( ) A .[0,1] B .(0,1]C.[0,1) D.(-∞,1]答案 A解析由题意得M={0,1},N=(0,1],故M∪N=[0,1],故选A.4.(2014·山东)设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B等于( )A.[0,2] B.(1,3)C.[1,3) D.(1,4)答案 C解析由|x-1|<2,解得-1<x<3,由y=2x,x∈[0,2],解得1≤y≤4,∴A∩B=(-1,3)∩[1,4]=[1,3).5.(2015·湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A B中元素的个数为( ) A.77B.49C.45D.30答案 C6.(2015·浙江)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q等于( )A.[0,1) B.(0,2]C.(1,2) D.[1,2]答案 C解析∵P={x|x≥2或x≤0},∁R P={x|0<x<2},∴(∁R P)∩Q={x|1<x<2},故选C.7.(2015·湖北)设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:(a21+a22+…+a2n-1)·(a22+a23+…+a2n)=(a1a2+a2a3+…+a n-1a n)2,则( )A.p是q的必要条件,但不是q的充分条件B.p是q的充分条件,但不是q的必要条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件答案 B解析 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q2n -4)·a 22(1+q 2+…+q2n -4)=a 21a 22(1+q 2+…+q2n -4)2,(a 1a 2+a 2a 3+…+a n -1a n )2=(a 1a 2)2(1+q 2+…+q2n-4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q 成立,而p 不成立,故p 不是q 的必要条件,故选B.8.(2015·课标全国Ⅰ)设命题p :∃n ∈N ,n 2>2n,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n答案 C解析 将命题p 的量词“∃”改为“∀”,“n 2>2n ”改为“n 2≤2n”.9.(2014·课标全国Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 是充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 答案 C解析 当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点, 比如,y =x 3在x =0时,f ′(0)=0, 但在x =0的左右两侧f ′(x )的符号相同, 因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0. 综上知,p 是q 的必要条件,但不是充分条件. 10.(2014·陕西)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 答案 A 解析a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列.中小学资料原命题与其逆命题都是真命题,所以其否命题和逆否命题也都是真命题,故选A.11.(2015·山东)若m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0答案 D解析原命题为“若p,则q”,则其逆否命题为“若綈q,则綈p”.∴所求命题为“若方程x2+x-m=0没有实根,则m≤0”.学习永无止境。
第一章集合与常用逻辑用语(公式、定理、结论图表)1.集合的有关概念(1)集合元素的三大特性:确定性、无序性、互异性.(2)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合集合自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R2.文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B子集集合A中任意一个元素均为集合B中的元素A⊆B真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示 A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合表示 {x |x ∈A ,或x ∈B }{x |x ∈A ,且x ∈B }{x |x ∈U ,且x ∉A }(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A . 5.常用结论(1)空集性质:①空集只有一个子集,即它的本身,∅⊆∅; ②空集是任何集合的子集(即∅⊆A ); 空集是任何非空集合的真子集(若A ≠∅,则∅A ).(2)子集个数:若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有2n -1个,非空真子集有22n -个.典例1:已知集合{}2,4,8A =,{}2,3,4,6B =,则A B ⋂的子集的个数为( ) A .3 B .4 C .7 D .8【答案】B【详解】因为集合{}2,4,8A =,{}2,3,4,6B =,所以{}2,4A B =, 所以A B ⋂的子集的个数为224=个.故选B.典例2:已知集合{}2N230A x x x =∈--≤∣,则集合A 的真子集的个数为( ) A .32 B .31 C .16 D .15【答案】D【详解】由题意得{}{}{}2N230N 130,1,2,3A x x x x x =∈--≤=∈-≤≤=∣∣, 其真子集有42115-=个.