初中数学 27.2.1 相似三角形的判定同步练习
- 格式:doc
- 大小:221.84 KB
- 文档页数:15
27.2.1相似三角形的判定(1)1、已知D 、E 分别是ΔABC 的边AB 、AC 上的点,请你添加一个条件, 使ΔABC 与ΔAED 相似. (只需添加一个你认为适当的条件即可).2、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A AC AE AB AD = B FB EA CF CE =C BD AD BC DE = D CBCF AB EF =3、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形 ( )A 1对B 2对C 3对D 4对4、如图,在大小为4×4的正方形网格中,是相似三角形的是( )① ② ③ ④A.①和②B.②和③C.①和③D.②和④.5、如图,在正方形网格上有6个斜三角形:①ΔABC ,②ΔBCD ,③ΔBDE ,④ΔBFG ,⑤ΔFGH ,⑥ΔEFK.其中②~⑥中,与三角形①相似的是( )(A)②③④ (B)③④⑤ (C)④⑤⑥ (D)②③⑥6、在方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点三角形.如图,请你在4×4的方格纸中,画一个格点三角形A 1B 1C 1,使ΔA 1B 1C 1与格点三角形AB C 相似(相似比不为1).7、如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°,AC=5cm ,AB=4cm ,如果图中的两个直角三角形相似,求AD 的长.8、一个钢筋三角架三边长分别为20cm ,50cm ,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,写出所有不同的截法?答案1、D E ∥BC2、C3、C4、C5、B6、略7、AD=516cm 8、两种截法(1)新截三角形的三边分别是10cm,25cm,30c m (2)新截三角形的三边分别是12cm,30cm,36cm。
27.2.1 相似三角形的判定(练习课)班级姓名N O:27006一、填空题1.______三角形一边的______和其他两边______,所构成的三角形与原三角形相似.2.如果两个三角形的______对应边的______,那么这两个三角形相似.3.如果两个三角形的______对应边的比相等,并且______相等,那么这两个三角形相似.4.如果一个三角形的______角与另一个三角形的______,那么这两个三角形相似.5.在△ABC和△A'B'C'中,如果∠A=56°,∠B=28°,∠A′=56°,∠C′=28°,那么这两个三角形能否相似的结论是______.理由是________________.6.在△ABC和△A'B′C′中,如果∠A=48°,∠C=102°,∠A′=48°,∠B′=30°,那么这两个三角形能否相似的结论是______.理由是________________.7.在△ABC和△A'B′C′中,如果∠A=34°,AC=5cm,AB=4cm,∠A′=34°,A'C′=2cm,A′B′=1.6cm,那么这两个三角形能否相似的结论是______,理由是____________________.8.在△ABC和△DEF中,如果AB=4,BC=3,AC=6;DE=2.4,EF=1.2,FD=1.6,那么这两个三角形能否相似的结论是____________,理由是__________________.9.如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有_____对.10.如图所示,□ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有______对.二、选择题11.如图所示,不能判定△ABC∽△DAC的条件是( )A.∠B=∠DAC B.∠BAC=∠ADCC.AC2=DC·BC D.AD2=BD·BC12.如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( )A.5 B.8.2 C.6.4 D.1.8三、解答题13.已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,(1)图中有哪两个三角形相似?(2)求证:AC2=AD·AB;BC2=BD·BA;(3)若AD=2,DB=8,求AC,BC,CD;(4)若AC=6,DB=9,求AD,CD,BC;(5)求证:AC·BC=AB·CD.14.如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.求证:(1)OD∶OA=OE∶OB;(2)△ODE∽△OAB;(3)△ABC∽△DEF.15.如图所示,已知AB∥CD,AD,BC交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.16.已知:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC相切于E点.求证:AB·CD=BE·EC.17.如图所示,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD·BC=OB·BD.18.如图所示,在⊙O中,CD过圆心O,且CD⊥AB于D,弦CF交AB于E.求证:CB2=CF·CE.19.已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.20.已知:如图,在△ABC中,∠BAC=90°,AH⊥BC于H,以AB和AC为边在Rt△ABC外作等边△ABD和△ACE,试判断△BDH与△AEH是否相似,并说明理由.21.已知:如图,在△ABC中,∠C=90°,P是AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC于E,点E不与点C重合,若AB=10,AC=8,设AP=x,四边形PECB的周长为y,求y与x的函数关系式.。
第27章图形的相似 27.2 相似三角形 27.2.1 相似三角形的判定由三边和两边夹角判定三角形相似1. 有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,2,5,乙三角形木框的三边长分别为5,5,10,则甲、乙两个三角形( )A.不一定相似 B.一定不相似 C.一定相似 D.无法判断2.如图,4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )3. 如图,若A,B,C,P,Q,甲、乙、丙、丁都是方格纸的格点,为使△ABC∽△PQR,则点R应是甲、乙、丙、丁点中的( )A.甲 B.乙 C.丙 D.丁4. 如图,在正三角形ABC中,点D,E分别在AC,AB上,且,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD5. 如图,四边形ABCD的对角线AC,BD相交于点O,且将这个四边形分成①、②、③、④四个三角形.若OA∶OC=OB∶OD,则下列结论中一定正确的是( )A .①和②相似B .①和③相似C .①和④相似D .②和④相似 6. 如图,下列条件中,能使△ACD∽△ABC 的是( )A.AC CD =AB BCB.CD BC =ADACC .CD 2=AD·BD D .AC 2=AD·AB 7. 如图,在△ABC 与△ADE 中,∠BAC =∠D,要使△ABC 与△ADE 相似,还需满足下列条件中的( ).A.AC AD =AB AEB.AC AD =BC DEC.AC AD =AB DED.AC AD =BC AE 8. 如图所示,在正方形网格上有6个三角形:①△ABC ;②△BCD;③△BDE;④△BFG;⑤△FGH ;⑥△EFK.其中②~⑥中与①相似的是( )A.②③④ B.③④⑤ C.④⑤⑥ D.②③⑥9. 如图,AB·AE=AC·AD,则△ADE∽________,∠D=________.10. 如图,∠1=∠2,添加一个条件使得△ADE∽△ACB,这个条件是.11. 如图,已知∠DAB=∠CAE,请补充一个条件:_______,使△ABC∽△ADE.12.如图,∠A =∠DBC,AB =4,AC =6,BC =5,BD =7.5,则CD 的长等于________.13. 