24.2.2第1课时直线和圆的位置关系
- 格式:pptx
- 大小:786.75 KB
- 文档页数:17
《直线和圆的位置关系》教学设计方案(第一课时)一、教学目标:1. 理解直线和圆的位置关系及其判定方法,掌握相交、相切、相离三种位置关系的特征。
2. 能够运用判定方法判断直线和圆的位置关系。
3. 理解切线概念,掌握切线判定和性质定理。
4. 培养观察、比较、分析、综合、抽象、概括和转化的能力以及数形结合的思想。
二、教学重难点:1. 教学重点:掌握直线和圆的三种位置关系及其特征,能够运用判定方法判断位置关系。
2. 教学难点:理解切线的性质定理,正确判断切线。
三、教学准备:1. 准备教学用具,如黑板、白板、圆规、三角板、直尺、圆形纸片等。
2. 制作PPT课件,用于展示图形和概念。
3. 提前准备相关习题,用于课堂练习和课后作业。
四、教学过程:1. 引入课题教师通过展示一些生活中直线和圆的图片,引导学生观察并思考直线和圆之间存在的关系。
同时,教师提出问题,引导学生思考如何通过数学方法来研究直线和圆的位置关系。
2. 探究新知教师引导学生探究直线和圆的位置关系,通过画图、观察、比较等方法,总结出三种位置关系:相交、相切、相离。
同时,教师介绍相关的数学概念,如圆心到直线的距离等。
3. 实践操作教师为学生提供一些练习题,让学生通过实践操作来巩固所学知识。
学生可以通过画图、计算等方式,检验自己对直线和圆的位置关系掌握的情况。
4. 课堂互动教师鼓励学生提出自己的疑问和想法,引导学生进行讨论和交流。
同时,教师对学生的表现进行点评和指导,帮助学生更好地掌握知识。
5. 总结回顾教师引导学生回顾本节课所学知识,强调重点和难点,帮助学生形成完整的知识体系。
同时,教师鼓励学生分享自己的收获和感受,激发学生的学习热情和兴趣。
6. 布置作业教师根据学生的学习情况和教学大纲要求,为学生布置适量的作业,包括练习题和探究性问题,帮助学生进一步巩固和拓展所学知识。
7. 延伸拓展教师介绍一些与直线和圆的位置关系相关的实际应用问题,如卫星轨道、航海等,引导学生了解数学在实际生活中的应用价值,激发学生的学习兴趣和动力。
24.2.2直线与圆的位置关系(第1课时)实验中学孙士洋【教学任务分析】【教学环节安排】【当堂达标自测题】一、填空题.1.如图24.2.2.1-3,PA切⊙O于点A,该圆的半径为3,PO=5,则PA的长等于_____.图24.2.2.1-3图24.2.2.1-4图24.2.2.1-52.如图24.2.2.1-4,⊙O的半径为5,PA切⊙O•于点A,•∠APO=•30•°,•则切线长PA•为______.3.如图24.2.2.1-5,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=______.二、选择题4.如图24.2.2.1-6,直线AB切⊙O于点C,∠OAC=∠OBC,则下列结论错误的是()图24.2.2.1-6A.OC是△ABO中AB边上的高 B.OC所在直线是△ABO的对称轴C.OC是∠AOB的平分线 D.AC>BC5.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为()A.相离B.相切C.相交D.内含6.下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交.A.①②③B.①②C.②③D.③三、解答题7.如图24.2.2.1-7所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切?图24.2.2.1-7 8.如图24.2.2.1-8,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB•的延长线于点D,∠ACD=120°,BD=10.(1)求证:CA=CD;(2)求⊙O的半径.。