故选D.(3)A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔A ⊇B .(4)(∁U A )∩(∁U B )=∁U (A ∪B ),(∁U A )∪(∁U B )=∁U (A ∩B ) . 6.充分条件、必要条件与充要条件的概念若p ⇒ q ,则p 是q 的充分条件,q 是p 的必要条件 p 是q 的充分不必要条件 p ⇒ q 且q ⇏ p p 是q 的必要不充分条件 p ⇏ q 且q ⇒ pp 是q 的充要条件p ⇔ qp是q的既不充分也不必要条件p ⇏q且q ⇏p7.充分、必要条件与集合的关系设p,q成立的对象构成的集合分别为A,B.(1)p是q的充分条件⇔A⊆B,p是q的充分不必要条件⇔A B;(2)p是q的必要条件⇔B⊆A,p是q的必要不充分条件⇔B A;(3)p是q的充要条件⇔A=B.8.全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃9.全称命题和特称命题名称全称命题特称命题形式语言表示对M中任意一个x,有p(x)成立M中存在元素x0,使p(x0)成立符号表示∀x∈M,p(x)∃x0∈M,p(x0)10.全称命题与特称命题的否定<知识记忆小口诀>集合平时很常用,数学概念有不同,理解集合并不难,三个要素是关键,元素确定和互译,还有无序要牢记,空集不论空不空,总有子集在其中,集合用图很方便,子交并补很明显.<解题方法与技巧>集合基本运算的方法技巧:(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn 图运算;(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.集合常与不等式,基本函数结合,常见逻辑用语常与立体几何,三角函数,数列,线性规划等结合.充要条件的两种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.(3)数学定义都是充要条件.。
专题01 集合、常用逻辑用语【高考考纲解读】从近几年高考题来看,涉及本节知识点的高考题型是选择题或填空题.有时在大题的条件或结论中出现,所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型就可以了.要掌握以函数的定义域、值域、不等式的解集为背景考查集合的交、并、补的基本运算;要能够利用集合之间的关系,利用充要性求解参数的值或取值范围;要掌握命题的四种形式及命题真假的判断;还得注意以新定义集合及集合的运算为背景考查集合关系及运算.要活用“定义法”解题,重视“数形结合”,定义是一切法则和性质的基础,是解题的基本出发点,注意方法的选择,抽象到直观的转化.要体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力.体会分类讨论思想、数形结合思想、函数方程思想等数学思想在解题中的运用.【网络构建】【重点、难点剖析】一、集合的概念及运算1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴法求解.(2)图象法:若已知的集合是点集,用图象法求解.(3)Venn图法:若已知的集合是抽象集合,用Venn图法求解.【方法技巧】解答集合问题的策略:(1)集合的化简是实施运算的前提,等价转换是顺利解题的关键.解决集合问题,要弄清集合中元素的本质属性,能化简的要化简;抓住集合中元素的三个性质,对互异性要注意检验;(2)求交集、并集、补集要充分发挥数轴或韦恩图的作用;(3)含参数的问题,要有分类讨论的意识.注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性.二、充分与必要条件的判断充分、必要条件与充要条件的含义若p、q中所涉及的问题与变量有关,p、q中相应变量的取值集合分别记为A,B,那么有以下结论:p与q的关系A BB AA B,B A【方法技巧】命题真假的判定方法:(1)一般命题p的真假由涉及到的相关知识辨别;(2)四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;(3)p∨q、p∧q、┐p命题的真假根据p,q的真假与逻辑联结词的含义判定;(4)要判定一个全称命题是真命题,必须对限定集合M的每个元素x验证p(x)成立;但要判定全称命题是假命题,却只要举出集合M中的一个x=x0,使得p(x0)不成立即可(也就是通常所说的“举一个反例”).要判定一个特称命题是真命题,只要在限定集合M中能找到一个x=x0,使p(x0)成立即可;否则,这一存在性命题是假命题.三、命题真假的判定与命题的否定1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2.复合命题真假的判断方法含逻辑联结词的命题的真假判断:“p∨q”有真则真,其余为假;“p∧q”有假则假,其余为真;“綈p”与“p”真假相反.3.全称量词与存在量词(1)全称命题p:∀x∈M,p(x),它的否定綈p:∃x0∈M,綈p(x0).(2)特称命题p:∃x0∈M,p(x0),它的否定綈p:∀x∈M,綈p(x).【方法技巧】充分条件必要条件的判定方法:(1)定义法:分清条件和结论;找推式,判断“p⇒q”及“q ⇒p”的真假;下结论,根据推式及定义下结论;(2)等价转化法:条件和结论带有否定词语的命题,常转化为其逆否命题来判断;(3)集合法:小范围可推出大范围,大范围不能推出小范围.【题型示例】题型一、集合的含义与表示、集合的运算例1、(·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( ) A.9 B.8 C.5 D.4【解析】由题意可知A={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A中共有9个元素,故选A.【答案】A【变式探究】解决集合问题的3个注意点(1)集合含义要明确:构成集合的元素及满足的性质.