如图,已知AB AD =BC DE =ACAE,∠BAD =20°,求∠CAE 的大小.14. .如图,已知∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.15. 如图,D是△ABC的边BC上的一点,AB=2,BD=1,DC=3,求证:△DBA∽△ABC.16. 如图,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E,连接BD.求证:△ABC∽△BDC.17. 如图,在△ABC中,AC=8厘米,BC=16厘米,点P从点A出发,沿着AC 边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?18. 一个钢筋三脚架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三脚架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案. 答案:1---8 CBCBB DCB 9. △ABC ∠B 10. = 11. AD AB =AE AC12. 25413. 解:∵AB AD =BC DE =ACAE ,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,又∠DAC 是公共角,∴∠CAE =∠BAD =20°14. .证明∵AB=20.4,AC=48,AE=17,AD=40, ∴=1.2,=1.2,∴.又∠BAC=∠EAD,∴△ABC ∽△AED.15. 解: ∵AB =2,BD =1,DC =3,∴BC =BD +DC =4,∴AB BC =BD AB =12,又∵∠B =∠B ,∴△DBA ∽△ABC16. 证明:∵DE 是AB 的垂直平分线,∴AD =BD.∵∠BAC =40°, ∴∠ABD =40°,∵∠ABC =80°,∴∠DBC =40°,∴∠DBC =∠BAC , ∵∠C =∠C ,∴△ABC ∽△BDC17. 解:设经过x 秒后,△PQC 与△ABC 相似,则AP =x ,CQ =2x ,CP =8-x .①当△CPQ ∽△CAB 时,CP AC =CQ BC ,则8-x 8=2x16,解得x =4.②当△CPQ ∽△CBA 时,CP BC =CQ AC ,则8-x 16=2x 8,解得x =85.综上所述,当经过4秒或85秒时,△PQC 和△ABC 相似18. 解; 两种截法:①30厘米与60厘米的两根钢筋为对应边.把50厘米的钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似②30厘米与50厘米长的两根钢筋为对应边.把50厘米分截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两三角形相似。
27.2相似三角形同步练习一.选择题1.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°2.两个相似三角形对应角平分线的比为4:3,那么这两个三角形的面积的比是()A.2:3B.4:9C.16:36D.16:93.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.且∠B=∠DC.D.且∠A=∠D4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中能判断△ABC∽△AED 的是()①∠AED=∠B;②∠ADE=∠C;③=;④=.A.①②B.①②③C.①②④D.①②③④5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=5:2,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.5:7B.10:4C.25:4D.25:496.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似7.如图,在△ABC,D是BC上一点,BD:CD=1:2,E是AD上一点,DE:AE=1:2,连接CE,CE的延长线交AB于F,则AF:AB为()A.1:2B.2:3C.4:3D.4:78.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1:4B.1:5C.1:6D.1:79.如图,AD∥BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△P AD 与△PBC相似,则这样的点P有()A.1 个B.2 个C.3 个D.4 个10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于F,连接DF,若BF=,BC =3,则DF=()A.4B.3C.2D.二.填空题11.已知△ABC∽△A′B′C′,且AB=3cm,A′B′=5cm,则相似比为.12.如图,△ABC中,CA=CB,点E在BC边上,点D在AC边上,连接AE、DE,若AB =AE,2∠AEB+∠ADE=180°,BE=8,CD=,则CE=.13.如图,在△ABC中,若DE∥BC,EF∥CD,AE=2EC,则AF:FD:DB=.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值是.15.如图,在矩形ABCD中,AD=2,AB=4,E、F分别是AB、CD边上的动点,EF⊥AC,则AF+CE的最小值为.三.解答题16.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.17.如图,在△ABC中,点D、E分别在AB、AC上,DE、BC的延长线相交于点F,且EF•DF=CF•BF.求证:△CAB∽△DAE.18.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.参考答案一.选择题1.解:∵△ABC∽△DCA,∴∠BAC=∠D=117°,∠DAC=∠B=33°,∴∠BAD=∠BAC+∠DAC=150°,故选:A.2.解:∵两个相似三角形对应角平分线的比为4:3,∴它们的相似比为4:3,∴它们的面积比为16:9.故选:D.3.解:A、∠A=∠D,∠B=∠F,可以得出△ABC∽△DFE,故此选项不合题意;B、=且∠B=∠D,不是两边成比例且夹角相等,故此选项符合题意;C、==,可以得出△ABC∽△DEF,故此选项不合题意;D、=且∠A=∠D,可以得出△ABC∽△DEF,故此选项不合题意;故选:B.4.解:∵∠A=∠A,∴∠AED=∠B或∠ADE=∠C时,△ABC∽△AED.∵=,∴=∵∠A=∠A,∴△ABC∽△AED,故①②③可以判断三角形相似,故选:B.5.解:设DE=5k,EC=2k,则CD=7k,∵四边形ABCD是平行四边形,∴AB=CD=7k,DE∥AB,∴△DEF∽△BAF,∴===,故选:D.6.解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF∥BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由,推不出△AEF与△ABC相似.选项D正确.理由:∵AF•BE=AE•FC,∴=,∴EF∥BC,∴△AEF∽△ABC.故选:D.7.解:过D作DH∥AB交CF于H,如图,∵DH∥BF,∴=,∵BD:CD=1:2,∴CD:BC=2:3,∴BF=DH,∵DH∥AF,∴==2,∴AF=2DH,∴AF:BF=2DH:DH=4:3,∴AF:AB=4:7.故选:D.8.解:∵四边形ABCD是平行四边形,∴BO=DO,AB∥CD,∵E为OD的中点,∴DE=EO=DO,∴BO=2EO,BE=3DE,∵DF∥AB,∴△DFE∽△BAE,∴=()2=,设S△DEF=x,则S△BEA=9x,∵BO=2OE,∴S△AOB=6x=S△DOC,∴四边形EFCO的面积=5x,∴△DEF与四边形EFCO的面积比=1:5,故选:B.9.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设DP的长为x,则CP长为6﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则DP:CP=AD:BC,即x:(6﹣x)=3:4,解得:x=②若△APD∽△BPC,则DP:PC=AD:BC,即x:4=3:(6﹣x),整理得:x2﹣6x+12=0,∵△<0,这种情形不存在,∴满足条件的点P的个数是1个,故选:A.10.