第二十四章圆24.2.2 直线和圆的位置关系第1课时直线和圆的位置关系学习目标:1.了解直线和圆的位置关系.2.了解直线与圆的不同位置关系时的有关概念.3.理解直线和圆的三种位置关系时圆心到直线的距离d和圆的半径r之间的数量关系.4.会运用直线和圆的三种位置关系的性质与判定进行有关计算.重点:理解直线和圆的三种位置关系时圆心到直线的距离d和圆的半径r之间的数量关系.难点:会运用直线和圆的三种位置关系的性质与判定进行有关计算.一、知识链接1.点和圆的位置关系有几种(画图表示)?2.如何用数量关系来判断点和圆的位置关系呢?二、要点探究探究点1:用定义判断直线与圆的位置关系问题1 如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?问题2 请同学在纸上画一条直线l,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?要点归纳:如图1,直线和圆没有公共点,我们说直线l与圆相离;如图2,直线和圆只有一个公共点,我们说直线l与圆相切,直线l叫做圆的切线,这个点叫做切点;如图3,直线和圆有两个个公共点,我们说直线l与圆相交,直线l叫做圆的割线.判一判1.直线与圆最多有两个公共点. ( )2.若直线与圆相交,则直线上的点都在圆上. ( )3.若A是⊙O上一点,则直线AB与⊙O相切. ( )4.若C为⊙O外一点,则过点C的直线与⊙O相交或相离. ( )5.直线a和⊙O有公共点,则直线a与⊙O相交. ( )探究点2:用数量关系判断直线与圆的位置关系问题1同学们用直尺在圆上移动的过程中,除了发现公共点的个数发生了变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?问题2 怎样用d(圆心与直线的距离)来判别直线与圆的位置关系呢?要点归纳:设圆心O到直线的距离为d,圆O的半径为r,则有:<r;=r;直线与圆相离d>r;练一练1.已知圆的半径为6cm,设直线和圆心的距离为d:(1)若d=4cm,则直线与圆,直线与圆有个公共点.(2)若d=6cm,则直线与圆,直线与圆有个公共点.(3)若d=8cm,则直线与圆,直线与圆有个公共点.2.已知⊙O的半径为5cm,圆心O与直线AB的距离为d,根据条件填写d的范围:(1)若AB和⊙O相离,则;(2)若AB和⊙O相切,则;(3)若AB和⊙O相交,则.例1 在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1) r=2cm;(2) r=2.4cm;(3) r=3cm.方法总结:要了解AB与⊙C的位置关系,只要知道圆心C到AB的距离d与r的关系.已知r,只需求出C到AB的距离d.【变式题1】Rt△ABC,∠C=90°,AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与直线AB没有公共点?【变式题2】Rt△ABC,∠C=90,AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与线段AB有一个公共点?当半径r为何值时,圆C与线段AB有两个公共点?。
24.2点、直线、圆和圆的位置关系(第1课时)一、学习目标:1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P 在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用。
2.理解不在同一直线上的三个点确定一个圆并掌握它的运用。
3.了解三角形的外接圆和三角形外心的概念。
4.了解反证法的证明思想。
二、学习重点、难点:1. 重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用。
2. 难点:讲授反证法的证明思路。
三、学习过程:(一)温故知新:1.圆的两种定义是什么?2.圆形成后圆上这些点到圆心的距离如何?3.如果在圆外有一点呢?圆内呢?请你画图想一想.(二)自主学习:自学教材P90-----P92,思考下列问题:1.点与圆的三种位置关系:(圆的半径r,点P与圆心的距离为d)点P在圆外⇔;点P在圆上⇔;点P在圆内⇔;2.自己作圆:(思考)(1)作经过已知点A的圆,这样的圆能作出多少个?(2)经过A、B两点作圆,这样的圆能作出多少个?它们的圆心分布有什么特点?(3)经过A、B、C三点作圆,有哪些情况?三点应符合什么条件才能作圆?3.什么叫三角形的外接圆?三角形的外心及性质?4.教材是如何用反证法证明过同一直线上的三点不能作圆?反证法的证明思路是什么?(三)合作探究:例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.(圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心).(四)巩固练习:(五)达标训练1.