(2)空集要重视:已知两个集合的关系,求参数的取值,要注意对空集的讨论.(3)“端点”要取舍:要注意在利用两个集合的子集关系确定不等式组时,端点值的取舍问题,一定要代入检验,否则可能产生增解或漏解现象.【变式探究】[·全国卷Ⅰ]已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1或x>2}D.{x|x≤-1或x≥2}【命题意图】本题考查集合补集的运算、一元二次不等式的解法,考查学生的计算能力.【答案】B.【解析】∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1},∴∁R A={x|-1≤x≤2},故选B.【变式探究】[·全国卷Ⅱ]已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( ) A.9 B.8 C.5 D.4【命题意图】本题考查集合中元素的个数,考查了学生的理解能力与推理能力.【变式探究】(浙江卷)已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】因为全集,,所以根据补集的定义得,故选C.【变式探究】(天津卷)设全集为R,集合,,则A. B. C. D.【答案】B【解析】由题意可得:,结合交集的定义可得:.本题选择B选项.【变式探究】(北京卷)设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.【变式探究】(江苏卷)已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:.【变式探究】(北京卷)已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】,因此A B=,选A.【变式探究】(1)若A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},A∩B=B,则实数m的取值范围是________.【答案】[-1,+∞)题型二充分与必要条件的判断例2 、(浙江卷)已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】因为,所以根据线面平行的判定定理得,由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.【变式探究】(天津卷)设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】绝对值不等式 ,由.据此可知是的充分而不必要条件.本题选择A 选项.【变式探究】(·北京卷)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C【解析】|a -3b |=|3a +b |⇔|a -3b |2=|3a +b |2⇔a 2-6a ·b +9b 2=9a 2+6a ·b +b 2⇔2a 2+3a ·b -2b2=0,又∵|a |=|b |=1,∴a ·b =0⇔a ⊥b ,故选C .【方法技巧】充分、必要条件的3种判断方法(1)利用定义判断:直接判断“若p ,则q ”“若q ,则p ”的真假.在判断时,确定条件是什么,结论是什么.(2)从集合的角度判断:利用集合中包含思想判定.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题.(3)利用等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假. 【变式探究】 [·天津卷] 设θ∈R,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【命题意图】本题考查了充分条件与必要条件,考查三角函数的图象及性质,考查学生的计算能力及推理能力.【答案】A.【解析】当⎪⎪⎪⎪⎪⎪θ-π12<π12时,可解得0<θ<π6,即0<sin θ<12,故充分性成立;由sin θ<12可取θ=0,但此时不满足条件⎪⎪⎪⎪⎪⎪θ-π12<π12,故必要性不成立.故选A.【变式探究】命题“∀x∈R,∃n∈N *,使得n≥x 2”的否定形式是( ) A .∀x∈R,∃n∈N *,使得n<x 2B .∀x∈R,∀n∈N *,使得n<x 2C .∃x∈R,∃n∈N *,使得n<x 2D .∃x∈R,∀n∈N *,使得n<x 2【答案】D.【解析】由全称命题的否定是特称命题,特称命题的否定是全称命题得,命题“∀x∈R,∃n∈N *,使得n≥x 2”的否定形式是“∃x ∈R,∀n∈N *,使得n<x 2”.【变式探究】已知命题p :函数f(x)=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞) 【答案】C.【解析】由题意可得,对命题p ,令f(0)·f(1)<0, 即-1·(2a -2)<0,得a>1; 对命题q ,令2-a<0,即a>2, 则綈q 对应的a 的范围是(-∞,2]. 因为p 且綈q 为真命题,所以实数a 的取值范围是1<a≤2.故选C. 题型三 命题真假的判定与命题的否定 例3、[·全国卷Ⅰ]设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2;p 4:若复数z ∈R ,则z ∈R .其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 4 【答案】B【解析】设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0. 当a =0,b ≠0时,z =a +b i =b i∈ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i∈R ,则a 1b 2+a 2b 1=0.则z 1=z2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i∈R ,则b =0⇒z -=a -b i =a ∈R ,所以p 4为真命题,故选B. 