解:如图,连接BD,∵∠AEF=∠BEA,∠AFE=∠BAE=90°,∴△AEF∽△BEA,∴=,∵AE=ED,∴=,又∵∠FED=∠DEB,∴△FED∽△DEB,∴∠EFD=∠EDB,∵∠EFD+∠DFC=90°,∠EDB+∠ODC=90°,∴∠DFC=∠ODC,∵在矩形ABCD中,OC=AC,OD=BD,AC=BD,∴OD=OC,∴∠OCD=∠ODC,∴∠DFC=∠OCD,∴DF=DC,在Rt△BCF中,FC===2,∵AD∥BC,∴△AEF∽△CBF,∴==,∴AF=FC=,∴AB===3,∴DF=3,故选:B.二.填空题11.解:由题意得,=,∵△ABC∽△A′B′C′,∴△ABC与△A′B′C′的相似比为=,故答案为:.12.解:如图,过点A作AM⊥BE于E,过点D作DN⊥EC于N,∵CA=CB,AB=AE,∴∠B=∠CAB,∠B=∠AEB,∴∠B=∠CAB=∠AEB,∵∠B+∠BAC+∠C=180°,∠B+∠AEB+∠BAE=180°,∴∠C=∠BAE,∴2∠AEB+∠C=180°,又∵2∠AEB+∠ADE=180°,∴∠C=∠ADE,又∵∠ADE=∠C+∠DEC,∴∠C=∠DEC,∴DE=DC=,∵AB=AE,AM⊥BE,DE=CC,DN⊥EC,∴BM=ME=BE=4,EN=NC=EC,AM∥DN,∴△CDN∽△CAM,∴,∴,∴EC=12,EC=﹣5(不合题意舍去),故答案为:12.13.解:∵EF∥CD,AE=2EC,∴==2,∵DE∥BC,∴==2,设DF=m,则AF=2m,AD=3m,DB=m,∴AF:DF:DB=2m:m:m=4:2:3.故答案为:4:2:3.14.解:∵DE∥AC,∴△DOE∽△COA,∴=()2=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,∴=,故答案为:.15.解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG=EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG∥EF,且CG=EF,∴四边形CEFG是平行四边形;∴EC∥FG,EC=FG,又∵点A、F、G三点共线,∴AF∥EC,又∵四边形ABCD是矩形,∴AE∥DC,∠D=90°,∴四边形AECF是平行四边形,∴OA=OC,OE=OF,又∵EF⊥AC,AF=CF=4﹣x,在Rt△ADF中,由勾股定理得:AD2+DF2=AF2,又∵AD=2,DF=x,则FC=4﹣x,∴22+x2=(4﹣x)2,解得:x=,∴AF=,在Rt△ADC中,由勾股定理得:AD2+DC2=AC2,∴AC=,∴AO=,又∵OF∥CG,∴△AOF∽△ACG,∴=,∴AG=5,又∵AG=AF+FG,FG=EC,∴AF+EC=5,故答案为5.三.解答题16.证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.17.证明:∵EF•DF=CF•BF.∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE.18.(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.。
人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)1 / 17相似三角形的判定测试时间:100分钟 总分: 100一、选择题(本大题共10小题,共30.0分)1. 如图,在 中,点P 在边AB 上,则在下列四个条件中::;;; ,能满足 与 相似的条件是A. B.C. D.2. 下列 的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与 相似的是A. B. C. D.3. 如图所示,每个小正方形的边长均为1,则下列A 、B 、C 、D 四个图中的三角形 阴影部分 与 相似的是A. B. C. D.4. 如图,在 中, , ,点D 在AC 上,且,如果要在AB 上找一点E ,使 与 相似,则AE 的长为A. B. C.3D.或5. 如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且 ,将 绕点A 顺时针旋转 ,使点E落在点处,则下列判断不正确的是A. 是等腰直角三角形B. AF 垂直平分C. ∽D. 是等腰三角形6.如图,在中,点D,E分别在边AB,AC上,下列条件中不能判断 ∽ 的是A.B.C.D.7.如图,点D,E分别在的AB,AC边上,增加下列条件中的一个:,,,,,使与一定相似的有A. B. C. D.8.如图,在钝角三角形ABC中,,,动点D从A点出发到B点止,动点E从C点出发到A点止点D运动的速度为秒,点E运动的速度为秒如果两点同时运动,那么当以点A、D、E为顶点的三角形与相似时,运动的时间是A. 4或B. 3或C. 2或4D. 1或69.如图,在中,,,,将沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是A. B.C. D.10.如图,点E是矩形ABCD的边AD的中点,且于点F,则下列结论中错误的是A.B.C. 图中与相似的三角形共有4个D.人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)3 / 17二、填空题(本大题共10小题,共30.0分)11. 如图,已知 中,D 为边AC 上一点,P 为边AB 上一点,, , ,当AP 的长度为______ 时,和 相似.12. 如图,在 中, 、E 分别为边AB 、AC 上的点 , ,点F 为BC 边上一点,添加一个条件:______,可以使得 与 相似 只需写出一个13. 在 中, , ,点D 在边AB 上,且 ,点E 在边AC 上,当______时,以A 、D 、E 为顶点的三角形与 相似.14. 如图, , , , , ,点p 在BD 上移动,当 ______ 时, 和 相似.15. 如图,在 中,点E ,F 分别在AB ,AC 上,若∽ ,则需要增加的一个条件是______ 写出一个即可16. 如图, 中,D 、E 分别是AB 、AC 边上一点,连接 请你添加一个条件,使 ∽ ,则你添加的这一个条件可以是______ 写出一个即可 .17. 如图所示,中,E ,F 分别是边AB ,AC 上的点,且满足 ,则 与的面积比是______ .18. 已知在 中, , ,E 是边AB 上一点,且 ,若F 是AC 边上的点,且以A 、E 、F 为顶点的三角形与 相似,则AF 的长为______.19. 如图,在 中, , , ,点M 在AB 边上,且 ,过点M 作直线MN 与AC 边交于点N ,使截得的三角形与原三角形相似,则______ .20.如图,在正方形网格上有6个三角形:,,,,,.在 ~ 中,与相似的三角形的个数是______.三、计算题(本大题共4小题,共24.0分)21.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.求证: ≌ ;求证: ∽ .22.如图,在中,D、E分别是AB、AC上的点,,,AD::3,的角平分线AF交DE于点G,交BC于点F.请你直接写出图中所有的相似三角形;求AG与GF的比.23.如图,已知,,垂足分别为B、D,AD与BC相交于点E,,垂足为F,试回答人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)5 / 17图中, ∽ ______ , ∽ ______ , ∽ ______ .24. 在图中, 的内部任取一点O ,连接AO 、BO 、CO ,并在AO 、BO 、CO 这三条线段的延长线上分别取点D 、E 、F ,使 ,画出 你认为与 相似吗?为什么?你认为它们也具有位似形的特征吗?四、解答题(本大题共2小题,共16.0分)25. 如图所示, , , ,点P从点B 出发,沿BC 向点C 以 的速度移动,点Q从点C 出发沿CA 向点A 以 的速度移动,如果P 、Q 分别从B 、C 同时出发,过多少时,以C 、P 、Q 为顶点的三角形恰与 相似?26. 如图,四边形ABCD 中,AC 平分 , , ,E 为AB的中点.求证: ∽ ;与AD 有怎样的位置关系?试说明理由;若 , ,求 的值.