下列说法:①三点确定一个圆;②三角形有且只有一个外接圆; ③圆有且只有一个内接三角形;④三角形的外心是各边垂直平分线的交点;⑤三角形的外心到三角形三边的距离相等;⑥等腰三角形的外心一定在这个三角形内,其中正确的个数有(•)A.1 B.2 C.3 D.42.Rt △ABC 中,∠C=90°,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A ,•那么斜边中点D 与⊙O 的位置关系是( )A .点D 在⊙A 外B .点D 在⊙A 上C .点D 在⊙A 内 D .无法确定 AC B DB ACD O(第2题图) (第3题图)3.如图,△ABC 内接于⊙O ,AB 是直径,BC=4,AC=3,CD 平分∠ACB ,则弦AD 长为( )A .522B .52C .2D .3 4.经过一点P 可以作_______个圆;经过两点P 、Q 可以作________•个圆,•圆心在_________上;经过不在同一直线上的三个点可以作________个圆,•圆心是________的交点.5.在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是 .6.直角三角形的外心是______的中点,锐角三角形外心在三角形______,钝角三角形外心在三角形_________.(六)拓展创新1.已知△ABC 的三边长分别为6cm 、8cm 、10cm ,则这个三角形的外接圆的面积为__________cm2.(结果用含π的代数式表示)2.如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A 、B 、C •为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,•要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址. B A C。
24.2.2 直线和圆的位置关系(第一课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十四章“圆”24.2.2 直线和圆的位置关系(第一课时),内容包括:直线和圆的位置关系.2.内容解析本节课是在学生已经学习了点和圆的位置关系后,对直线和圆的位置关系进行探索.为后续学习切线判断定理打好基础.直线与圆的位置关系从两个方面去刻画:一是通过再现海上日出的过程中,探索直线与圆的公共点的个数,将直线与圆的位置分为相交、相切、相离三种情况;二是通过比较直线与圆心的距离与半径,对直线与圆的位置进行分类,二者之间相互对应,相互联系.基于以上分析,确定本节课的教学重点是:探索直线和圆的位置关系.二、目标和目标解析1.目标1)理解直线和圆的三种位置关系.2)经历类比探索点和圆位置关系的过程,探索直线和圆的位置关系,体会类比思想,分类思想以及数形结合思想.2.目标解析达成目标1)的标志是:会根据交点个数及数量关系判断直线和圆的位置关系会运用它解决一些实际问题.达成目标2)的标志是:经历类比探索点和圆位置关系的过程,探索直线和圆的位置关系.三、教学问题诊断分析在研究直线和圆的位置关系中,学生不容易想到去类比探索点和圆位置关系的过程,探索直线和圆的位置关系.此外,在对直线和圆的位置关系进行分类时,需要学生具备运动的观点和一定的分类标准,部分学生可能也会存在困难.本节课的教学难点是:类比点和圆的位置关系的过程,探索直线和圆的位置关系.四、教学过程设计(一)复习巩固【提问】点和圆的位置关系有几种?用数量关系如何来判断呢?师生活动:教师提出问题,学生根据所学知识回答.【设计意图】通过回顾点和圆的位置关系,为本节课探究直线和圆的位置关系打好基础.(二)探究新知[诗词欣赏]晓日天际霞光入水中,水中天际一时红。
直须日观三更后,首送金乌上碧空。
【问题一】古诗前两句的意思是什么?师生活动:教师提出问题,学生根据所学知识回答.【问题二】如果从数学的角度来分析,把水面当作一直线,太阳当作一个圆,请同学们利用手中的纸片圆和笔,再现海上日出过程?师生活动:教师提出问题,学生根据所学知识回答.教师通过多媒体展示海上日出过程,加深学生理解.【问题三】再现海上日出过程中,你认为直线和圆有几种位置关系吗?分类依据是什么?师生活动:教师提出问题,学生认真观察后得出答案.教师根据情况适当提示学生通过观察圆与直线的公共点的数量判断直线和圆的位置关系.【问题四】通过预习,你能根据直线与圆之间公共点个数下定义吗?师生活动:教师提出问题,学生根据所学知识回答.教师通过多媒体给出答案:1)直线与圆没有公共点,称为直线与圆相离。