【变式探究】下列命题正确的是( )A .命题“∃x ∈[0,1],使x 2-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0” B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题 C .命题“若a 与b 的夹角为锐角,则a ·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0” 【答案】D【方法技巧】解决命题的判定问题应注意的3点(1)判断四种命题真假有下面两个途径,一是先分别写出四种命题,再分别判断每个命题的真假;二是利用互为逆否命题是等价命题这一关系来判断它的逆否命题的真假.(2)要判定一个全称命题是真命题,必须对限定集合M 中的每个元素x 验证p (x )成立.要判定一个特称(存在性)命题是真命题,只要在限定集合M 中,至少能找到一个x =x 0,使p (x 0)成立即可.(3)含有量词的命题的否定,需从两方面进行:一是改写量词或量词符号;二是否定命题的结论,两者缺一不可.【变式探究】“∀x ∈R ,x 2-πx ≥0”的否定是( ) A .∀x ∈R ,x 2-πx <0B.∀x∈R,x2-πx≤0C.∃x0∈R,x20-πx0≤0D.∃x0∈R,x20-πx0<0【答案】D【解析】全称命题的否定是特称命题,所以“∀x∈R,x2-πx≥0”的否定是“∃x0∈R,x20-πx0<0”.故选D.【变式探究】命题“∀x∈[1,2],x2-3x+2≤0”的否定为( )A.∀x∈[1,2],x2-3x+2>0B.∀x∉[1,2],x2-3x+2>0C.∃x0∈[1,2],x20-3x0+2>0D.∃x0∉[1,2],x20-3x0+2>0【答案】C【解析】由全称命题的否定的定义知,命题“∀x∈[1,2],x2-3x+2≤0”的否定为“∃x0∈[1,2],x20-3x0+2>0”,故选C.。
集合与常用逻辑用语【考向解读】集合与常用逻辑用语在高考中是以选择题或填空题的形式进行考查的,属于容易题.但命题真假的判断,这一点综合性较强,联系到更多的知识点,属于中挡题.预测2016年高考会以集合的运算和充要条件作为考查的重点.【命题热点突破一】集合的关系及运算集合是高考每年必考内容,题型基本都是选择题、填空题,题目难度大多数为最低档,有时候在填空题中以创新题型出现,难度稍高.在复习中,本部分应该重点掌握集合的表示、集合的性质、集合的运算及集合关系在常用逻辑用语、函数、不等式、三角函数、解析几何等方面的应用.同时注意研究有关集合的创新问题,研究问题的切入点及集合知识在相关问题中所起的作用.1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解.例1、【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥或,故选D .【感悟提升】(1)集合的关系及运算问题,要先对集合进行化简,然后可借助Venn 图或数轴求解.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.【变式探究】(1)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B等于( )A.(1,3) B.(1,4) C.(2,3) D.(2,4)(2)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件(3)已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.【答案】(1)C (2)C (3)4(3)由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a>4,即c=4.点评(1)弄清集合中所含元素的性质是集合运算的关键,这主要看代表元素,即“|”前面的表述.(2)当集合之间的关系不易确定时,可借助Venn图或列举实例.【命题热点突破二】四种命题与充要条件逻辑用语是高考常考内容,充分、必要条件是重点考查内容,题型基本都是选择题、填空题,题目难度以低、中档为主.在复习中,本部分应该重点掌握四种命题的真假判断、否命题与命题的否定的区别、含有量词的命题的否定的求法、充分必要条件的判定与应用.这些知识被考查的概率都较高,特别是充分、必要条件几乎每年都有考查.1.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假.2.若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.例2、【2016高考天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C【解析】由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C.【感悟提升】充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件);若A =B ,则A 是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.【变式探究】(1)设α,β是两个不同的平面,m 是直线且m ⊂α.则“m ∥β”是“α∥β”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 B解析 m ⊂α,m ∥β⇒/α∥β,但m ⊂α,α∥β⇒m ∥β, 所以m ∥β是α∥β的必要而不充分条件. (2)给出下列命题:①若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ②a =b 的充要条件是|a |=|b |且a ∥b ; ③在△ABC 中,sin A >sin B 的充要条件为A >B ;④在△ABC 中,设命题p :△ABC 是等边三角形,命题q :a ∶b ∶c =sin B ∶sin C ∶sin A ,那么命题p 是命题q 的充分不必要条件.