人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)7 / 17答案和解析【答案】1. D2. B3. B4. D5. D6. A7. A8. B 9. C 10. C11. 4或912. ,或 13. 或14. 或12cm 或2cm15.16.17. 1:918. 或19. 4或620. 321. 证明: 正方形ABCD ,等腰直角三角形EDF ,, , ,,,在 和 中,,≌ ;延长BA 到M ,交ED 于点M ,≌ ,,即 ,,,,,,∽ .22. 解: ∽ , ∽ , ∽ ;, , ,又 ,∽ ,,为角平分线,∽ ,,.23. DAB;BCD;DCE24. 解:相似如图,,,∽ ,,同理,∽ ,它们也具有位似形的特征.25. 解:设经过y秒后, ∽ ,此时,.,,,. ∽ ,,设经过y秒后, ∽ ,此时,..∽ ,所以,经过秒或者经过后两个三角形都相似26. 解:平分,,又,::AB,∽ ;,理由: ∽ ,,又为AB的中点,,,,,;,,,人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析),,,∽ ,,.【解析】1. 解:当,,所以 ∽ ;当,,所以 ∽ ;当,即AC::AC,所以 ∽ ;当,即PC::AB,而,所以不能判断和相似.故选D.根据有两组角对应相等的两个三角形相似可对进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对进行判断.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.2. 解:根据勾股定理,,,所以,夹直角的两边的比为,观各选项,只有B选项三角形符合,与所给图形的三角形相似.故选:B.可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题.此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.3. 解:小正方形的边长为1,在中,,,,A中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故A错误;B中,一边,一边,一边,有,即三边与中的三边对应成比例,故两三角形相似故B正确;C中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故C错误;D中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故D错误.故选:B.根据相似三角形的判定,易得出的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.本题考查了相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角9 / 17的度数、对应边的比本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.4. 解:是公共角,当,即时, ∽ ,解得:;当,即时, ∽ ,解得:,的长为:或.故选D.由是公共角,分别从当,即时, ∽ 与当,即时,∽ ,去分析求解即可求得答案.此题考查了相似三角形的判定注意分类讨论思想的应用.5. 解:将绕点A顺时针旋转,使点E落在点处,,,是等腰直角三角形,故A正确;将绕点A顺时针旋转,使点E落在点处,,四边形ABCD是正方形,,,,,,,垂直平分,故B正确;,,,,∽ ,故C正确;,但不一定等于,不一定是等腰三角形,故D错误;故选D.由旋转的性质得到,,于是得到是等腰直角三角形,故A正确;由旋转的性质得到,由正方形的性质得到,推出,于是得到AF垂直平分,故B正确;根据余角的性质得到,于是得到 ∽ ,故C正确;由于,但不一定等于,于是得到不一定是等腰三角形,故D错误.本题考查了旋转的性质,正方形的性质,相似三角形的判定,等腰直角三角形的判定,线段垂直平分线的判定,正确的识别图形是解题的关键.6. 解:,当或时, ∽ ;人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)11 / 17 当 即 时, ∽ .故选:A .根据相似三角形的判定定理进行判定即可.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.7. 解: , ,∽ , 正确;, ,∽ , 正确;, ,∽ , 正确;由 ,或 不能证明 与 相似.故选:A .由两角相等的两个三角形相似得出 正确,由两边成比例且夹角相等的两个三角形相似得出 正确;即可得出结果.本题考查了相似三角形的判定定理:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似;如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.8. 解:根据题意得:设当以点A 、D 、E 为顶点的三角形与 相似时,运动的时间是x 秒,若 ∽ ,则AD : :AC ,即x : :12,解得: ;若 ∽ ,则AD : :AB ,即x : :6,解得: ;所以当以点A 、D 、E 为顶点的三角形与 相似时,运动的时间是3秒或 秒. 故选B .根据相似三角形的性质,由题意可知有两种相似形式,∽ 和 ∽ ,可求运动的时间是3秒或 秒.此题考查了相似三角形的性质,解题时要注意此题有两种相似形式,别漏解;还要注意运用方程思想解题.9. 解:A 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C .根据相似三角形的判定定理对各选项进行逐一判定即可.本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键. 10. 解:A 、 ,∽ ,,,,故A正确,不符合题意;B、过D作交AC于N,,,四边形BMDE是平行四边形,,,,于点F,,,,,故B正确,不符合题意;C、图中与相似的三角形有,,,,共有5个,故C错误.D、设,由 ∽ ,有.,故D正确,不符合题意.故选C.由,又,所以,故A正确,不符合题意;过D作交AC于N,得到四边形BMDE是平行四边形,求出,得到,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由 ∽ ,得到CD与AD的大小关系,根据正切函数可求的值,故D错误,符合题意.本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.11. 解:当 ∽ 时,,,解得:,当 ∽ 时,,,解得:,当AP的长度为4或9时,和相似.故答案为:4或9.人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)分别根据当 ∽ 时,当 ∽ 时,求出AP的长即可.此题主要考查了相似三角形的判定与性质,利用倒推法以及分类讨论得出是解题关键.12. 解:,或.理由:,,∽ ,当时, ∽ ,∽ .当时,,∽ .故答案为,或.结论:,或根据相似三角形的判定方法一一证明即可.本题考查相似三角形的判定和性质平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13. 解:当时,,∽ ,此时;当时,,∽ ,此时;故答案为:或.若A,D,E为顶点的三角形与相似时,则或,分情况进行讨论后即可求出AE的长度.本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法,解题的关键是分两种情况进行讨论.14. 解:由,,,设,则,若 ∽ ,则,即,变形得:,即,因式分解得:,解得:,,所以或12cm时, ∽ ;若 ∽ ,则,13 / 17即,解得:,,综上,或12cm或时, ∽ .故答案为:或12cm或2cm.设出,由表示出PD的长,若 ∽ ,根据相似三角形的对银边成比例可得比例式,把各边的长代入即可列出关于x的方程,求出方程的解即可得到x的值,即为PB的长.此题考查了相似三角形的判定与性质,相似三角形的性质有相似三角形的对应边成比例,对应角相等;相似三角形的判定方法有:1、两对对应角相等的两三角形相似;2、两对对应边成比例且夹角相等的两三角形相似;3、三边对应成比例的两三角形相似,本题属于条件开放型探究题,其解法:类似于分析法,假设结论成立,逐步探索其成立的条件.15. 解:当时, ∽ .故答案为.