其中正确的命题为________.(把你认为正确的命题序号都填上)【答案】①③③正确.由正弦定理知sin A =a 2R ,sin B =b2R,当sin A >sin B 成立时,得a >b ,则A >B ;当A >B 时,则有a >b ,则sin A >sin B ,故命题正确.④不正确.若△ABC 是等边三角形,则a =b =c ,sin B =sin C =sin A ,即命题p 是命题q 的充分条件;若a ∶b ∶c =sin B ∶sin C ∶sin A ,则sin C sin A =b c ,又由正弦定理得a sin A =c sin C ,即sin C sin A =c a ,所以c a =b c ,即c2=ab ,同理得a 2=bc ,b 2=ac ,所以c =a =b ,所以△ABC 是等边三角形.因此命题p 是命题q 的充要条件.综上所述,正确命题的序号是①③. 点评 判断充分、必要条件时应注意的问题(1)先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .(2)举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.(3)准确转化:若綈p 是綈q 的必要不充分条件,则p 是q 的充分不必要条件;若綈p 是綈q 的充要条件,那么p 是q 的充要条件.【命题热点突破三】 逻辑联结词、量词1.命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p 和p 为真假对立的命题.2.命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ).3.“∀x ∈M ,p (x )”的否定为“∃x 0∈M ,綈p (x 0)”;“∃x 0∈M ,p (x 0)”的否定为“∀x ∈M ,綈p (x )”. 例3、【2016高考浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( ) A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x <【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 【感悟提升】(1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.【变式探究】(1)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面(2)已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④ 【答案】(1)D (2)C点评 利用等价命题判断命题的真假,是判断命题真假快捷有效的方法.在解答时要有意识地去练习. 【高考真题解读】1.【2016高考新课标1理数】设集合{}2430A x x x =-+< ,{}230x x ->,则AB = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭【答案】D【解析】因为23{|430}={|13},={|},2A x x x x xB x x =+<<<>-所以33={|13}{|}={|3},22A B x x x x x x <<><<故选D.2.【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+ ∞) (D)(0,2]U [3,+∞) 【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥或,故选D .3.【2016年高考四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6 【答案】C 【解析】由题意,{2,1,0,1,2}AZ =--,故其中的元素个数为5,选C.4.【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)-(B )(0,1)(C )(1,)-+∞(D )(0,)+∞【答案】C【解析】}0|{>=y y A ,}11|{<<-=x x B ,则AB =∞(-1,+),选C.5.【2016高考新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C【解析】集合{|12,}{0,1}B x x x =-<<∈=Z ,而{1,2,3}A =,所以{0,1,2,3}A B =,故选C.6.【2016年高考北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-【答案】C【解析】由}22|{<<-=x x A ,得}1,0,1{-=B A ,故选C.7.【2016高考浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( ) A .[2,3] B .( -2,3 ] C .[1,2) D .(,2][1,)-∞-⋃+∞ 【答案】B【解析】根据补集的运算得.故选B .8. 【2016高考浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( ) A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D .9.【2016高考山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A【解析】直线a 与直线b 相交,则,αβ一定相交,若,αβ相交,则a,b 可能相交,也可能平行,故选A. 10.【2016高考天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C【解析】由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C.11.