利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似进行添加条件.本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.16. 解:,当时, ∽ .故答案为.利用有两组角对应相等的两个三角形相似添加条件.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.17. 解:,,又,∽ ,与的面积比:9,故答案为:1:9.由已知条件易证 ∽ ,根据相似三角形的性质即可求出与的面积比.本题考查了相似三角形的判定和性质,熟悉相似三角形的性质:相似三角形的面积比是相似比的平方是解题关键.18. 解:,以A、E、F为顶点的三角形与相似,有 ∽ 和 ∽ 两种情况:如图1:人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)当时, ∽ 时,即,解得:;如图2:当时, ∽ 时,即,解得:.所以或.故答案为或.根据相似三角形的相似比求AF,注意分情况考虑.本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理,分情况讨论是解决本题的关键.19. 解:如图1,当时,则 ∽ ,故,则,解得:,如图2所示:当时,又,∽ ,,即,解得:,故答案为:4或6.分别利用当时以及当时,得出相似三角形,再利用相似三角形的15 / 17性质得出答案.此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.20. 解:,,,,,,,,,,,,,,,与不相似;,,,∽ ;,,,∽ ;,,,∽ ;,,,与不相似.故答案为3.先利用勾股定理计算出,,,,,,然后利用三组对应边的比相等的两个三角形相似依次判断,,,,与是否相似.本题考查了相似三角形的判定:三组对应边的比相等的两个三角形相似也考查了勾股定理.21. 由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;由第一问的全等三角形的对应角相等,根据等量代换得到,再由对顶角相等,利用两对角相等的三角形相似即可得证.此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的判定与性质是解本题的关键.22. 可得到三组三角形相似;先利用两组对应边的比相等且夹角对应相等的两个三角形相似证明 ∽ ,则,再利用有两组角对应相等的两个三角形相似证明 ∽ ,然后利用相似比和比例的性质求的值.本题考查了相似三角形的判断:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.23. 解:,,,,,,,,∽ ;,,∽ ;,,人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)∽ ,故答案为:DAB;BCD;DCE.由AB垂直于BD,CD垂直于BD,得到一对同旁内角互补,利用同旁内角互补两直线平行得到AB与CD平行,同理EF与AB平行,且与CD平行,根据EF与AB平行,利用两直线平行同位角相等得到两对角相等,确定出三角形DEF与三角形DAB相似;同理得到三角形BEF与三角形BCD相似;由两直线平行得到两对内错角相等,得到三角形ABE与三角形DEC相似.此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.24. 由,可得 ∽ ,再由相似得出对应边成比例,即可得出与相似,由于它们有位似中心点O,所以它们也具有位似形的特征.本题主要考查了相似三角形的判定以及位似图形的问题,应熟练掌握位似与相似之间的联系及区别.25. 设经过y秒后相似,由于没有说明对应角的关系,所以共有两种情况: ∽与 ∽本题考查相似三角形的判定,解题的关键是分两种情况进行讨论,本题属于中等题型.26. 根据两组对应边的比相等且夹角对应相等的两个三角形相似进行求解;根据,,即可得出,进而得到;先根据,,判定 ∽ ,即可得出,进而得到.本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合.17 / 17。
27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.如图所示,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE ACC.AD AE =AC AB =DE BC D.AD AB =AE EC =DE BC2.两个三角形相似,且相似比k =1,则这两个三角形 .3.如图,在△ABC 中,DE ∥BC ,AD =6,DB =3,AE =4,则EC 的长为( )A .1B .2C .3D .44.如图,直线l 1∥l 2∥l 3,直线AC 交l 1,l 2,l 3于点A ,B ,C ,直线DF 交l 1,l 2,l 3于点D ,E ,F ,已知AB AC =13,则EFDE= .5.如图,在▱ABCD 中,EF ∥AB 交AD 于点E ,交BD 于点F ,DE ∶EA =3∶4,EF =3,则CD 的长为( )A .4B .7C .3D .126.如图,点E ,F 分别在△ABC 的边AB ,AC 上,且EF ∥BC ,点M 在边BC 上,AM 与EF 交于点D ,则图中相似三角形共有( )A .4对B .3对C .2对D .1对7.在△ABC 中,AB =6,AC =9,点P 是直线AB 上一点,且AP =2,过点P 作BC 边的平行线,交直线AC 于点M ,则MC 的长为 .8.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB 于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE=AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF9.如图,AG∶GD=4∶1,BD∶DC=2∶3,则AE∶EC的值是()A.3∶2B.4∶3C.6∶5D.8∶510.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上,若线段AB=4 cm,则线段BC=cm.11.如图,在△ABC中,点D,E分别为AB,AC的中点,连接DE,线段BE,CD相交于点O,若OD=2,则OC=.12.如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F,若CD=5,BC=8,AE=2,则AF=.13.中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”,修建高铁时常常要逢山开道、遇水搭桥,如图,某高铁在修建时需打通一直线隧道MN(M、N为山的两侧),工程人员为了计算M、N两点之间的直线距离,选择作MN的平行线BC,并测得AM=900米, AB=30米,BC=45米,求直线隧道MN的长.14.如图,延长正方形ABCD的一边CB至点E,ED与AB相交于点F,过点F作FG∥BE 交AE于点G,求证:GF=FB.15.如图,AD∥EG∥BC,EG分别交AB,DB,AC于点E,F,G,已知AD=6,BC=10,AE=3,AB=5,求EG,FG的长.第2课时 相似三角形的判定定理1,21.将一个三角形的各边长都缩小12后,得到的三角形与原三角形( )A .一定相似B .一定不相似C .不一定相似D .无法确定2.若△ABC 各边分别为AB =10 cm ,BC =8 cm ,AC =6 cm ,△DEF 的两边为DE =5 cm ,EF =4 cm ,则当DF = cm 时,△ABC ∽△DEF. 3.试判断图中的两个三角形是否相似,并说明理由.4.网格图中每个方格都是边长为1的正方形.若A ,B ,C ,D ,E ,F 都是格点,试说明△ABC ∽△DEF.5.能判定△ABC ∽△A ′B ′C ′的条件是( )A.AB A ′B ′=ACA ′C ′B.AB AC =A ′B ′A ′C ′且∠A =∠A ′ C.AB BC =A ′B ′A ′C ′且∠B =∠C ′ D.AB A ′B ′=ACA ′C ′且∠B =∠B ′6.如图,已知△ABC,则下列4个三角形中,与△ABC相似的是()7.如图,AB与CD相交于点O,OA=3,OB=5,OD=6,当OC=时,△AOC∽△BOD.8.如图,点C,D在线段AB上,∠A=∠B,AE=3,AD=2,BC=3,BF=4.5,DE=5,求CF的长.9.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=时,以A,D,E为顶点的三角形与△ABC相似.10.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P 1B.P2C.P3D.P411.如图,在△ABC中,点P在AB上,下列四个条件:①AP∶AC=AC∶AB;②AC2=AP·AB;③AB·CP=AP·CB.其中能满足△APC和△ACB相似的条件有()A.1个 B.2个C.3个D.0个12.如图,已知∠DAB=∠CAE,请补充一个条件:,使△ABC∽△ADE.13.如图,AB∥DE,AC∥DF,BC∥EF,求证:△DEF∽△ABC.14.如图,在△ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DB·CE.求证:△ADB∽△EAC.15.如图,正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,求证:△ADQ ∽△QCP.16.如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1 cm/s,点E运动的速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是.第3课时相似三角形的判定定理31.下列各组图形中有可能不相似的是()A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形2.已知△ABC中,∠A=40°,∠B=75°,下图各三角形中与△ABC相似的是.3.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形.(用相似符号连接) 4.如图,点B,D,C,F在一条直线上,且AB∥EF,AC∥DE,求证:△ABC∽△EFD.5.如图,∠1=∠2,∠C =∠D.求证:△ABC ∽△AED.6.在△ABC 和△A ′B ′C ′中,∠C =∠C ′=90°,AC =12,AB =15,A ′C ′=8,则当A ′B ′= 时,△ABC ∽△A ′B ′C ′.7.一个直角三角形的一条直角边长和斜边长分别为8 cm 和15 cm ,另一个直角三角形的一条直角边长和斜边长分别是6 cm 和454 cm ,这两个直角三角形 (填“是”或“不是”)相似三角形.8.一个直角三角形的两边长分别为3和6,另一个直角三角形的两边长分别为2和4,那么这两个直角三角形 (填“一定”“不一定”或“一定不”)相似.9.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,且∠DCE =∠B.那么下列判断中,错误的是( )A .△ADE ∽△ABCB .△ADE ∽△ACDC .△DEC ∽△CDBD .△ADE ∽△DCB10.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .811.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.12.如图,已知∠ACB=∠ABD=90°,AB=6,AC=2,求AD的长为多少时,图中两直角三角形相似?13.如图,在▱ABCD中,过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.求证:△ABF∽△BEC.14.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?15.如图,在△ABC中,AD,BF分别是BC,AC边上的高,过点D作AB的垂线交AB于点E,交BF于点G,交AC的延长线于点H,求证:DE2=EG·EH.参考答案:27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.A2. 全等.3.B4. 2.5.B6.B7. 6或12.8.D9.D10.12.11.4.12.169.13.解:∵BC ∥MN ,∴△ABC ∽△AMN.∴AB AM =BC MN ,即30900=45MN .∴MN =1 350.答: 直线隧道MN 的长为1 350米.14.证明:∵GF ∥AD ,∴GF AD =EFED .又FB ∥DC ,∴FB DC =EFED .又AD =DC ,∴GF AD =FBAD .∴GF =FB.15.解:∵在△ABC 中,EG ∥BC ,∴△AEG ∽△ABC ,∴EG BC =AEAB .∵BC =10,AE =3,AB =5,∴EG 10=35,∴EG =6. ∵在△BAD 中,EF ∥AD ,∴△BEF ∽△BAD ,∴EF AD =BE AB. ∵AD =6,AE =3,AB =5,∴EF 6=5-35.∴EF =125. ∴FG =EG -EF =185.第2课时 相似三角形的判定定理1,21.A2.3.3.解:相似.理由如下:在Rt △ABC 中,BC =AB 2-AC 2=32-2.42=1.8,在Rt △DEF 中,DF =DE 2-EF 2=62-3.62=4.8,∴AB DE =BC EF =AC DF =12. ∴△ABC ∽△DEF.4.证明:∵AC =2,BC =12+32=10,AB =4,DF =22+22=22,EF =22+62=210,ED =8,∴AC DF =BC EF =AB DE =12. ∴△ABC ∽△DEF.5.B6.C7. 1858.解:∵AE BF =34.5=23,AD BC =23,∴AE BF =AD BC.又∵∠A =∠B ,∴△AED ∽△BFC.∴AD BC =DE CF .∴23=5CF. ∴CF =152. 9. 125或53. 10.C11.B12. AD AB =AE AC 13.证明:∵AB ∥DE ,∴△ODE ∽△OAB.∴DE AB =OE OB. ∵BC ∥EF ,∴△OEF ∽△OBC.∴EF BC =OE OB =OF OC. ∵AC ∥DF ,∴△ODF ∽△OAC.∴DF AC =OF OC. ∴DE AB =EF BC =DF AC. ∴△DEF ∽△ABC.14.证明:∵AB =AC ,∴∠ABC =∠ACB.∴∠ABD =∠ACE.∵AB 2=DB ·CE ,∴AB CE =DB AB . 又AB =AC ,∴AB CE =DB AC. ∴△ADB ∽△EAC.15.证明:设正方形的边长为4a ,则AD =CD =BC =4a.∵Q 是CD 的中点,BP =3PC ,∴DQ =CQ =2a ,PC =a.∴DQ PC =AD CQ =21. 又∵∠D =∠C =90°,∴△ADQ ∽△QCP.16.3__s 或4.8__s .第3课时 相似三角形的判定定理31.A2. △EFD ,△HGK .3. 答案不唯一,如△BDE ∽△CDF ,△ABF ∽△ACE 等.4.证明:∵AB ∥EF ,AC ∥DE ,∴∠B =∠F ,∠ACB =∠EDF.∴△ABC ∽△EFD.5.证明:∵∠1=∠2,∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠EAD.又∵∠C =∠D ,∴△ABC ∽△AED.6.10.7.是.8.不一定.9.D10.B11.6017. 12.解:①若△ABC ∽△ADB ,则AB AD =AC AB.∴AD =3; ②若△ABC ∽△DAB ,则AB AD =BC AB.∴AD =3 2.综上所述,当AD =3或32时,两直角三角形相似.13.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AD =BC.∴∠D +∠C =180°,∠ABF =∠BEC.又∵∠AFB +∠AFE =180°,且∠AFE =∠D , ∴∠C =∠AFB.又∵∠ABF =∠BEC ,∴△ABF ∽△BEC.14.解:(1)证明:∵四边形ABCD 是矩形, ∴AB ∥CD.∴△APQ ∽△CDQ.(2)当DP ⊥AC 时,∠QCD +∠QDC =90°.∵∠ADQ +∠QDC =90°,∴∠DCA =∠ADP. 又∵∠ADC =∠DAP =90°,∴△ADC ∽△PAD.∴AD PA =DC AD .∴10PA =2010,解得PA =5. ∴t =5.15.证明:∵AD ,BF 分别是BC ,AC 边上的高, ∴∠ADB =∠BED =90°.∴∠EBD +∠EDB =∠EDB +∠ADE.∴∠EBD =∠EDA.∴△AED ∽△DEB.∴AE DE =DE BE,即DE 2=AE ·BE. 又∵∠HFG =90°,∠BGE =∠HGF ,∴∠EBG =∠H.∵∠BEG =∠HEA =90°,∴△BEG ∽△HEA.∴EG AE =BE EH,即EG ·EH =AE ·BE. ∴DE 2=EG ·EH.。