【2016高考天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( )(A ){1}(B ){4}(C ){1,3}(D ){1,4}【答案】D【解析】{1,4,7,10},A B {1,4}.B ==选D.12.【2016高考江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________▲________.【答案】{}1,2- 【解析】{1,2,3,6}{|23}{1,2}AB x x =--<<=-13.【2016高考上海理数】设R a ∈,则“1>a ”是“12>a ”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A【解析】2211,111a a a a a >⇒>>⇒><-或,所以是充分非必要条件,选A.14.【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 【答案】C【解析】}0|{>=y y A ,}11|{<<-=x x B ,则AB =∞(-1,+),选C.1.(2015·天津)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩(∁U B )等于( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8} 答案 A解析 由题意知,∁U B ={2,5,8},则A ∩(∁U B )={2,5},选A. 2.(2014·安徽)“x <0”是“ln(x +1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 B解析 ∵ln(x +1)<0,∴0<x +1<1,∴-1<x <0. ∵x <0是-1<x <0的必要不充分条件,故选B.3.(2015·陕西)设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N 等于( ) A .[0,1] B .(0,1]C.[0,1) D.(-∞,1]答案 A解析由题意得M={0,1},N=(0,1],故M∪N=[0,1],故选A.4.(2014·山东)设集合A={x||x-1|<2},B={y|y=2x,x∈[0,2]},则A∩B等于( )A.[0,2] B.(1,3)C.[1,3) D.(1,4)答案 C解析由|x-1|<2,解得-1<x<3,由y=2x,x∈[0,2],解得1≤y≤4,∴A∩B=(-1,3)∩[1,4]=[1,3).5.(2015·湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A B中元素的个数为( ) A.77B.49C.45D.30答案 C6.(2015·浙江)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q等于( )A.[0,1) B.(0,2]C.(1,2) D.[1,2]答案 C解析∵P={x|x≥2或x≤0},∁R P={x|0<x<2},∴(∁R P)∩Q={x|1<x<2},故选C.7.(2015·湖北)设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:(a21+a22+…+a2n-1)·(a22+a23+…+a2n)=(a1a2+a2a3+…+a n-1a n)2,则( )A.p是q的必要条件,但不是q的充分条件B.p是q的充分条件,但不是q的必要条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件答案 B解析 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q2n -4)·a 22(1+q 2+…+q2n -4)=a 21a 22(1+q 2+…+q2n -4)2,(a 1a 2+a 2a 3+…+a n -1a n )2=(a 1a 2)2(1+q 2+…+q2n-4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q 成立,而p 不成立,故p 不是q 的必要条件,故选B.8.(2015·课标全国Ⅰ)设命题p :∃n ∈N ,n 2>2n,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n答案 C解析 将命题p 的量词“∃”改为“∀”,“n 2>2n ”改为“n 2≤2n”.9.(2014·课标全国Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 是充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 答案 C解析 当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点, 比如,y =x 3在x =0时,f ′(0)=0, 但在x =0的左右两侧f ′(x )的符号相同, 因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0. 综上知,p 是q 的必要条件,但不是充分条件. 10.(2014·陕西)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 答案 A 解析a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列.[k12]原命题与其逆命题都是真命题,所以其否命题和逆否命题也都是真命题,故选A.11.(2015·山东)若m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0答案 D解析原命题为“若p,则q”,则其逆否命题为“若綈q,则綈p”.∴所求命题为“若方程x2+x-m=0没有实根,则m≤0”.最新K12。