相似三角形的判定一、基础题目1.如图,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE AC C.AD AE =AC AB =DE BC D.AE EC =DE BC2.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD =2AD ,则( ) A.AD AB =12 B.AE EC =12 C.AD EC =12 D.DE BC =123.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若AB BC =12,则DEEF=( ) A.13 B.12 C.23D .1第1题图 第2题图 第3题图4. 如果△ABC ∽△A′B′C′,△ABC 与△A′B′C′的相似比为2,那么△A′B′C′与△ABC 的相似比为 .5.如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,那么BCCE 的值等于 .6.如图,AB 、CD 相交于点O ,OC =2,OD =3,AC ∥BD.EF 是△ODB 的中位线,且EF =2,则AC 的长为 . 7.如图,在△ABC 中,DE ∥BC ,且AD =2,DB =3,则DEBC= .第5题图 第6题图 第7题图 8.如图,EG ∥BC ,GF ∥CD ,AE =3,EB =2,AF =6,求AD 的值.二、训练题目9.如图,△ABC 中,DE ∥BC ,EF ∥AB ,则图中相似三角形的对数是( ) A .1对 B .2对 C .3对 D .4对10.如图,在▱ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ∶FC 等于( ) A .3∶2 B .3∶1 C .1∶1 D .1∶211.如图,在ABC ∆中,DE ∥BC ,3,2AD BD ==,则ADE ∆和ABC ∆的相似比是 ;若6DE =,则BC =第9题图 第10题图 第11题图12.一个三角形的三边长分别为8 cm,6 cm,12 cm,另一个与它相似的三角形的最短边为3 cm ,则其余两边长为______________.13.如图,在ABC ∆中,DE ∥BC ,DE 分别与,AB AC 相交于D E 、,若4AD =,2DB =,求:DE BC 的值。
27.2.1 相似三角形的判定(3)一、基础练习1.已知线段AC 、BD 交于O ,如图1,OC :OB=1:2,OA=6cm ,•OD=•3cm ,•AB=•7cm ,则CD=____.OBACDBA C DGF BACE D M G F(1) (2) (3)2.如图2,△ABC 中,∠C=90°,四边形DEFG 是正方形,点G 、F 分别在AC 、BC 上,DE 在AB 上,则图中相似的三角形共有_______对,它们分别是____________.3.如图3,△ABC 中,DE ∥BC ,GF ∥AC ,则图中与△ABC 相似的三角形为_________.4.•如图4,•∠1=•∠2=•∠3,•则图中相似三角形共有______•对,•它们分别是_________.BAC 31ED 2BA CE DP(4) (5) (6) 5.如图5,有下列条件:①∠B=∠C ;②∠ADB=∠AEC ;③AD AE AC AB =;④AD AE AB AC =;⑤PE BPPD PC=,•其中一个条件就能使△BPE ∽△CPD 的条件有_______个,它们分别是_________.(填序号就可以)6.如图6,在△ABC 中,AB=24,AC=18,D 是AC 上一的点,AD=12,在AB 上取一点E ,使A 、D 、E 三点组成的三角形与△ABC 相似,则AE 的长为________. 7.如图7,在Rt △ABC 的直角边AC 上有一点P (P 不同于A 、C ),过P 作直线截△ABC ,使截得的三角形与△ABC 相似,满足条件的直线共有_______条,这些直线与△ABC•的边的位置关系分别是______________.B AC ED F(7) (8) (9)8.如图8,在YABCD 中,AB=10,AD=6,E 是AD 的中点,在AB 上取一点F ,使△CBF ∽△CDE ,则BF 的长为__________.9.如图9,弦AB 和CD 相交于⊙O 内一点P ,AP=4cm ,BP=3cm ,CP=5cm ,则DP=______cm .10.如图,在正方形网格上,请你画两个三角形,使它们不全等且分别与图中的△ABC 相似,其相似比不为1,三角形的顶点都在正方形的顶点上,并注明相应的字母.BAC二、整合练习1.如图,已知△ABC 的高CD 、BE 相交于点F ,求证:CF ·FD=BF ·FE .BAC E DF2.如图,D 是△ABC 的边BC 上的一点,且BD ABDC AC,BE ⊥AD 于E ,CF ⊥AD 于F ,求证:AB ·DF=AC ·DE . BA CE DF3.如图,已知正方形ABCD 中,P 是BC 边上的点,BP=3PC ,Q 是CD 的中点. 求证:(1)△ADQ ∽△QCP ;(2)AQ ⊥QP ;(3)AQ=2AQ ;(4)AQ 平分∠DAP .BA CQD P答案:一、基础练习1.3.5cm 2.6 △ABC 与△GFC △ABC 与△AGD △ABC 与△FBE • •△AGD•与△GFC △AGD 与△FBE △GFC 与△FBE 3.△ADE △GBF △GDM4.4 △ADE 与△ABC △ACD 与△ABC △ACD 与△ADE △DEC 与△CDB 5.4 ①②④⑤6.16或9(△AED ∽△ABC 或△ADE ∽△ABC )7.3 一条与AB 平行,一条与BC 平行,一条与BC 垂直 8.1.8 9.125(连结AC 、BD ,证明△APC ∽△DPB ) 10.如图B 2C 1A 2C 2B 1A 1B A C二、整合练习1.因为BE ⊥AC ,CD ⊥AB ,∠CEF=∠BDF=90°,∠CFE=∠BFD ,△CFE ∽△BFD (两角对应相等,两三角形相似),CF FEBF FD=,即CF ·FD=BF ·FE . 2.因为BE ⊥AD ,CF ⊥AD ,可证△BDE ∽△CDF ,得BD DE DC DF =,又BD ABDC AC=, 所以AB DE AC DF=,即AB .DF=AC .DE . 3.(1)∠D=∠C=90°,AD DQQC PC==2. (2)证∠AQD+∠PQC=90° (3)由(1)得AQ ADPQ QC==2 (4)•证△ADQ ∽△AQP。
ABDCHG EFADEEABDC27.2.1 相似三角形的判定(一)A组1.如图27-2-1,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A.1对B.2对C.3对D.4对图27-2-1 图27-2-22.如图27-2-2,在△ABC中,DE//BC,且AD:DB=2:1,那么DE:BC等于()A.2:1B.1:2C.2:3D.3:23.如图27-2-3,在□ABCD中,F、H分别是BC、AD上任一点,EF平行AB,HG平行CD,则图中共有相似三角形的对数是()A.2B.3C.4D.5图27-2-3 图27-2-44.如图27-2-4,在△ABC中,DE//BC,AD:CD=1:3,BE=6cm,则AE= cm.5.如图,在□ABCD中,E、F分别是AB、BC的中点,连接AC、EF.求证:△BEF∽△ACD.6.已知:如图,试用两种不同的方法在△ABC内部作一个三角形,使其与△ABC相似,且相似比为14.7.如图,物AB与其所成像A’B’平行,孔心O到蜡烛头A的距离是36cm,到蜡烛头的像A’的距离是12cm,你知道像长是物长的几分之几吗?你是怎样知道的?8.如图,AD与BC交于点O,且AB ∥ CD。
①已知BO:OC=1:3,CD=6cm,求AB的长。
②已知BO:BC=1:3,CD=6cm,求AB的长。
③已知BO:OC=1:3,AD=8cm,求OA的长。
C DA BOOABB’A’PC AGFB 组1.如图27-2-5,已知DE ∥BC ,EF ∥AB ,则下列比例式,错误..的是 ( ) A.AD AE =ABACB.CE EA =CFFBC.DE AD =BC BD D.EF CF=AB CB图27-2-5 图27-2-62.如图27-2-6,在△ABC 中,DG ∥A C ,EF ∥BC ,则图中与△PDE 相似三角形的个数是( ) A.1B.2C.3D.43.如图,AB 是⊙O 的直径,C 、D 是圆上两点,且弧AC=弧BD ,射线AC 与射线BD 交于点E ,求证:△ECD∽△ABE.4.已知:如图,AB=AD ,AC=AE ,FG ∥DE.试说出与所有△ABC 相似的三角形,并说明理由.E OD C BADB CG FE5.如图,△ABC 中,AD ⊥BC ,D 是垂足,E 是BC 中点,FE ⊥BC 交AB 于F ,BD =6,DC =4,AB =8,求BF 长。
6.如图,在□ABCD 中,已知E 是AB 的中点,在AD 上截取AF=12FD ,EF 交AC 于G ,求AG AC的值.GE DA CBF27.21 相似三角形的判定(二)A组1.判断△ABC与△A1B1C1是否相似,并说明理由.(1)AB=4cm,BC=10cm,AC=8cm,A1B1=25cm, B1C1=15cm , A1C1=20cm. (2)AB=4cm,BC=5cm,AC=6cm,A1B1=7cm, B1C1=8cm , A1C1=9cm. (3)AB=3cm,BC=5cm,AC=3cm,A1B1=9cm, B1C1=9cm , A1C1=15cm.(4)已知△ABC的三边长分别为,2,2;21-△A1B1C1的三边长分别为22,22,2,+判断△ABC与△A1B1C1是否相似.3.如图,由边长为1的25个小正方形组成的正方形网格上有一个△ABC;在网格上画出一个与△ABC相似且面积最大的△A1B1C1,使它的三个顶点都落在小正方形的顶点上,则△A1B1C1的最大面积是__________.BCA4.已知△ABC 各边的比为2:5:6,与它相似的△A ′B ′C ′的最小边为15cm ,则△A ′B ′C ′的其它两边长各是多少?5.在如图的方格中画出一个与已知三角形相似的最大三角形,动动脑筋,你会画出来的.6.如图,在Rt △ABC 与Rt △A 1B 1C 1中∠C=∠C 1=90°,AB: A1B 1=AC:A1C 1, 求证:Rt △ABC ∽Rt △A 1B 1C 1.CA 1B 1AB BC ACAD DEAE==AB CEDB组1.如图27-2-7,,则∠BAD=∠ =∠ .图27-2-7 图27-2-82.如图27-2-8,在正方形网格上有五个三角形,其中与△ABC相似(不包括△ABC本身)有()A.1个 B.2个 C.3个 D.4个3.要做甲、乙两个形状相同(相似)的三角形框架,已有三角形框架甲,它的三边长分别为50cm、60cm、80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架乙共有().A.1种B.2种C.3种D.4种4.下面每组的两个三角形是否相似?为什么?(1)(2)C5.如图,在矩形ABEF 中,四边形ABCH 、四边形CDGH 和四边形DEFG 都是正方形,图中的△ACD 与△ADE 相似吗?为什么?27.2.1 相似三角形的判定(三)A 组1.如图27-2-9,锐角三角形ABC 的边AB 、AC 上的高线CE 和BF 相交于点D ,请写出图中的两对相似三角形: (用相似符号连接).图27-2-9 图27-2-102.如图27-2-10,在△ABC 中,D 、E 分别为AB 、AC 上的一点,∠AED=∠B ,AE=2,CE=4,AD=3,求AB 的长.DA BC HGFDBCA 3.已知零件的外径为25cm ,要求它的厚度x ,需先求出它的内孔直径AB ,现用一个交叉卡钳(AC 和BD 的长相等)去量(如图),若OA :OC=OB :OD=3,CD=7cm 。
求此零件的厚度x 。
4.如图,在△ABC 中,D 在AC 上,已知AD=2 cm ,AB=4cm ,AC=8cm ,求证:△ABD ∽△ABC.5.如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,BC= ; (2)判断△ABC 与△DEF 是否相似,并证明你的结论.6.已知,如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,△ADQ与△QCP是否相似?为什么?B组1.如图,D为AC上一点,E为AD上一点,且AD=AB,∠EBD=∠DBC,已知AE=4,AC=9,试求AD的长.AEDB C2.在ΔABC与ΔADB中,∠ABC=∠ADB=90°,AC=5cm,AB=4cm,如果的两个直角三角形相似,求AD的长.3.如图,Rt△ABC,D、E是BC上两点,且AB=BD=DE=EC,请问:此图中共有几个三角形?是否存在相似三角形?如果有请你指出来,并加以证明.4.如图,D为ΔABC内一点,E为ΔABC外一点,且∠1=∠2,AB=6,BC=4,BD=3,BE=2.(1)ΔABD与ΔCBE相似吗?请说明理由.(2)ΔABC与ΔDBE相似吗?请说明理由.5.已知,如图27-2-11,O点在△ABC内部,连AO、BO、CO,A’、B’、C’分别在AO、BO、CO上,且AB∥A’B’、BC∥B’C’.⑴求证:△OAC∽△OA’C’.⑵若将图⑴中的O点移至△ABC外,如图27-2-12,其它条件不变,题中要求证的结论成立吗?①在图⑵基础上画出相应的图形,观察并回答:(填成立或不成立).②证明你在①中观察到的结论.图27-2-11图27-2-12CA27.2.2 相似三角形的判定(四)A 组1.从下面这些三角形中,选出相似的三角形.2.下列图形可能不相似的是( )A.各有一个角是450的两个等腰三角形 B.各有一个角是600的两个等腰三角形 C.两个等腰直角三角形 D.各有一个角是1050的两个等腰三角形 3.如图,P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点,过点P 作直线截ΔABC ,使截得的三角形与ΔABC 相似,满足这样条件的直线共有 ( )A.1条B.2条C.3条D.4条 4.判断符合下列条件的△ABC 与△A ′B ′C ′是否相似?(1)△ABC 的两个角分别是75°和45°,△A ′B ′C ′的两个角分别是45°和60°; (2)△ABC 和△A ′B ′C ′都是含15°角的直角三角形; (3)△ABC 和△A ′B ′C ′都是含15°角的等腰三角形;5.如图,△ABC 中,D 在线段BC 上,∠BAC=∠ADC ,AC=8,BC=16,求CD 的长.952430︒105︒45︒30︒30︒105︒6()5()4()3()30︒4.52.52()45︒30︒1()ADEC BM6.如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于D,试写出图形中的一对相似三角形,并证明.7.如图,∠AED=∠C,DE=4,BC=12,CD=15,AD=3,求AE、BE的长.B组1. 一个三角形的两个内角分别为5°和75°,另一个三角形的两个内角分别为25°和75°则这两个三角形().A.一定相似B.一定不相似C.不一定相似D.不能确定2.如图27-2-13,△ADE∽△ACB,其中∠AED=∠B,那么能成立的比例式是().AD AE DE A.==AC AB BCAD AE DE B.==AB AC BCAD AC DE C.==AE AB BCAD AE DED.==AB EC BCADBADBCE27-2-13 27-2-143.如图27-2-14,△ABC 中,∠A=90°,∠C=30°,N 是AB 的中点,MN ⊥BC 于M ,则可识别△BMN ∽△,相似比为 .4.如图:在矩形ABCD 中,E 、F 是BC 、CD 上的点,且∠AEF=90 O,求证:△ABE ∽△ECF 。
5.如图,锐角三角形ABC 的边AB ,AC 上的高线CE 和BF 相交于点D 。
请找出图中的一对相似三角形,并证明这两个三角形相似.6.如图,在梯形ABCD 中,AD ⊥BC ,∠BAD=90°,对角线BD ⊥DC. (1)ΔABD 与ΔDCB 相似吗?请说明理由. (2)如果AD=4,BC=9,求BD 的长.ECABF D7.如图,AB 是⊙O 的直径, ⊙O 过BC 的中点D,DE ⊥AC.求证: △BDA ∽△CED.BACDEO。